// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/opencl/conv_compute.h" #include #include "lite/backends/opencl/cl_image_converter.h" #include "lite/backends/opencl/cl_include.h" #include "lite/core/op_registry.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { void ConvCompute::PrepareForRun() { const auto& param = this->Param(); auto x_dims = param.x->dims(); auto filter_dims = param.filter->dims(); auto output_dims = param.output->dims(); auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); int bs = x_dims[0]; int c_in = x_dims[1]; int h_out = output_dims[2]; int w_out = output_dims[3]; int kernel_h = filter_dims[2]; // oihw int kernel_w = filter_dims[3]; auto paddings = *param.paddings; auto dilations = *param.dilations; int stride_h = param.strides[0]; int stride_w = param.strides[1]; int pad_h = paddings[0]; int pad_w = paddings[2]; int groups = param.groups; bool relu_fused = param.fuse_relu; bool no_dilation = (dilations[0] == 1) && (dilations[1] == 1); bool zero_pad = (pad_h == 0) && (pad_w == 0); bool pad_equal = ((paddings[0] == paddings[1]) && (paddings[2] == paddings[3])); VLOG(3) << "Is relu fused? / " << (relu_fused ? "Yes" : "No"); VLOG(3) << "groups:" << groups << " stride_h:" << stride_h << " stride_w:" << stride_w << " pad_h:" << pad_h << " pad_w:" << pad_w << " kernel_h:" << kernel_h << " kernel_h:" << kernel_h; VLOG(3) << "x_dims:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2] << " " << x_dims[3]; VLOG(3) << "output_dims:" << output_dims[0] << " " << output_dims[1] << " " << output_dims[2] << " " << output_dims[3]; VLOG(3) << "filter_dims:" << filter_dims[0] << " " << filter_dims[1] << " " << filter_dims[2] << " " << filter_dims[3]; if (kernel_h == 1 && kernel_w == 1 && stride_h == 1 && stride_w == 1 && zero_pad && no_dilation && pad_equal) { // conv2d_1x1 kernel_func_names_.push_back("gemm_batch"); kernel_func_paths_.push_back("buffer/fc_kernel.cl"); if (relu_fused) { build_options_.push_back("-DCL_DTYPE_float -DRELU"); } else if (param.activation_param.active_type == lite_api::ActivationType::kRelu6) { build_options_.push_back("-DCL_DTYPE_float -DRELU6"); } else { build_options_.push_back("-DCL_DTYPE_float"); } impl_ = &ConvCompute::Conv2d1x1; } else if (pad_equal) { kernel_func_names_.push_back("im2col"); kernel_func_names_.push_back("gemm_batch"); kernel_func_paths_.push_back("buffer/im2col_kernel.cl"); kernel_func_paths_.push_back("buffer/fc_kernel.cl"); build_options_.push_back("-DCL_DTYPE_float"); if (relu_fused) { build_options_.push_back("-DCL_DTYPE_float -DRELU"); } else if (param.activation_param.active_type == lite_api::ActivationType::kRelu6) { build_options_.push_back("-DCL_DTYPE_float -DRELU6"); } else { build_options_.push_back("-DCL_DTYPE_float"); } impl_ = &ConvCompute::GemmlikeConv2d; col_buffer_.reset(new lite::Tensor); col_buffer_->Resize({bs, c_in, kernel_h * kernel_w, h_out * w_out}); col_buffer_->mutable_data(TARGET(kOpenCL)); } else { LOG(FATAL) << "This pad not support ! " << paddings[0] << ", " << paddings[1] << ", " << paddings[2] << ", " << paddings[3]; } for (size_t i = 0; i < kernel_func_names_.size(); i++) { context.cl_context()->AddKernel( kernel_func_names_[i], kernel_func_paths_[i], build_options_[i]); } } void ConvCompute::GemmlikeConv2d() { const auto& param = this->Param(); auto x_dims = param.x->dims(); auto filter_dims = param.filter->dims(); auto output_dims = param.output->dims(); int bs = x_dims[0]; int c_in = x_dims[1]; int h_in = x_dims[2]; int w_in = x_dims[3]; auto paddings = *param.paddings; auto dilations = *param.dilations; int c_out = output_dims[1]; int h_out = output_dims[2]; int w_out = output_dims[3]; int kernel_h = filter_dims[2]; int kernel_w = filter_dims[3]; int pad_h = paddings[0]; int pad_w = paddings[2]; int stride_h = param.strides[0]; int stride_w = param.strides[1]; int dilation_h = dilations[0]; int dilation_w = dilations[1]; auto* x_buf = param.x->data(); auto* filter_buf = param.filter->data(); auto* bias_buf = (param.bias == nullptr) ? static_cast(nullptr) : param.bias->data(); auto* output_buf = param.output->mutable_data(TARGET(kOpenCL)); auto* col_buf = col_buffer_->mutable_data(); auto& context = ctx_->As(); std::stringstream