/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include "common/types.h" #include "common/util.h" #include "framework/lod_tensor.h" #include "framework/operator.h" #include "framework/program/program.h" #include "framework/tensor.h" namespace paddle_mobile { template class Executor { public: typedef typename PrecisionTrait

::ptype Ptype; // exector constructor // @param program program converted from proto program in PaddlePaddle // @param use_optimize bool whether use operator fusion to speed up or not // @param loddable bool Executor(const framework::Program program, int batch_size = 1, const bool use_optimize = true, const bool loddable = false); // predict with tensor input // @param t input tensor to do prediction // @return predicted tensor std::shared_ptr Predict(const framework::Tensor &t); // predict with lod tensor input // @param t input lod tensor to do prediction // @return predicted lod tensor std::shared_ptr PredictLod( const framework::LoDTensor &t); // predict with vector input and dims // @param input vector whose elements will be formed // @param input lod tensor to do prediction // @param dims vector whose elements will be formed // @param input tensor shape // @return vector which is flatted from predicted tensor std::vector Predict(const std::vector &input, const std::vector &dims); #ifdef PADDLE_MOBILE_FPGA void InjectVariable(const framework::Tensor &t, std::string var_name); void FeedData(const framework::Tensor &t); std::shared_ptr FetchResult(int id = -1); void Predict_From_To(int start = 0, int end = -1); void Predict_From(int start); void Predict_To(int end); #endif protected: Executor() = default; std::shared_ptr Predict(const framework::Tensor &t, int block_id); bool varInputMemory(const std::shared_ptr &var_desc, framework::Variable *var, framework::LoDTensor *tensor) const; void InitMemory(); void InitCombineMemory(); void LoadMemory(void **data, const std::shared_ptr var_desc, framework::LoDTensor *tensor); framework::Program program_; int batch_size_ = 1; std::shared_ptr to_predict_program_; std::map>>> ops_of_block_; #ifdef PADDLE_MOBILE_PROFILE struct ProfInfo { int tid = 0; uint64_t runBegin = 0UL; uint64_t runEnd = 0UL; }; #endif bool use_optimize_ = false; bool loddable_ = false; }; } // namespace paddle_mobile