// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/core/mir/mlu_postprocess_pass.h" #include #include #include #include #include #include "lite/core/mir/graph_visualize_pass.h" #include "lite/core/mir/pass_registry.h" #include "lite/operators/subgraph_op.h" namespace paddle { namespace lite { namespace mir { Node* MLUPostprocessPass::InsertCastBefore(const std::string& op_type, const std::string& cast_arg_name, SSAGraph* graph, Node* cur_node, Node* inst_node, const Type* cast_type) { // create the arg node auto* cast_arg = graph->NewArgumentNode(cast_arg_name); cast_arg->AsArg().type = cast_type; inst_node->AsStmt().op()->scope()->Var(cast_arg_name); // create the stmt node auto* cast_inst = graph->NewInstructNode(); // create op auto cast_op = LiteOpRegistry::Global().Create(op_type); CHECK(cast_op) << "create op [" << op_type << "] failed"; cpp::OpDesc op_desc; op_desc.SetType(op_type); if (op_type == "cast") { op_desc.SetAttr("in_dtype", 5); // FP32 op_desc.SetAttr("out_dtype", 4); // FP16 op_desc.SetInput("X", {cur_node->AsArg().name}); op_desc.SetOutput("Out", {cast_arg_name}); } else if (op_type == "layout") { // NCHW -> NHWC op_desc.SetInput("Input", {cur_node->AsArg().name}); op_desc.SetOutput("Out", {cast_arg_name}); } else if (op_type == "io_copy") { op_desc.SetInput("Input", {cur_node->AsArg().name}); op_desc.SetOutput("Out", {cast_arg_name}); } else { CHECK(0) << "Unsupport cast type"; } cast_op->Attach(op_desc, inst_node->AsStmt().op()->scope()); // create kernels auto kernels = cast_op->CreateKernels(graph->valid_places()); std::vector> selected_kernels; bool is_found = false; for (auto& kernel : kernels) { if (op_type == "cast") { const Type* in_arg_ty = kernel->GetInputDeclType("X"); if (PrecisionCompatibleTo(*in_arg_ty, *cur_node->AsArg().type)) { is_found = true; } } else if (op_type == "layout") { const Type* in_arg_ty = kernel->GetInputDeclType("Input"); const Type* out_arg_ty = kernel->GetOutputDeclType("Out"); if (DataLayoutCompatible(*in_arg_ty, *cur_node->AsArg().type) && DataLayoutCompatible(*out_arg_ty, *cast_type)) { is_found = true; } } else if (op_type == "io_copy") { const Type* in_arg_ty = kernel->GetInputDeclType("Input"); const Type* out_arg_ty = kernel->GetOutputDeclType("Out"); if (TargetCompatibleTo(*in_arg_ty, *cur_node->AsArg().type) && TargetCompatibleTo(*out_arg_ty, *cast_type)) { is_found = true; } } else { CHECK(0) << "Unsupport cast type"; } if (is_found) { selected_kernels.emplace_back(std::move(kernel)); // we pick the kernel cast_inst->AsStmt(op_type, std::move(selected_kernels), cast_op); auto& stmt = cast_inst->AsStmt(); if (op_type == "layout") { stmt.picked_kernel().SetContext( ContextScheduler::Global().NewContext(TARGET(kX86))); } else { stmt.picked_kernel().SetContext(ContextScheduler::Global().NewContext( stmt.picked_kernel().target())); } break; } } CHECK(is_found) << "Can't find a Cast kernel for Cast op: " << cur_node->AsArg().name << "->" << op_type; // modify links DirectedLink(cur_node, cast_inst); DirectedLink(cast_inst, cast_arg); return cast_arg; } Node* MLUPostprocessPass::InsertCastAfter(const std::string& op_type, const std::string& cast_arg_name, SSAGraph* graph, Node* cur_node, Node* inst_node, const Type* cast_type) { // create the arg node auto* cast_arg = graph->NewArgumentNode(cast_arg_name); cast_arg->AsArg().type = cast_type; auto* var = inst_node->AsStmt().op()->scope()->Var(cast_arg_name); // for CastAfter manully set the tensor's type var->GetMutable<::paddle::lite::Tensor>(); // create the stmt node auto* cast_inst = graph->NewInstructNode(); // create op auto cast_op = LiteOpRegistry::Global().Create(op_type); CHECK(cast_op) << "create op [" << op_type << "] failed"; cpp::OpDesc op_desc; op_desc.SetType(op_type); if (op_type == "cast") { op_desc.SetAttr("in_dtype", 4); // FP32 op_desc.SetAttr("out_dtype", 5); // FP16 op_desc.SetInput("X", {cast_arg_name}); op_desc.SetOutput("Out", {cur_node->AsArg().name}); } else if (op_type == "layout") { // NHWC -> NCHW