kernel_key; kernel_key << kernel_func_names_[0] << build_options_[0]; auto img2col_kernel = context.cl_context()->GetKernel(kernel_key.str()); int n_threads = c_in * h_out * w_out; int in_stride = c_in * h_in * w_in; int out_stride = c_in * kernel_h * kernel_w * h_out * w_out; int img_offset = 0; int col_offset = 0; int arg_idx = 0; cl_int status; for (int b = 0; b < bs; b++) { img_offset = b * in_stride; col_offset = b * out_stride; arg_idx = 0; status = img2col_kernel.setArg(arg_idx, *x_buf); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, img_offset); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, n_threads); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, h_in); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, w_in); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, kernel_h); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, kernel_w); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, pad_h); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, pad_w); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, stride_h); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, stride_w); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, dilation_h); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, dilation_w); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, h_out); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, w_out); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, *col_buf); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, col_offset); CL_CHECK_FATAL(status); auto global_work_size = cl::NDRange{static_cast(out_stride)}; status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( img2col_kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, nullptr); CL_CHECK_FATAL(status); } int m = c_out; int k = c_in * kernel_h * kernel_w; int n = h_out * w_out; VLOG(4) << "m = " << m << " n = " << n << " k = " << k; kernel_key.str(""); kernel_key << kernel_func_names_[1] << build_options_[1]; auto gemm_kernel = context.cl_context()->GetKernel(kernel_key.str()); GemmBatched( gemm_kernel, col_buf, filter_buf, bias_buf, output_buf, bs, m, n, k); } void ConvCompute::Conv2d1x1() { const auto& param = *param_.get_mutable(); const int batch_size = param.x->dims()[0]; const int k = param.x->dims()[1]; // K: input_channel const int n = param.x->dims()[2] * param.x->dims()[3]; // N == X_HxW == input_h * input_w const int m = param.output->dims()[1]; // M: output_channel == filter number VLOG(4) << "m = " << m << " n = " << n << " k = " << k; if (param.groups != 1) { LOG(FATAL) << "conv2d_1x1 with group > 1 not supported and param.groups = " << param.groups; } auto* x_d = param.x->data(); auto* filter_d = param.filter->data(); auto* bias_d = (param.bias == nullptr) ? static_cast(nullptr) : param.bias->data(); auto* output_d = param.output->mutable_data(TARGET(kOpenCL)); auto& context = ctx_->As(); std::stringstream kernel_key; kernel_key << kernel_func_names_.front() << build_options_.front(); auto kernel = context.cl_context()->GetKernel(kernel_key.str()); GemmBatched(kernel, x_d, filter_d, bias_d, output_d, batch_size, m, n, k); } // a: filter_d ==> <=> // b: x_d ==> <=> // c: output_d ==> <=> void ConvCompute::GemmBatched(cl::Kernel& kernel, const cl::Buffer* x_d, const cl::Buffer* filter_d, const cl::Buffer* bias_d, cl::Buffer* output_d, const int batch_size, const int m, const int n, const int k) { auto global_work_size = cl::NDRange{static_cast((m + 7) / 8), static_cast((n + 3) / 4), static_cast(batch_size)}; auto local_work_size = cl::NDRange{16, 16}; // cl::NullRange; auto& context = ctx_->As(); cl_int status; int arg_idx = 0; status = kernel.setArg(arg_idx, *filter_d); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *x_d); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *bias_d); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *output_d); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, m); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, n); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, k); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, batch_size); CL_CHECK_FATAL(status); status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, local_work_size, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(output_d, event_); } void