// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/conv_transpose_op.h" #include #include "lite/core/op_lite.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace operators { bool ConvTransposeOpLite::CheckShape() const { CHECK_OR_FALSE(param_.x); CHECK_OR_FALSE(param_.filter); CHECK_OR_FALSE(param_.output); const auto in_dims = param_.x->dims(); const auto filter_dims = param_.filter->dims(); CHECK_OR_FALSE(in_dims.size() == 4 || in_dims.size() == 5); CHECK_EQ_OR_FALSE(in_dims.size(), filter_dims.size()); CHECK_OR_FALSE(in_dims.size() - param_.strides.size() == 2U); CHECK_OR_FALSE(in_dims[1] % param_.groups == 0); CHECK_EQ_OR_FALSE(filter_dims.size(), 4UL); return true; } inline int ConvTransposeOutputSize(int input_size, int filter_size, int dilation, int pad_left, int pad_right, int stride) { const int dkernel = dilation * (filter_size - 1) + 1; int output_size = (input_size - 1) * stride - pad_left - pad_right + dkernel; return output_size; } inline void UpdatePaddingAndDilation(std::vector* paddings, std::vector* dilations, const std::vector& strides, const std::string padding_algorithm, const lite::DDim data_dims, const lite::DDim& ksize) { // when padding_desc is "VALID" or "SAME" if (padding_algorithm == "SAME") { for (size_t i = 0; i < strides.size(); ++i) { int out_size = (data_dims[i + 2] + strides[i] - 1) / strides[i]; int pad_sum = std::max( (out_size - 1) * strides[i] + ksize[i + 2] - data_dims[i + 2], (int64_t)0); int pad_0 = pad_sum / 2; int pad_1 = pad_sum - pad_0; // pad *(paddings->begin() + i * 2) = pad_0; *(paddings->begin() + i * 2 + 1) = pad_1; // dilation *(dilations->begin() + i) = 1; } } else if (padding_algorithm == "VALID") { for (auto& it : *paddings) { it = 0; } } } bool ConvTransposeOpLite::InferShape() const { const auto in_dims = param_.x->dims(); const auto filter_dims = param_.filter->dims(); UpdatePaddingAndDilation(param_.paddings.get(), param_.dilations.get(), param_.strides, padding_algorithm_, in_dims, filter_dims); auto paddings = *param_.paddings; auto dilations = *param_.dilations; std::vector output_shape; output_shape.push_back(in_dims[0]); output_shape.push_back(filter_dims[1] * param_.groups); for (size_t i = 0; i < param_.strides.size(); ++i) { output_shape.push_back(ConvTransposeOutputSize(in_dims[i + 2], filter_dims[i + 2], dilations[i], paddings[i * 2], paddings[i * 2 + 1], param_.strides[i])); } if (!param_.output_size.empty()) { for (size_t i = 0; i < param_.output_size.size(); ++i) { CHECK_LT(param_.output_size[i], output_shape[i + 2] + param_.strides[i]) << "set output_size error, the output_size should less than " << output_shape[i + 2] + param_.strides[i] << ", but the value is " << param_.output_size[i]; CHECK_GE(param_.output_size[i], output_shape[i + 2]) << "set output_size error, the output_size should greater than or " << "equal to " << output_shape[i + 2] << ", but the value is " << param_.output_size[i]; output_shape[i + 2] = param_.output_size[i]; } } // Set output dims param_.output->Resize(lite::DDim(output_shape)); return true; } // TODO(Superjomn) replace framework::OpDesc with a lite one. bool ConvTransposeOpLite::AttachImpl(const cpp::OpDesc& op_desc, lite::Scope* scope) { auto X = op_desc.Input("Input").front(); auto Filter = op_desc.Input("Filter").front(); auto Out = op_desc.Output("Output").front(); param_.x = scope->FindVar(X)->GetMutable(); param_.filter = scope->FindVar(Filter)->GetMutable(); param_.output = scope->FindVar(Out)->GetMutable(); param_.strides = op_desc.GetAttr>("strides"); auto paddings = op_desc.GetAttr>("paddings"); param_.groups = op_desc.GetAttr("groups"); auto dilations = op_desc.GetAttr>("dilations"); if (op_desc.HasAttr("padding_algorithm")) { padding_algorithm_ = op_desc.GetAttr("padding_algorithm"); } // 2-pad to 4-pad if (paddings.size() == 2L) { for (size_t i = 0; i < 2L; ++i) { int copy_pad = *(paddings.begin() + 2 * i); paddings.insert(paddings.begin() + 2 * i + 1, copy_pad); } } else { if (paddings.size() != 4L) { LOG(FATAL) << "Paddings size should be the same or twice as the input size."; } } param_.paddings = std::make_shared>(paddings); param_.dilations = std::make_shared>(dilations); // optional params std::vector input_arg_names = op_desc.InputArgumentNames(); if (std::find(input_arg_names.begin(), input_arg_names.end(), "Bias") != input_arg_names.end()) { auto bias_arguments = op_desc.Input("Bias"); if (bias_arguments.size() > 0) { auto bias_var = scope->FindVar(bias_arguments.front()); if (bias_var != nullptr) { param_.bias = const_cast(&(bias_var->Get())); } } } if (op_desc.HasAttr("fuse_relu")) { param_.fuse_relu = op_desc.GetAttr("fuse_relu"); } if (op_desc.HasAttr("output_size")) { param_.output_size = op_desc.GetAttr>("output_size"); } return true; } } // namespace operators } // namespace lite } // namespace paddle REGISTER_LITE_OP(conv2d_transpose, paddle::lite::operators::ConvTransposeOpLite);