// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/host/multiclass_nms_compute.h" #include #include #include #include namespace paddle { namespace lite { namespace kernels { namespace host { template static bool sort_score_pair_descend(const std::pair& pair1, const std::pair& pair2) { return pair1.first > pair2.first; } template void get_max_score_index(const dtype* scores, int num, float threshold, int top_k, std::vector>* score_index_vec) { //! Generate index score pairs. for (int i = 0; i < num; ++i) { if (scores[i] > threshold) { score_index_vec->push_back(std::make_pair(scores[i], i)); } } //! Sort the score pair according to the scores in descending order std::stable_sort(score_index_vec->begin(), score_index_vec->end(), sort_score_pair_descend); //! Keep top_k scores if needed. if (top_k > -1 && top_k < score_index_vec->size()) { score_index_vec->resize(top_k); } } template dtype bbox_size(const dtype* bbox, bool normalized = true) { if (bbox[2] < bbox[0] || bbox[3] < bbox[1]) { // If bbox is invalid (e.g. xmax < xmin or ymax < ymin), return 0. return dtype(0.); } else { const dtype width = bbox[2] - bbox[0]; const dtype height = bbox[3] - bbox[1]; if (normalized) { return width * height; } else { // If bbox is not within range [0, 1]. return (width + 1) * (height + 1); } } } template dtype jaccard_overlap(const dtype* bbox1, const dtype* bbox2) { if (bbox2[0] > bbox1[2] || bbox2[2] < bbox1[0] || bbox2[1] > bbox1[3] || bbox2[3] < bbox1[1]) { return dtype(0.); } else { const dtype inter_xmin = std::max(bbox1[0], bbox2[0]); const dtype inter_ymin = std::max(bbox1[1], bbox2[1]); const dtype inter_xmax = std::min(bbox1[2], bbox2[2]); const dtype inter_ymax = std::min(bbox1[3], bbox2[3]); const dtype inter_width = inter_xmax - inter_xmin; const dtype inter_height = inter_ymax - inter_ymin; const dtype inter_size = inter_width * inter_height; const dtype bbox1_size = bbox_size(bbox1); const dtype bbox2_size = bbox_size(bbox2); return inter_size / (bbox1_size + bbox2_size - inter_size); } } template void apply_nms_fast(const dtype* bboxes, const dtype* scores, int num, float score_threshold, float nms_threshold, float eta, int top_k, std::vector* indices) { // Get top_k scores (with corresponding indices). std::vector> score_index_vec; get_max_score_index(scores, num, score_threshold, top_k, &score_index_vec); // Do nms. float adaptive_threshold = nms_threshold; indices->clear(); while (score_index_vec.size() != 0) { const int idx = score_index_vec.front().second; bool keep = true; for (int k = 0; k < indices->size(); ++k) { if (keep) { const int kept_idx = (*indices)[k]; float overlap = jaccard_overlap(bboxes + idx * 4, bboxes + kept_idx * 4); keep = overlap <= adaptive_threshold; } else { break; } } if (keep) { indices->push_back(idx); } score_index_vec.erase(score_index_vec.begin()); if (keep && eta < 1 && adaptive_threshold > 0.5) { adaptive_threshold *= eta; } } } template void multiclass_nms_compute_ref(const operators::MulticlassNmsParam& param, std::vector* result) { const std::vector& priors = param.priors; int class_num = param.class_num; int background_id = param.background_label; int keep_topk = param.keep_top_k; int nms_topk = param.nms_top_k; float conf_thresh = param.score_threshold; float nms_thresh = param.nms_threshold; float nms_eta = param.nms_eta; bool share_location = param.share_location; const dtype* bbox_data = param.bbox_data->data(); const dtype* conf_data = param.conf_data->data(); dtype* out = param.out->mutable_data(); (*result).clear(); int num_kept = 0; std::vector>> all_indices; int64_t conf_offset = 0; int64_t bbox_offset = 0; for (int i = 0; i < priors.size(); ++i) { std::map> indices; int num_det = 0; int num_priors = priors[i]; int conf_idx = class_num * conf_offset; int bbox_idx = share_location ? bbox_offset * 4 : bbox_offset * 4 * class_num; for (int c = 0; c < class_num; ++c) { if (c == background_id) { // Ignore background class continue; } const dtype* cur_conf_data = conf_data + conf_idx + c * num_priors; const dtype* cur_bbox_data = bbox_data + bbox_idx; if (!share_location) { cur_bbox_data += c * num_priors * 4; } apply_nms_fast(cur_bbox_data, cur_conf_data, num_priors, conf_thresh, nms_thresh, nms_eta, nms_topk, &(indices[c])); num_det += indices[c].size(); } if (keep_topk > -1 && num_det > keep_topk) { std::vector>> score_index_pairs; for (auto it = indices.begin(); it != indices.end(); ++it) { int label = it->first; const std::vector& label_indices = it->second; for (int j = 0; j < label_indices.size(); ++j) { int idx = label_indices[j]; float score = conf_data[conf_idx + label * num_priors + idx]; score_index_pairs.push_back( std::make_pair(score, std::make_pair(label, idx))); } } // Keep top k results per image. std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(), sort_score_pair_descend>); score_index_pairs.resize(keep_topk); // Store the new indices. std::map> new_indices; for (int j = 0; j < score_index_pairs.size(); ++j) { int label = score_index_pairs[j].second.first; int idx = score_index_pairs[j].second.second; new_indices[label].push_back(idx); } all_indices.push_back(new_indices); num_kept += keep_topk; } else { all_indices.push_back(indices); num_kept += num_det; } conf_offset += num_priors; bbox_offset += num_priors; } if (num_kept == 0) { (*result).clear(); (*result).resize(1); (*result)[0] = -1; return; } else { (*result).resize(num_kept * 6); } int count = 0; conf_offset = 0; bbox_offset = 0; for (int i = 0; i < priors.size(); ++i) { int num_priors = priors[i]; int conf_idx = class_num * conf_offset; int bbox_idx = share_location ? bbox_offset * 4 : bbox_offset * 4 * class_num; for (auto it = all_indices[i].begin(); it != all_indices[i].end(); ++it) { int label = it->first; std::vector& indices = it->second; const dtype* cur_conf_data = conf_data + conf_idx + label * num_priors; const dtype* cur_bbox_data = bbox_data + bbox_idx; if (!share_location) { cur_bbox_data += label * num_priors * 4; } for (int j = 0; j < indices.size(); ++j) { int idx = indices[j]; (*result)[count * 6] = label; (*result)[count * 6 + 1] = cur_conf_data[idx]; for (int k = 0; k < 4; ++k) { (*result)[count * 6 + 2 + k] = cur_bbox_data[idx * 4 + k]; } ++count; } } conf_offset += num_priors; bbox_offset += num_priors; } } TEST(multiclass_nms_host, init) { MulticlassNmsCompute multiclass_nms; ASSERT_EQ(multiclass_nms.precision(), PRECISION(kFloat)); ASSERT_EQ(multiclass_nms.target(), TARGET(kHost)); } TEST(multiclass_nms_host, retrive_op) { auto multiclass_nms = KernelRegistry::Global().Create( "multiclass_nms"); ASSERT_FALSE(multiclass_nms.empty()); ASSERT_TRUE(multiclass_nms.front()); } TEST(multiclass_nms_host, compute) { MulticlassNmsCompute multiclass_nms; operators::MulticlassNmsParam param; lite::Tensor bbox, conf, out; std::vector out_ref; for (std::vector priors : {std::vector({2, 2, 2})}) { int N = priors.size(); for (bool share_location : {true}) { for (int class_num : {1, 4, 10}) { DDim* bbox_dim; DDim* conf_dim; int M = priors[0]; if (share_location) { bbox_dim = new DDim({N, M, 4}); } else { bbox_dim = new DDim({class_num, M, 4}); } conf_dim = new DDim({N, class_num, M}); bbox.Resize(*bbox_dim); conf.Resize(*conf_dim); for (int background_id : {0}) { for (int keep_topk : {1, 5, 10}) { for (int nms_topk : {1, 5, 10}) { for (float nms_eta : {1.0, 0.99, 0.9}) { for (float nms_thresh : {0.5, 0.7}) { for (float conf_thresh : {0.5, 0.7}) { auto* conf_data = conf.mutable_data(); auto* bbox_data = bbox.mutable_data(); for (int i = 0; i < bbox_dim->production(); ++i) { bbox_data[i] = i * 1. / bbox_dim->production(); } for (int i = 0; i < conf_dim->production(); ++i) { conf_data[i] = i * 1. / conf_dim->production(); } param.bbox_data = &bbox; param.conf_data = &conf; param.out = &out; param.priors = priors; param.class_num = class_num; param.background_label = background_id; param.keep_top_k = keep_topk; param.nms_top_k = nms_topk; param.score_threshold = conf_thresh; param.nms_threshold = nms_thresh; param.nms_eta = nms_eta; param.share_location = share_location; multiclass_nms.SetParam(param); multiclass_nms.Run(); auto* out_data = out.mutable_data(); out_ref.clear(); multiclass_nms_compute_ref(param, &out_ref); EXPECT_EQ(out.dims().production(), out_ref.size()); if (out.dims().production() == out_ref.size()) { auto* out_ref_data = out_ref.data(); for (int i = 0; i < out.dims().production(); i++) { EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-5); } } } } } } } } delete bbox_dim; delete conf_dim; } } } } } // namespace host } // namespace kernels } // namespace lite } // namespace paddle USE_LITE_KERNEL(multiclass_nms, kHost, kFloat, kNCHW, def);