/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef PRIORBOX_OP #include "operators/prior_box_op.h" #include namespace paddle_mobile { namespace operators { template void PriorBoxOp::InferShape() const { auto input_dims = param_.Input()->dims(); auto input_image_dims = param_.InputImage()->dims(); auto min_sizes = param_.MinSizes(); auto max_sizes = param_.MaxSizes(); auto variances = param_.Variances(); auto aspect_ratios = param_.AspectRatios(); bool flip = param_.Flip(); std::vector aspect_ratios_vec; ExpandAspectRatios(aspect_ratios, flip, &aspect_ratios_vec); size_t num_priors = aspect_ratios_vec.size() * min_sizes.size(); if (!max_sizes.empty()) { num_priors += max_sizes.size(); } std::vector dim_vec(4); dim_vec[0] = input_dims[2]; dim_vec[1] = input_dims[3]; dim_vec[2] = num_priors; dim_vec[3] = 4; param_.OutputBoxes()->Resize(framework::make_ddim(dim_vec)); param_.OutputVariances()->Resize(framework::make_ddim(dim_vec)); } template class PriorBoxOp; } // namespace operators } // namespace paddle_mobile namespace ops = paddle_mobile::operators; #ifdef PADDLE_MOBILE_CPU USE_OP_CPU(prior_box); REGISTER_OPERATOR_CPU(prior_box, ops::PriorBoxOp); #endif #ifdef PADDLE_MOBILE_MALI_GPU #endif #ifdef PADDLE_MOBILE_FPGA #endif #endif