// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/mlu/bridges/graph.h" #include "lite/kernels/mlu/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { int DropoutConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[MLU] Converting " + op_type + "..."; // Create act node and set params from op auto x_var_name = op_info->Input("X").front(); auto out_var_name = op_info->Output("Out").front(); auto output = scope->FindVar(out_var_name)->GetMutable(); auto output_dims = output->dims().Vectorize(); auto output_tensor = graph->AddNode( out_var_name, output_dims, CNML_TENSOR, CNML_NCHW, graph->FPType()); // is_test is true by default // if(op_info->HasAttr("is_test")){ // auto is_test = op_info->GetAttr("is_test"); // CHECK(is_test != true); // } auto dropout_implementation = op_info->GetAttr("dropout_implementation"); auto dropout_prob = op_info->GetAttr("dropout_prob"); float alpha = 1.0f - dropout_prob; if (dropout_implementation == "upscale_in_train") { alpha = 1.; } float beta = 0.; std::vector shape = {1, 1, 1, 1}; std::string alpha_var_name = string_format("dropout_alpha_%p", op); std::string beta_var_name = string_format("dropout_beta_%p", op); auto alpha_tensor = graph->AddNode( alpha_var_name, shape, CNML_CONST, CNML_NHWC, graph->FPType()); auto beta_tensor = graph->AddNode( beta_var_name, shape, CNML_CONST, CNML_NHWC, graph->FPType()); graph->BindConstRawData("Alpha" + prefix, &alpha, 1); graph->BindConstRawData("Beta" + prefix, &beta, 1); auto input_tensor = graph->GetNode(x_var_name); cnmlBaseOp_t scale_op; CNML_CALL(cnmlCreateScaleOp(&scale_op, input_tensor->mlu_tensor(), output_tensor->mlu_tensor(), alpha_tensor->mlu_tensor(), beta_tensor->mlu_tensor())); graph->FuseOp(scale_op); return SUCCESS; } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(dropout, kMLU, paddle::lite::subgraph::mlu::DropoutConverter);