// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/core/arena/framework.h" namespace paddle { namespace lite { class WriteToArrayComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string input_0 = "x"; std::string input_1 = "i"; std::string output_0 = "out0"; std::string output_1 = "out1"; std::string output_2 = "out2"; DDim dims_{{3, 5, 4, 4}}; int i_; public: WriteToArrayComputeTester(const Place& place, const std::string& alias, const int i, DDim dims) : TestCase(place, alias), i_(i), dims_(dims) {} void RunBaseline(Scope* scope) override { auto* out_0 = scope->NewTensor(output_0); auto* out_1 = scope->NewTensor(output_1); auto* out_2 = scope->NewTensor(output_2); CHECK(out_0); CHECK(out_1); CHECK(out_2); std::vector out_vec = {out_0, out_1, out_2}; auto* x = scope->FindTensor(input_0); const auto* x_data = x->data(); auto* id = scope->FindTensor(input_1); const auto* id_data = id->data(); int n = x->numel(); int cur_out_num = out_vec.size(); for (int i = cur_out_num; i < id_data[0] + 1; i++) { char buffer[30]; snprintf(buffer, sizeof(buffer), "out%d", i); auto out = scope->NewTensor(buffer); out_vec.push_back(out); } out_vec[id_data[0]]->Resize(dims_); auto* out_data = out_vec[id_data[0]]->mutable_data(); memcpy(out_data, x_data, sizeof(float) * n); } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("write_to_array"); op_desc->SetInput("X", {input_0}); op_desc->SetInput("I", {input_1}); op_desc->SetOutput("Out", {output_0, output_1, output_2}); } void PrepareData() override { std::vector data(dims_.production()); for (int i = 0; i < dims_.production(); i++) { data[i] = i * 1.1; } SetCommonTensor(input_0, dims_, data.data()); std::vector data_1(1); data_1[0] = i_; DDimLite dims_2{{1}}; SetCommonTensor(input_1, dims_2, data_1.data()); SetCommonTensor(output_0, dims_2, data_1.data()); SetCommonTensor(output_1, dims_2, data_1.data()); SetCommonTensor(output_2, dims_2, data_1.data()); } }; void test_write_to_array(Place place) { DDimLite dims{{3, 5, 4, 4}}; for (int i : {1, 4}) { std::unique_ptr tester( new WriteToArrayComputeTester(place, "def", i, dims)); arena::Arena arena(std::move(tester), place, 2e-5); arena.TestPrecision(); } } TEST(WriteToArray, precision) { // #ifdef LITE_WITH_X86 // Place place(TARGET(kX86)); // #endif #ifdef LITE_WITH_ARM Place place(TARGET(kARM)); test_write_to_array(place); #endif } } // namespace lite } // namespace paddle