/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "operators/kernel/conv_kernel.h" namespace paddle_mobile { namespace operators { template <> void ConvKernel::Compute(const ConvParam ¶m) const { LOG(kLOG_DEBUG) << param; const Tensor *input = param.Input(); Tensor filter = *param.Filter(); Tensor *output = param.Output(); output->mutable_data(); int groups = param.Groups(); std::vector strides = param.Strides(); std::vector paddings = param.Paddings(); std::vector dilations = param.Dilations(); // DLOG << " compute end get Attrs " << strides[0]; const int batch_size = static_cast(input->dims()[0]); std::vector filter_shape_vec(framework::vectorize(filter.dims())); std::vector output_shape_vec(framework::vectorize(output->dims())); size_t data_dim = filter_shape_vec.size() - 2; std::vector col_shape_vec(1 + 2 * data_dim); col_shape_vec[0] = input->dims()[1] / groups; for (size_t j = 0; j < data_dim; ++j) { col_shape_vec[j + 1] = filter_shape_vec[j + 2]; col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2]; } framework::DDim col_shape(framework::make_ddim(col_shape_vec)); framework::DDim col_matrix_shape = framework::flatten_to_2d(col_shape, data_dim + 1); bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations); Tensor col; Tensor col_matrix; if (is_expand) { col.mutable_data(col_shape); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } framework::DDim input_shape = framework::slice_ddim( input->dims(), 1, static_cast(input->dims().size())); framework::DDim filter_matrix_shape = {filter.dims()[0], filter.numel() / filter.dims()[0]}; filter.Resize(filter_matrix_shape); DLOG << " filter.dims() = " << filter.dims(); framework::DDim output_matrix_shape = { output->dims()[1], output->numel() / (output->dims()[0] * output->dims()[1])}; // convolution operator: im2col(or vol2col) + gemm int in_step = static_cast(input->dims()[1]) / groups; int out_step = static_cast(output->dims()[1]) / groups; math::Vol2ColFunctor vol2col; math::Im2ColFunctor im2col; for (int i = 0; i < batch_size; i++) { Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape); for (int g = 0; g < groups; g++) { Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); if (!is_expand) { col.ShareDataWith(in_slice); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } else if (data_dim == 2U) { // im2col im2col(in_slice, dilations, strides, std::vector{paddings[0], paddings[1], paddings[0], paddings[1]}, &col); } else if (data_dim == 3U) { // vol2col vol2col(in_slice, dilations, strides, paddings, &col); } // gemm Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); math::matmul(filter_slice, false, col_matrix, false, static_cast(1), &out_slice, static_cast(0)); } } } template class ConvKernel; } // namespace operators } // namespace paddle_mobile