///* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. */ import Foundation class BatchNormParam: OpParam { typealias ParamPrecisionType = P required init(opDesc: OpDesc, inScope: Scope) throws { do { input = try BatchNormParam.inputX(inputs: opDesc.inputs, from: inScope) output = try BatchNormParam.outputY(outputs: opDesc.outputs, from: inScope) inputBias = try BatchNormParam.inputBiase(inputs: opDesc.paraInputs, from: inScope) inputMean = try BatchNormParam.inputMean(inputs: opDesc.paraInputs, from: inScope) inputScale = try BatchNormParam.inputScale(inputs: opDesc.paraInputs, from: inScope) inputVariance = try BatchNormParam.inputVariance(inputs: opDesc.paraInputs, from: inScope) epsilon = try BatchNormParam.getAttr(key: "epsilon", attrs: opDesc.attrs) momentum = try BatchNormParam.getAttr(key: "momentum", attrs: opDesc.attrs) is_test = try BatchNormParam.getAttr(key: "is_test", attrs: opDesc.attrs) } catch let error { throw error } } let input: Texture

var output: Texture

let inputBias: Tensor let inputMean: Tensor let inputScale: Tensor let inputVariance: Tensor let epsilon: Float let momentum: Float let is_test: Bool } class BatchNormOp: Operator, BatchNormParam

>, Runable, Creator, InferShaperable{ func inferShape() { para.output.dim = para.input.dim } typealias OpType = BatchNormOp

func runImpl(device: MTLDevice, buffer: MTLCommandBuffer) throws { do { try kernel.compute(commandBuffer: buffer, param: para) } catch let error { throw error } } }