ConvCompute::Run() { (this->*impl_)(); } /* image kernel*/ void ConvImageCompute::PrepareForRun() { const auto& param = this->Param(); auto x_dims = param.x->dims(); auto filter_dims = param.filter->dims(); auto output_dims = param.output->dims(); float* filter_cpu = param.filter->mutable_data(); auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); int bs = x_dims[0]; int c_in = x_dims[1]; int h_out = output_dims[2]; int w_out = output_dims[3]; int kernel_h = filter_dims[2]; // oihw int kernel_w = filter_dims[3]; auto paddings = *param.paddings; auto dilations = *param.dilations; int stride_h = param.strides[0]; int stride_w = param.strides[1]; int pad_h = paddings[0]; int pad_w = paddings[2]; int groups = param.groups; bool relu_fused = param.fuse_relu; bool no_dilation = (dilations[0] == 1) && (dilations[1] == 1); bool zero_pad = (pad_h == 0) && (pad_w == 0); bool pad_equal = ((paddings[0] == paddings[1]) && (paddings[1] == paddings[2]) && (paddings[2] == paddings[3])); bool stride_equal = stride_h == stride_w; bool dilation_equal = dilations[0] == dilations[1]; CHECK(pad_equal && stride_equal && dilation_equal); VLOG(3) << "Is relu fused? / " << (relu_fused ? "Yes" : "No"); VLOG(3) << "groups:" << groups << " stride_h:" << stride_h << " stride_w:" << stride_w << " pad_h:" << pad_h << " pad_w:" << pad_w << " kernel_h:" << kernel_h << " kernel_h:" << kernel_h; VLOG(3) << "x_dims:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2] << " " << x_dims[3]; VLOG(3) << "output_dims:" << output_dims[0] << " " << output_dims[1] << " " << output_dims[2] << " " << output_dims[3]; VLOG(3) << "filter_dims:" << filter_dims[0] << " " << filter_dims[1] << " " << filter_dims[2] << " " << filter_dims[3]; if (kernel_h == 1 && kernel_w == 1) { // conv2d_1x1 if (param.x->dims()[1] % 4 == 0) { kernel_func_names_.push_back("conv2d_1x1_simple"); } else { kernel_func_names_.push_back("conv2d_1x1"); } kernel_func_paths_.push_back("image/conv2d_1x1_kernel.cl"); CLImageConverterNWBlock converter; const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims); std::vector filter_image_v(filter_image_dims[0] * filter_image_dims[1] * 4); // 4 : RGBA converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims); filter_gpu_image_.mutable_data( filter_image_dims[0], filter_image_dims[1], filter_image_v.data()); impl_ = &ConvImageCompute::Conv2d1x1; } else if (kernel_h == 3 && kernel_h == 3) { // conv2d_3x3 kernel_func_names_.push_back("conv2d_3x3"); kernel_func_paths_.push_back("image/conv2d_3x3_kernel.cl"); CLImageConverterFolder converter; const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims); std::vector filter_image_v(filter_image_dims[0] * filter_image_dims[1] * 4); // 4 : RGBA converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims); filter_gpu_image_.mutable_data( filter_image_dims[0], filter_image_dims[1], filter_image_v.data()); impl_ = &ConvImageCompute::Conv2d3x3; } else if (kernel_h == 5 && kernel_w == 5) { // conv2d_5x5 kernel_func_names_.push_back("conv2d_5x5"); kernel_func_paths_.push_back("image/conv2d_5x5_kernel.cl"); CLImageConverterFolder converter; const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims); std::vector filter_image_v(filter_image_dims[0] * filter_image_dims[1] * 4); // 4 : RGBA converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims); filter_gpu_image_.mutable_data( filter_image_dims[0], filter_image_dims[1], filter_image_v.data()); impl_ = &ConvImageCompute::Conv2d5x5; } else if (kernel_h == 7 && kernel_w == 7) { // conv2d_7x7 kernel_func_names_.push_back("conv2d_7x7"); kernel_func_paths_.push_back("image/conv2d_7x7_kernel.cl"); CLImageConverterFolder converter; const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims); std::vector filter_image_v(filter_image_dims[0] * filter_image_dims[1] * 4); // 4 : RGBA converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims); this->filter_gpu_image_.mutable_data( filter_image_dims[0], filter_image_dims[1], filter_image_v.data()); impl_ = &ConvImageCompute::Conv2d7x7; } else { LOG(FATAL) << "conv image compute not support this condition