// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/bridges/graph.h" #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/npu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace npu { int ReduceMeanConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[NPU] Converting " + op_type + "..."; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x_type = kernel->GetInputDeclType("X"); CHECK(x_type->precision() == PRECISION(kFloat)); CHECK(x_type->layout() == DATALAYOUT(kNCHW)); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); auto out_name = op_info->Input("Out").front(); auto out_type = kernel->GetOutputDeclType("Out"); CHECK(out_type->precision() == PRECISION(kFloat)); CHECK(out_type->layout() == DATALAYOUT(kNCHW)); auto keep_dim = op_info->GetAttr("keep_dim"); auto dim = op_info->GetAttr>("dim"); CHECK(!dim.empty()) << "[NPU] \"dim\" of reduce_mean should not be empty."; for (size_t i = 0; i < dim.size(); i++) { if (dim[i] < 0) { dim[i] += x_dims.size(); } } std::sort(dim.begin(), dim.end()); // X node std::shared_ptr x_node = nullptr; if (graph->HasNode(x_name)) { x_node = graph->GetNode(x_name); } else { x_node = graph->AddNode(x_name, x_dims); } // Using ReduceSum + Scale to implement ReduceMean // Dim node auto dim_const_node = graph->AddNode(out_name + "/dim", dim); // Reduce Sum node auto reduce_sum_node = graph->AddNode(out_name + "/reducesum"); reduce_sum_node->set_input_x(*x_node); reduce_sum_node->set_input_w(*dim_const_node); reduce_sum_node->set_attr_keep_dims(keep_dim); // Scale node auto scale_node = graph->AddNode(out_name); scale_node->set_input_x(*reduce_sum_node); scale_node->set_attr_axis(1); // Add filter node(fill with scale) float scale = 1; for (size_t i = 0; i < dim.size(); i++) { scale /= x_dims[dim[i]]; } std::vector scale_bias_shape = x_dims.Vectorize(); if (keep_dim) { for (size_t i = 0; i < dim.size(); i++) { scale_bias_shape[dim[i]] = 1; } } else { const int64_t kDelFlag = -2; for (size_t i = 0; i < dim.size(); ++i) { scale_bias_shape[dim[i]] = kDelFlag; } scale_bias_shape.erase( remove(scale_bias_shape.begin(), scale_bias_shape.end(), kDelFlag), scale_bias_shape.end()); } auto filter_const_node = graph->AddNode(out_name + "/filter", scale, scale_bias_shape); scale_node->set_input_filter(*filter_const_node); return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace npu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(NPU, reduce_mean, paddle::lite::subgraph::npu::ReduceMeanConverter);