op_desc.SetInput("Input", {cast_arg_name}); op_desc.SetOutput("Out", {cur_node->AsArg().name}); } else if (op_type == "io_copy") { op_desc.SetInput("Input", {cast_arg_name}); op_desc.SetOutput("Out", {cur_node->AsArg().name}); } else { CHECK(0) << "Unsupport cast type"; } cast_op->Attach(op_desc, inst_node->AsStmt().op()->scope()); // create kernels auto kernels = cast_op->CreateKernels(graph->valid_places()); std::vector> selected_kernels; bool is_found = false; for (auto& kernel : kernels) { if (op_type == "cast") { const Type* in_arg_ty = kernel->GetInputDeclType("X"); if (PrecisionCompatibleTo(*in_arg_ty, *cast_type)) { is_found = true; } } else if (op_type == "layout") { const Type* in_arg_ty = kernel->GetInputDeclType("Input"); const Type* out_arg_ty = kernel->GetOutputDeclType("Out"); if (DataLayoutCompatible(*in_arg_ty, *cast_type) && DataLayoutCompatible(*out_arg_ty, *cur_node->AsArg().type)) { is_found = true; } } else if (op_type == "io_copy") { const Type* in_arg_ty = kernel->GetInputDeclType("Input"); const Type* out_arg_ty = kernel->GetOutputDeclType("Out"); if (TargetCompatibleTo(*in_arg_ty, *cast_type) && TargetCompatibleTo(*out_arg_ty, *cur_node->AsArg().type)) { is_found = true; } } else { CHECK(0) << "Unsupport cast type"; } if (is_found) { selected_kernels.emplace_back(std::move(kernel)); // we pick the kernel cast_inst->AsStmt(op_type, std::move(selected_kernels), cast_op); auto& stmt = cast_inst->AsStmt(); if (op_type == "layout") { stmt.picked_kernel().SetContext( ContextScheduler::Global().NewContext(TARGET(kX86))); } else { stmt.picked_kernel().SetContext(ContextScheduler::Global().NewContext( stmt.picked_kernel().target())); } break; } } CHECK(is_found) << "Can't find a Cast kernel for Cast op: " << cur_node->AsArg().name << "->" << op_type; // modify links DirectedLink(cast_arg, cast_inst); DirectedLink(cast_inst, cur_node); return cast_arg; } void MLUPostprocessPass::InsertBefore(SSAGraph* graph, Node* head_node, Node* inst_node, const Type* inst_type) { const auto* head_type = head_node->AsArg().type; // break original link RemoveDirectedLink(head_node, inst_node); auto* cur_node = head_node; const auto name_prefix = head_node->AsArg().name + string_format("_%p", inst_node) + "/trans_"; bool is_first_conv_head = std::find(first_conv_nodes_.begin(), first_conv_nodes_.end(), head_node->AsArg().name) != first_conv_nodes_.end(); // layout cast node if (head_type->layout() != inst_type->layout()) { cur_node = InsertCastBefore( "layout", name_prefix + "layout", graph, cur_node, inst_node, LiteType::GetTensorTy( head_type->target(), head_type->precision(), inst_type->layout())); } // precision cast node if (head_type->precision() != inst_type->precision() && !is_first_conv_head) { cur_node = InsertCastBefore( "cast", name_prefix + "cast", graph, cur_node, inst_node, LiteType::GetTensorTy( head_type->target(), inst_type->precision(), inst_type->layout())); } // io copy cur_node = InsertCastBefore( "io_copy", name_prefix + "io_copy", graph, cur_node, inst_node, LiteType::GetTensorTy( inst_type->target(), inst_type->precision(), inst_type->layout())); // connect cur_node to inst_node DirectedLink(cur_node, inst_node); // reset opdesc and update kernel information UpdateInputTo(inst_node->AsStmt().op()->mutable_op_info(), head_node->AsArg().name, cur_node->AsArg().name); // for subgraph op, modify the BlockDesc auto* sub_block_desc = dynamic_cast( inst_node->AsStmt().op().get()) ->GetSubBlock(); for (size_t i = 0; i < sub_block_desc->OpsSize(); ++i) { auto* sub_block_op_desc = sub_block_desc->GetOp(i); UpdateInputTo( sub_block_op_desc, head_node->AsArg().name, cur_node->AsArg().name); } // recreate the op RecreateOp(inst_node, graph); graph->CheckValid(); } void MLUPostprocessPass::GetSubgraphOpArgType(Node* inst_node, const Type** arg_type, SSAGraph* graph) { CHECK(inst_node->IsStmt()); constexpr auto subgraph_target = TARGET(kMLU); constexpr auto subgraph_layout = DATALAYOUT(kNHWC); // get subgraph's valid precision const