yet! "; } std::string build_options_single(" -DCL_DTYPE_float"); // relu options if (relu_fused) { build_options_single += " -DRELU"; } else if (param.activation_param.active_type == lite_api::ActivationType::kRelu6) { build_options_single += " -DRELU6"; } else { // do nothing } // bias options const bool has_bias = param.bias != nullptr; const bool is_element_wise_bias = has_bias && param.output->dims() == param.bias->dims(); if (has_bias) { build_options_single += is_element_wise_bias ? " -DBIASE_ELE" : " -DBIASE_CH"; // convert cpu buffer bias --> gpu image CLImageConverterFolder bias_converter; const DDim& bias_image_dims = bias_converter.InitImageDimInfoWith(param.bias->dims()); std::vector bias_image_v(bias_image_dims[0] * bias_image_dims[1] * 4); float* bias_cpu_data = param.bias->mutable_data(); bias_converter.NCHWToImage( bias_cpu_data, bias_image_v.data(), param.bias->dims()); this->bias_gpu_image_.mutable_data( bias_image_dims[0], bias_image_dims[1], bias_image_v.data()); // convert cpu buffer bias --> gpu image --- end ---- } build_options_.push_back(build_options_single); for (size_t i = 0; i < kernel_func_names_.size(); i++) { context.cl_context()->AddKernel( kernel_func_names_[i], kernel_func_paths_[i], build_options_[i]); } } void ConvImageCompute::Conv2d1x1() { const auto& param = *param_.get_mutable(); auto input_dims = param.x->dims(); auto paddings = *param.paddings; auto strides = param.strides; auto* input_image = param.x->data(); auto* filter_image = filter_gpu_image_.data(); auto filter_dims = param.filter->dims(); auto output_dims = param.output->dims(); int input_width = input_dims[3]; int input_height = input_dims[2]; int output_width = output_dims[3]; int output_height = output_dims[2]; auto out_image_shape = InitImageDimInfoWith(output_dims); auto* out_image = param.output->mutable_data( out_image_shape["width"], out_image_shape["height"]); const bool has_bias = param.bias != nullptr; const bool is_element_wise_bias = has_bias && param.output->dims() == param.bias->dims(); int offset = static_cast(param.filter->dims()[2]) / 2 - static_cast(paddings[0]); // calc input_c_block auto input_image_shape = InitImageDimInfoWith(input_dims); int input_c_block = input_image_shape["width"] / input_dims[3]; int input_c = input_dims[1]; auto dilations = *param.dilations; const std::vector& default_work_size = DefaultWorkSize(output_dims, DDim(std::vector{ static_cast(out_image_shape["width"]), static_cast(out_image_shape["height"])})); int c_block = default_work_size[0]; int w = default_work_size[1]; int nh = default_work_size[2]; VLOG(4) << "============ conv2d_1x1 params ============"; VLOG(4) << "input_image_shape: " << input_image_shape["width"] << "," << input_image_shape["height"]; VLOG(4) << "input_c_block: " << input_c_block; VLOG(4) << "input_c: " << input_c; VLOG(4) << "input_image: " << input_image; VLOG(4) << "filter_dims: " << filter_dims; VLOG(4) << "filter_image: " << filter_image; VLOG(4) << "output_dims: " << output_dims; VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", " << out_image_shape["height"]; VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1]; VLOG(4) << "has bias: " << has_bias; VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias; VLOG(4) << "strides: " << strides[0] << "," << strides[1]; VLOG(4) << "offset: " << offset; VLOG(4) << "dilations.size : " << dilations.size(); VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1]; VLOG(4) << "default work size{c_block, w, nh}: " << "{" << c_block << ", " << w << ", " << nh << "" << "}"; CHECK_GE(dilations.size(), 2); CHECK(dilations[0] == dilations[1]); CHECK_GE(input_dims.size(), 4); CHECK_GE(paddings.size(), 2); CHECK(paddings[0] == paddings[1]); CHECK_GE(strides.size(), 2); CHECK(strides[0] == strides[1]); // handle bias use buffer for channel wise , use image for element wise const cl::Buffer* bias_buf = nullptr; const cl::Image2D* bias_image = nullptr; if (has_bias) { bias_image = bias_gpu_image_.data(); } auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); std::stringstream kernel_key; kernel_key << kernel_func_names_[0] << build_options_[0]; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); int maped_w = maptofactor(w, 4); VLOG(4) << "kernel_key: " << kernel_key.str(); VLOG(4) << "kernel ready ... " << kernel_key.str(); VLOG(4) << "maped_w: " << maped_w; VLOG(4) << "hasbias: " << has_bias; cl_int status; int arg_idx = 0; status = kernel.setArg(arg_idx, c_block); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, maped_w); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, nh); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *input_image); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *filter_image); CL_CHECK_FATAL(status); if (has_bias) { status = kernel.setArg(++arg_idx, *bias_image); CL_CHECK_FATAL(status); } status = kernel.setArg(++arg_idx, *out_image); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, strides[0]); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, offset); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_c_block); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_c); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, dilations[0]); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_width); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_height); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, output_width); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, output_height); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, w); CL_CHECK_FATAL(status); auto global_work_size = cl::NDRange{static_cast(default_work_size.data()[0]), static_cast(maped_w), static_cast(default_work_size.data()[2])}; VLOG(4) << "out_image: " << out_image; VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << "," << global_work_size[1] << "," << global_work_size[2] << "}"; status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(out_image, event_); } void ConvImageCompute::Conv2d3x3() { const auto& param = *param_.get_mutable(); auto input_dims = param.x->dims(); auto paddings = *param.paddings; auto strides = param.strides; auto* input_image = param.x->data(); auto* filter_image = filter_gpu_image_.data(); auto filter_dims = param.filter->dims(); auto output_dims = param.output->dims(); int input_width = input_dims[3]; int input_height = input_dims[2]; int input_channel = input_dims[1]; int output_width = output_dims[3]; int output_height = output_dims[2]; int output_channel = output_dims[1]; int filter_width = filter_dims[3]; int filter_height = filter_dims[2]; int filter_channel = filter_dims[1]; auto out_image_shape = InitImageDimInfoWith(output_dims); auto* out_image = param.output->mutable_data( out_image_shape["width"], out_image_shape["height"]); const bool has_bias = param.bias != nullptr; const bool is_element_wise_bias = has_bias && param.output->dims() == param.bias->dims(); int offset = static_cast(param.filter->dims()[2]) / 2 - static_cast(paddings[0]); // calc input_c_block auto input_image_shape = InitImageDimInfoWith(input_dims); int input_c_block = input_image_shape["width"] / input_dims[3]; int input_c = input_dims[1]; auto dilations = *param.dilations; // re-calc group int new_groups{param.groups}; if (filter_dims[0] == output_dims[1] && filter_dims[1] == input_dims[1]) { new_groups = 1; } else if (!(filter_dims[0] == input_dims[1] && filter_dims[1] == 1)) { new_groups = input_channel / filter_channel; } /* TODO(ysh329): mobile has no case below else { LOG(FATAL) << "Not support conv3x3 case with" << " input_dims:" << input_dims << " output_dims:" << output_dims << " filter_dims:" << filter_dims; } */ const std::vector& default_work_size = DefaultWorkSize(output_dims, DDim(std::vector{ static_cast(out_image_shape["width"]), static_cast(out_image_shape["height"])})); int c_block = default_work_size[0]; int w = default_work_size[1]; int nh = default_work_size[2]; VLOG(4) << "============ conv2d params ============"; VLOG(4) << "input_image_shape: " << input_image_shape["width"] << "," << input_image_shape["height"]; VLOG(4) << "input_c_block: " << input_c_block; VLOG(4) << "input_c: " << input_c; VLOG(4) << "input_image: " << input_image; VLOG(4) << "input_dims: " << input_dims; VLOG(4) << "filter_dims: " << filter_dims; VLOG(4) << "filter_image: " << filter_image; VLOG(4) << "output_dims: " << output_dims; VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", " << out_image_shape["height"]; VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1]; VLOG(4) << "has bias: " << has_bias; VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias; VLOG(4) << "strides: " << strides[0] << "," << strides[1]; VLOG(4) << "offset: " << offset; VLOG(4) << "dilations.size : " << dilations.size(); VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1]; VLOG(4) << "param.groups(groups):" << param.groups; VLOG(4) << "new_groups:" << new_groups; VLOG(4) << "default work size{c_block, w, nh}: " << "{" << c_block << ", " << w << ", " << nh << "" << "}"; CHECK_GE(dilations.size(), 2); CHECK(dilations[0] == dilations[1]); CHECK_GE(input_dims.size(), 4); CHECK_GE(paddings.size(), 2); CHECK(paddings[0] == paddings[1]); CHECK_GE(strides.size(), 2); CHECK(strides[0] == strides[1]); const cl::Image2D* bias_image = nullptr; if (has_bias) { bias_image = bias_gpu_image_.data(); } auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); STL::stringstream kernel_key; kernel_key << kernel_func_names_[0] << build_options_[0]; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); VLOG(4) << "kernel_key: " << kernel_key.str(); VLOG(4) << "kernel ready ... " << kernel_key.str(); VLOG(4) << "w: " << w; cl_int status; int arg_idx = 0; status = kernel.setArg(arg_idx, c_block); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, w); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, nh); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *input_image); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *filter_image); CL_CHECK_FATAL(status); if (has_bias) { VLOG(4) << "set bias_image: "; status = kernel.setArg(++arg_idx, *bias_image); CL_CHECK_FATAL(status); } status = kernel.setArg(++arg_idx, *out_image); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, strides[0]); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, offset); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_c_block); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, dilations[0]); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_width); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_height); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, output_width); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, output_height); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, output_channel); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, filter_channel); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, filter_width); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, filter_height); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, new_groups); CL_CHECK_FATAL(status); auto global_work_size = cl::NDRange{static_cast(default_work_size.data()[0]), static_cast(default_work_size.data()[1]), static_cast(default_work_size.data()[2])}; VLOG(4) << "out_image: " << out_image; VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << "," << global_work_size[1] << "," << global_work_size[2] << "}"; status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(out_image, event_); } void ConvImageCompute::Conv2d5x5() { const auto& param = *param_.get_mutable(); auto input_dims = param.x->dims(); auto paddings = *param.paddings; auto strides = param.strides; auto* input_image = param.x->data(); auto* filter_image = filter_gpu_image_.data(); auto filter_dims = param.filter->dims(); auto output_dims = param.output->dims(); int input_width = input_dims[3]; int input_height = input_dims[2]; int output_width = output_dims[3]; int output_height = output_dims[2]; int filter_width = filter_dims[3]; int filter_height = filter_dims[2]; auto out_image_shape = InitImageDimInfoWith(output_dims); auto* out_image = param.output->mutable_data( out_image_shape["width"], out_image_shape["height"]); const bool has_bias = param.bias != nullptr; const bool is_element_wise_bias = has_bias && param.output->dims() == param.bias->dims(); int offset = static_cast(param.filter->dims()[2]) / 2 - static_cast(paddings[0]); // calc input_c_block auto input_image_shape = InitImageDimInfoWith(input_dims); int input_c_block = input_image_shape["width"] / input_dims[3]; int input_c = input_dims[1]; auto dilations = *param.dilations; const