// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/bridges/graph.h" #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/npu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace npu { int BatchNormConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[NPU] Converting " + op_type + "..."; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x_type = kernel->GetInputDeclType("X"); CHECK(x_type->precision() == PRECISION(kFloat)); CHECK(x_type->layout() == DATALAYOUT(kNCHW)); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); auto scale_name = op_info->Input("Scale").front(); auto scale_type = kernel->GetInputDeclType("Scale"); CHECK(scale_type->precision() == PRECISION(kFloat)); CHECK(scale_type->layout() == DATALAYOUT(kNCHW)); auto scale = scope->FindMutableTensor(scale_name); auto bias_name = op_info->Input("Bias").front(); auto bias_type = kernel->GetInputDeclType("Bias"); CHECK(bias_type->precision() == PRECISION(kFloat)); CHECK(bias_type->layout() == DATALAYOUT(kNCHW)); auto bias = scope->FindMutableTensor(bias_name); auto mean_name = op_info->Input("Mean").front(); auto mean_type = kernel->GetInputDeclType("Mean"); CHECK(mean_type->precision() == PRECISION(kFloat)); CHECK(mean_type->layout() == DATALAYOUT(kNCHW)); auto mean = scope->FindMutableTensor(mean_name); auto variance_name = op_info->Input("Variance").front(); auto variance_type = kernel->GetInputDeclType("Variance"); CHECK(variance_type->precision() == PRECISION(kFloat)); CHECK(variance_type->layout() == DATALAYOUT(kNCHW)); auto variance = scope->FindMutableTensor(variance_name); auto y_name = op_info->Output("Y").front(); auto y_type = kernel->GetOutputDeclType("Y"); CHECK(y_type->precision() == PRECISION(kFloat)); CHECK(y_type->layout() == DATALAYOUT(kNCHW)); float momentum = op_info->GetAttr("momentum"); float epsilon = op_info->GetAttr("epsilon"); int mode = 1; // bnScale, bnBias tensor dims are 1xCx1x1 bool use_global_stats = op_info->GetAttr("use_global_stats"); // X node std::shared_ptr x_node = nullptr; if (graph->HasNode(x_name)) { x_node = graph->GetNode(x_name); } else { x_node = graph->AddNode(x_name, x_dims); } // Scale, Bias, Mean, Variance node auto scale_const_node = graph->AddNode(scale_name, *scale); auto bias_const_node = graph->AddNode(bias_name, *bias); auto mean_const_node = graph->AddNode(mean_name, *mean); auto variance_const_node = graph->AddNode(variance_name, *variance); // Batch Norm node auto batch_norm_node = graph->AddNode(y_name); batch_norm_node->set_input_x(*x_node); batch_norm_node->set_input_scale(*scale_const_node); batch_norm_node->set_input_offset(*bias_const_node); batch_norm_node->set_input_mean(*mean_const_node); batch_norm_node->set_input_variance(*variance_const_node); batch_norm_node->set_attr_momentum(momentum); batch_norm_node->set_attr_epsilon(epsilon); batch_norm_node->set_attr_mode(mode); batch_norm_node->set_attr_use_global_stats(use_global_stats); return SUCCESS; } } // namespace npu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(NPU, batch_norm, paddle::lite::subgraph::npu::BatchNormConverter);