auto& places = graph->valid_places(); std::set<::paddle::lite_api::PrecisionType> prec_set; for (const auto& place : places) { if (place.target == TARGET(kMLU)) { prec_set.insert(place.precision); } } // get subgraph op's type info size_t kernel_size = inst_node->AsStmt().kernels().size(); CHECK_GT(kernel_size, 0); VLOG(4) << "subgraph kernel size: " << kernel_size; for (size_t i = 0; i < kernel_size; ++i) { auto* kernel = inst_node->AsStmt().kernels()[i].get(); VLOG(4) << i << "th kernel: " << TargetToStr(kernel->target()) << ", " << PrecisionToStr(kernel->precision()) << ", " << DataLayoutToStr(kernel->layout()); } for (size_t i = 0; i < kernel_size; ++i) { auto* kernel = inst_node->AsStmt().kernels()[i].get(); CHECK(kernel->target() == subgraph_target); CHECK(kernel->layout() == subgraph_layout); if (prec_set.count(kernel->precision()) == 1) { const auto subgraph_precision = kernel->precision(); CHECK(subgraph_precision == PRECISION(kFloat) || subgraph_precision == PRECISION(kFP16)) << "Mlu node has unsupport precision"; VLOG(4) << "picked kernel precision: " << PrecisionToStr(subgraph_precision); *arg_type = LiteType::GetTensorTy( subgraph_target, subgraph_precision, subgraph_layout); break; } } } bool MLUPostprocessPass::NeedInsert(Node* node, const Type* inst_type) { CHECK(node->IsArg()); // some op, for example batch_norm, has output nodes useless if (node->outlinks.size() == 0) { return false; } // check if node is weight or persistent bool is_persist = node->AsArg().is_weight || node->AsArg().is_persist; if (is_persist) { VLOG(4) << "Persistent arg name: " << node->AsArg().name << " is_weight: " << node->AsArg().is_weight << " is_persist: " << node->AsArg().is_persist; return false; } const auto target = node->AsArg().type->target(); const auto precision = node->AsArg().type->precision(); const auto layout = node->AsArg().type->layout(); VLOG(4) << "arg name: " << node->AsArg().name << " type: " << TargetToStr(target) << ", " << PrecisionToStr(precision) << ", " << DataLayoutToStr(layout); // do not insert nodes if previous node is on mlu already if (target == inst_type->target()) { CHECK(layout == inst_type->layout()) << "Mlu node has wrong layout"; return false; } return true; } void MLUPostprocessPass::InsertAfter(SSAGraph* graph, Node* tail_node, Node* inst_node, const Type* inst_type) { const auto* tail_type = tail_node->AsArg().type; // break original link RemoveDirectedLink(inst_node, tail_node); auto* cur_node = tail_node; const auto name_prefix = tail_node->AsArg().name + string_format("_%p", inst_node) + "/trans_"; // layout cast node if (tail_type->layout() != inst_type->layout()) { cur_node = InsertCastAfter( "layout", name_prefix + "layout", graph, cur_node, inst_node, LiteType::GetTensorTy( tail_type->target(), tail_type->precision(), inst_type->layout())); } // precision cast node if (tail_type->precision() != inst_type->precision()) { cur_node = InsertCastAfter( "cast", name_prefix + "cast", graph, cur_node, inst_node, LiteType::GetTensorTy( tail_type->target(), inst_type->precision(), inst_type->layout())); } // io copy cur_node = InsertCastAfter( "io_copy", name_prefix + "io_copy", graph, cur_node, inst_node, LiteType::GetTensorTy( inst_type->target(), inst_type->precision(), inst_type->layout())); // connect cur_node to inst_node DirectedLink(inst_node, cur_node); // reset opdesc and update kernel information UpdateOutputTo(inst_node->AsStmt().op()->mutable_op_info(), tail_node->AsArg().name, cur_node->AsArg().name); // for subgraph op, modify the BlockDesc auto* sub_block_desc = dynamic_cast( inst_node->AsStmt().op().get()) ->GetSubBlock(); for (size_t i = 0; i < sub_block_desc->OpsSize(); ++i) { auto* sub_block_op_desc = sub_block_desc->GetOp(i); UpdateOutputTo( sub_block_op_desc, tail_node->AsArg().name, cur_node->AsArg().name); /* graph like this * subgraph_op_0 * / \ * / \ * subgraph_op_1 host_op */ UpdateInputTo( sub_block_op_desc, tail_node->AsArg().name, cur_node->AsArg().name); } // recreate the op