std::vector& default_work_size = DefaultWorkSize(output_dims, DDim(std::vector{ static_cast(out_image_shape["width"]), static_cast(out_image_shape["height"])})); int c_block = default_work_size[0]; int w = default_work_size[1]; int nh = default_work_size[2]; VLOG(4) << "============ conv2d params ============"; VLOG(4) << "input_image_shape: " << input_image_shape["width"] << "," << input_image_shape["height"]; VLOG(4) << "input_c_block: " << input_c_block; VLOG(4) << "input_c: " << input_c; VLOG(4) << "input_image: " << input_image; VLOG(4) << "input_dims: " << input_dims; VLOG(4) << "filter_dims: " << filter_dims; VLOG(4) << "filter_image: " << filter_image; VLOG(4) << "output_dims: " << output_dims; VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", " << out_image_shape["height"]; VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1]; VLOG(4) << "has bias: " << has_bias; VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias; VLOG(4) << "strides: " << strides[0] << "," << strides[1]; VLOG(4) << "offset: " << offset; VLOG(4) << "dilations.size : " << dilations.size(); VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1]; VLOG(4) << "default work size{c_block, w, nh}: " << "{" << c_block << ", " << w << ", " << nh << "" << "}"; CHECK_GE(dilations.size(), 2); CHECK(dilations[0] == dilations[1]); CHECK_GE(input_dims.size(), 4); CHECK_GE(paddings.size(), 2); CHECK(paddings[0] == paddings[1]); CHECK_GE(strides.size(), 2); CHECK(strides[0] == strides[1]); const cl::Image2D* bias_image = nullptr; if (has_bias) { bias_image = bias_gpu_image_.data(); } auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); STL::stringstream kernel_key; kernel_key << kernel_func_names_[0] << build_options_[0]; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); VLOG(4) << "kernel_key: " << kernel_key.str(); VLOG(4) << "kernel ready ... " << kernel_key.str(); VLOG(4) << "w: " << w; cl_int status; int arg_idx = 0; status = kernel.setArg(arg_idx, c_block); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, w); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, nh); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *input_image); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *filter_image); CL_CHECK_FATAL(status); if (has_bias) { VLOG(4) << "set bias_image: "; status = kernel.setArg(++arg_idx, *bias_image); CL_CHECK_FATAL(status); } status = kernel.setArg(++arg_idx, *out_image); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, strides[0]); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, offset); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_c_block); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, dilations[0]); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_width); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_height); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, output_width); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, output_height); CL_CHECK_FATAL(status); auto global_work_size = cl::NDRange{static_cast(default_work_size.data()[0]), static_cast(default_work_size.data()[1]), static_cast(default_work_size.data()[2])}; VLOG(4) << "out_image: " << out_image; VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << "," << global_work_size[1] << "," << global_work_size[2] << "}"; status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(out_image, event_); } void ConvImageCompute::Conv2d7x7() { const auto& param = *param_.get_mutable(); auto input_dims = param.x->dims(); auto paddings = *param.paddings; auto strides = param.strides; auto* input_image = param.x->data(); auto* filter_image = filter_gpu_image_.data(); auto filter_dims = param.filter->dims(); auto output_dims = param.output->dims(); int input_width = input_dims[3]; int input_height = input_dims[2]; int output_width = output_dims[3]; int output_height = output_dims[2]; int filter_width = filter_dims[3]; int filter_height = filter_dims[2]; auto out_image_shape = InitImageDimInfoWith(output_dims); auto* out_image = param.output->mutable_data( out_image_shape["width"], out_image_shape["height"]); const bool has_bias = param.bias != nullptr; const bool is_element_wise_bias = has_bias && param.output->dims() == param.bias->dims(); int