/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "framework/operator.h" #include "framework/program/program-optimize/node.h" namespace paddle_mobile { namespace framework { Node &Node::operator>(std::shared_ptr node) { outputs_.push_back(node); std::shared_ptr this_node; node->inputs_.push_back(this); return *node; } bool Node::operator==(const Node &in) { if (in.type_ == this->type_) { if (this->outputs_.size() == in.outputs_.size()) { for (int i = 0; i < outputs_.size(); ++i) { if (!(*outputs_[i] == *in.outputs_[i])) { return false; } } } else { return false; } } else { return false; } return true; } bool Node::CanSplit(std::unordered_set complex_compute_set) { bool split = false; CanSplit(&split, false, 0, &complex_compute_set, this); return split; } void Node::CanSplit(bool *split, bool spliting, int complex_count, std::unordered_set *complex_compute_set, Node *pre_node) { if (spliting) { if (complex_compute_set->find(this->type_) != complex_compute_set->end()) { complex_count++; } } if (inputs_.size() > 1 && pre_node != inputs_.back()) { return; } if (inputs_.size() > 1 && pre_node == inputs_.back()) { if (complex_count > 1) { *split = true; return; } } // multi output, to check if (outputs_.size() > 1) { spliting = true; complex_compute_set = 0; } else { if (spliting == true && inputs_.size() > 0) { spliting = false; } else { } } for (auto &output : outputs_) { output->CanSplit(split, spliting, complex_count, complex_compute_set, this); } } std::vector> Node::OpDescs(uint size) { std::vector> op_descs; OpDescs(size - 1, &op_descs); return op_descs; } void Node::OpDescs(uint index, std::vector> *op_desc) { if (index == 0) { return; } op_desc->push_back(this->op_desc_); for (auto &output : outputs_) { output->OpDescs(index, op_desc); } } void Node::OpDescs(std::vector> *op_desc, Node *node, bool adding_thread, int thread_num) { if (outputs_.size() > 1) { adding_thread = false; } bool can_add_split = false; // 如果当前节点有多个输出 并且 只有当前节点对应的 op_desc_ 输出数为 1 时支持 if (outputs_.size() > 1 && op_input_output_key[op_desc_->type_].second.size() == 1) { can_add_split = true; // 遍历当前节点的 output 节点 for (const auto &output : outputs_) { // 不支持 output 有多个 output 的情况 if (output->outputs_.size() > 0) { can_add_split = false; break; } //与节点关联的 OpDesc std::shared_ptr &op_desc = output->op_desc_; //获取这个 op 的 inputs key 和 outputs key auto inputs_and_outputs = op_input_output_key[op_desc->type_]; //判断现在 是否存在这个 op //判断这个 output 和 input key 的 size 等于 1 if (op_input_output_key.find(op_desc->type_) != op_input_output_key.end() && inputs_and_outputs.first.size() == 1 && inputs_and_outputs.second.size() == 1) { auto inputs_of_output = op_desc->Input(inputs_and_outputs.first[0]); auto outputs_of_output = op_desc->Output(inputs_and_outputs.second[0]); // 判断一下, 如果输入和输出没有同名, 是支持的 for (int i = 0; i < inputs_of_output.size(); ++i) { std::string input_of_output = inputs_of_output[i]; for (int j = 0; j < outputs_of_output.size(); ++j) { std::string output_of_output = outputs_of_output[j]; if (input_of_output == output_of_output) { DLOG << "output的 output 包含 input" << input_of_output; can_add_split = false; break; } } } } else { // 如果模型中包含没有的 op, 则不支持添加 split DLOG << "找不到 这个 op 类型: " << output->op_desc_->type_; can_add_split = false; } } } if (inputs_.size() > 1 && node != inputs_.back()) { return; } else if (inputs_.size() > 1 && node == inputs_.back()) { adding_thread = false; op_desc->push_back(this->op_desc_); } else { op_desc->push_back(this->op_desc_); } if (adding_thread) { Attribute attr; attr.Set(thread_num); this->op_desc_->attrs_["thread"] = attr; } if (can_add_split) { adding_thread = true; std::shared_ptr split_op_desc = std::make_shared(); split_op_desc->type_ = G_OP_TYPE_SPLIT; auto outputs = this->op_desc_->Output( op_input_output_key[this->op_desc_->Type()].second[0]); split_op_desc->inputs_ = { {op_input_output_key[G_OP_TYPE_SPLIT].first[0], outputs}}; auto &split_outputs = split_op_desc->outputs_[op_input_output_key[G_OP_TYPE_SPLIT].second[0]]; for (const auto &output : outputs_) { split_outputs.push_back(outputs[0]); } DLOG << "add split"; op_desc->push_back(split_op_desc); } for (int i = 0; i < outputs_.size(); ++i) { auto &output = outputs_[i]; if (can_add_split) { output->OpDescs(op_desc, this, adding_thread, i); } else { output->OpDescs(op_desc, this, adding_thread, thread_num); } } } std::vector> Node::OpDescs() { std::vector> op_descs; OpDescs(&op_descs, this, false, 0); return op_descs; } std::shared_ptr Node::To(int size) { std::shared_ptr node = std::make_shared(); this->To(size - 1, node); return node; } void Node::To(int index, std::shared_ptr node) { node->type_ = this->type_; if (index != 0) { } else { return; } for (int j = 0; j < this->outputs_.size(); ++j) { std::shared_ptr sub_node = std::make_shared(); node->outputs_.push_back(sub_node); outputs_[j]->To(index - 1, sub_node); } } uint Node::Depth(uint begin) { uint depth = 0; begin++; for (int i = 0; i < outputs_.size(); ++i) { uint output_depth = outputs_[i]->Depth(begin); depth = output_depth > depth ? output_depth : depth; } return begin > depth ? begin : depth; } Node &Node::Folder( uint size, std::string type, std::map> change) { std::shared_ptr op_desc = std::make_shared(); op_desc->inputs_ = this->op_desc_->inputs_; std::vector> outputs; this->Folder(op_desc, &outputs, size - 1, &change, this); this->outputs_ = outputs; this->type_ = type; this->op_desc_ = op_desc; this->op_desc_->type_ = type; return *this; } void Node::Folder( std::shared_ptr op_desc, std::vector> *outputs, uint index, std::map> *change, Node *begin_node) { if (change->find(this->type_) != change->end()) { auto change_pair = (*change)[this->type_]; op_desc->GetInputs()[change_pair.second] = this->op_desc_->GetInputs()[change_pair.first]; } for (auto &attr_pair : this->op_desc_->attrs_) { op_desc->attrs_.emplace(attr_pair.first, attr_pair.second); } if (index > 0) { --index; for (auto output : outputs_) { output->Folder(op_desc, outputs, index, change, begin_node); } } else { for (auto &op_output : this->op_desc_->outputs_) { op_desc->outputs_.emplace(op_output.first, op_output.second); } for (auto &output : this->outputs_) { auto iter = std::find(output->inputs_.begin(), output->inputs_.end(), this); if (iter != output->inputs_.end()) { output->inputs_.erase(iter); } output->inputs_.push_back(begin_node); outputs->push_back(output); } } } std::string Node::ToString(std::string blank, const Node *node) const { std::stringstream ss; ss << type_ << "-> \n"; if (inputs_.size() > 1 && node != inputs_.back()) { return ss.str(); } else if (inputs_.size() > 1 && node == inputs_.back()) { ss << "\n" << blank << type_ << "\n"; } for (int i = 0; i < outputs_.size(); ++i) { ss << blank << outputs_[i]->ToString(blank + " ", this) << ""; } return ss.str(); } std::string Node::ToString() const { return this->ToString(" ", this); } void Node::Description() { if (op_desc_.get()) { DLOG << *op_desc_; } else { DLOG << " null "; } } Print &operator<<(Print &printer, const Node &node) { printer << node.ToString(); return printer; } } // namespace framework } // namespace paddle_mobile