RecreateOp(inst_node, graph); graph->CheckValid(); } void MLUPostprocessPass::RecreateOp(Node* inst_node, SSAGraph* graph) { auto original_selected_kernel = std::move(inst_node->AsStmt().kernels().front()); auto updated_op_info = *inst_node->AsStmt().mutable_op_info(); inst_node->AsStmt().ResetOp(updated_op_info, graph->valid_places()); inst_node->AsStmt().kernels().clear(); inst_node->AsStmt().kernels().emplace_back( std::move(original_selected_kernel)); for (auto& kernel : inst_node->AsStmt().kernels()) { VLOG(4) << "kernel info: " << kernel->name(); inst_node->AsStmt().op()->AttachKernel(kernel.get()); } } bool MLUPostprocessPass::IsFirstConvInSubgraph(Node* arg_node, Node* inst) { auto* block_desc = static_cast(inst->AsStmt().op().get()) ->GetSubBlock(); for (int op_idx = 0; op_idx < block_desc->OpsSize(); op_idx++) { auto op_desc = block_desc->GetOp(op_idx); CHECK(op_desc); if (op_desc->Type() == "conv2d") { for (auto& names : op_desc->inputs()) { if (std::find(names.second.begin(), names.second.end(), arg_node->AsArg().name) != names.second.end()) { return true; } } } } return false; } bool MLUPostprocessPass::IsFirstConvNode(Node* arg_node) { CHECK(arg_node->IsArg()); for (auto& inst : arg_node->outlinks) { if (inst->AsStmt().op_type() == "subgraph") { return IsFirstConvInSubgraph(arg_node, inst); } } return false; } void MLUPostprocessPass::GatherFirstConvNodes(SSAGraph* graph) { for (auto& node : graph->mutable_nodes()) { if (!node.IsStmt()) continue; if (node.AsStmt().op_type() == "feed") { for (auto& out : node.outlinks) { if (IsFirstConvNode(out)) { first_conv_nodes_.insert(out->AsArg().name); } } } } } void MLUPostprocessPass::ModifyLayout(SSAGraph* graph) { for (auto& node : graph->mutable_nodes()) { if (!node.IsStmt()) continue; if (node.AsStmt().op_type() == "feed") { for (auto& out : node.outlinks) { bool change = true; for (auto& inst : out->outlinks) { if (inst->AsStmt().op_type() != "subgraph") { change = false; break; } } if (change) { const auto* old_type = out->AsArg().type; out->AsArg().type = LiteType::GetTensorTy(old_type->target(), old_type->precision(), ::paddle::lite_api::DataLayoutType::kNHWC, old_type->device()); } } } if (node.AsStmt().op_type() == "fetch") { for (auto& inp : node.inlinks) { bool change = true; for (auto& inst : inp->inlinks) { if (inst->AsStmt().op_type() != "subgraph") { change = false; break; } } if (change) { const auto* old_type = inp->AsArg().type; inp->AsArg().type = LiteType::GetTensorTy(old_type->target(), old_type->precision(), ::paddle::lite_api::DataLayoutType::kNHWC, old_type->device()); } } } } } void MLUPostprocessPass::Apply(const std::unique_ptr& graph) { // currently for non-persistent input and output args, mlu subgraph op // only support float16/float32 data type // in two situations as folllows: // 1: feed->arg_in->subgraph->... 2: ...->subgraph->arg_out->fetch; // arg_in and arg_out are assumed to be NHWC which user should be aware of. // Thus here we change these args' layout to NHWC if (lite::DeviceInfo::Global().InputLayout() == DATALAYOUT(kNHWC) { ModifyLayout(graph.get()); } if (lite::DeviceInfo::Global().UseFirstConv()) { GatherFirstConvNodes(graph.get()); } // insert io_copy, layout and precision cast of subgraph's inputs and outputs for (auto& node : graph->mutable_nodes()) { if (node.IsStmt() && node.AsStmt().op_type() == "subgraph") { const Type* subgraph_arg_type = nullptr; GetSubgraphOpArgType(&node, &subgraph_arg_type, graph.get()); auto links_tmp = node.inlinks; for (auto p_in : links_tmp) { if (NeedInsert(p_in, subgraph_arg_type)) { InsertBefore(graph.get(), p_in, &node, subgraph_arg_type); } } links_tmp.assign(node.outlinks.begin(), node.outlinks.end()); for (auto p_out : links_tmp) { if (NeedInsert(p_out, subgraph_arg_type)) { InsertAfter(graph.get(), p_out, &node, subgraph_arg_type); } } } } } } // namespace mir } // namespace lite } // namespace paddle REGISTER_MIR_PASS(mlu_postprocess_pass, paddle::lite::mir::MLUPostprocessPass) .BindTargets({TARGET(kMLU)});