offset = static_cast(param.filter->dims()[2]) / 2 - static_cast(paddings[0]); // calc input_c_block auto input_image_shape = InitImageDimInfoWith(input_dims); int input_c_block = input_image_shape["width"] / input_dims[3]; int input_c = input_dims[1]; auto dilations = *param.dilations; const std::vector& default_work_size = DefaultWorkSize(output_dims, DDim(std::vector{ static_cast(out_image_shape["width"]), static_cast(out_image_shape["height"])})); int c_block = default_work_size[0]; int w = default_work_size[1]; int nh = default_work_size[2]; VLOG(4) << "============ conv2d params ============"; VLOG(4) << "input_image_shape: " << input_image_shape["width"] << "," << input_image_shape["height"]; VLOG(4) << "input_c_block: " << input_c_block; VLOG(4) << "input_c: " << input_c; VLOG(4) << "input_image: " << input_image; VLOG(4) << "input_dims: " << input_dims; VLOG(4) << "filter_dims: " << filter_dims; VLOG(4) << "filter_image: " << filter_image; VLOG(4) << "output_dims: " << output_dims; VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", " << out_image_shape["height"]; VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1]; VLOG(4) << "has bias: " << has_bias; VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias; VLOG(4) << "strides: " << strides[0] << "," << strides[1]; VLOG(4) << "offset: " << offset; VLOG(4) << "dilations.size : " << dilations.size(); VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1]; VLOG(4) << "default work size{c_block, w, nh}: " << "{" << c_block << ", " << w << ", " << nh << "" << "}"; CHECK_GE(dilations.size(), 2); CHECK(dilations[0] == dilations[1]); CHECK_GE(input_dims.size(), 4); CHECK_GE(paddings.size(), 2); CHECK(paddings[0] == paddings[1]); CHECK_GE(strides.size(), 2); CHECK(strides[0] == strides[1]); const cl::Image2D* bias_image = nullptr; if (has_bias) { bias_image = bias_gpu_image_.data(); } auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); STL::stringstream kernel_key; kernel_key << kernel_func_names_[0] << build_options_[0]; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); VLOG(4) << "kernel_key: " << kernel_key.str(); VLOG(4) << "kernel ready ... " << kernel_key.str(); VLOG(4) << "w: " << w; cl_int status; int arg_idx = 0; status = kernel.setArg(arg_idx, c_block); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, w); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, nh); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *input_image); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *filter_image); CL_CHECK_FATAL(status); if (has_bias) { VLOG(4) << "set bias_image: "; status = kernel.setArg(++arg_idx, *bias_image); CL_CHECK_FATAL(status); } status = kernel.setArg(++arg_idx, *out_image); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, strides[0]); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, offset); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_c_block); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, dilations[0]); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_width); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_height); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, output_width); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, output_height); CL_CHECK_FATAL(status); auto global_work_size = cl::NDRange{static_cast(default_work_size.data()[0]), static_cast(default_work_size.data()[1]), static_cast(default_work_size.data()[2])}; VLOG(4) << "out_image: " << out_image; VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << "," << global_work_size[1] << "," << global_work_size[2] << "}"; status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(out_image, event_); } void ConvImageCompute::Run() { (this->*impl_)(); } } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(conv2d, kOpenCL, kFloat, kNCHW, paddle::lite::kernels::opencl::ConvCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .Finalize(); REGISTER_LITE_KERNEL(conv2d, kOpenCL, kFloat, kImageDefault, paddle::lite::kernels::opencl::ConvImageCompute, image2d) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kImageDefault))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kImageDefault))}) .Finalize();