// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "lite/backends/npu/bridge/registry.h" #include "lite/backends/npu/bridge/test_helper.h" #include "lite/core/op_registry.h" #include "lite/operators/relu_op.h" namespace paddle { namespace lite { namespace npu { namespace bridge { void relu_ref(const std::shared_ptr op) { Scope* scope = op->scope(); const OpInfo* op_info = op->op_info(); auto x = scope->FindVar(op_info->Input("X").front())->GetMutable(); auto out = scope->FindVar(op_info->Output("Out").front())->GetMutable(); auto x_data = x->data(); auto out_data = out->mutable_data(); DDim x_dims = x->dims(); DDim out_dims = out->dims(); CHECK_EQ(x_dims.production(), out_dims.production()); for (int i = 0; i < out_dims.production(); i++) { out_data[i] = std::max(0.f, x_data[i]); } } void test_relu(int bs, int ic, int ih, int iw) { // prepare input&output variables Scope scope; std::string x_var_name("x"); std::string out_var_name("out"); std::string out_ref_var_name("out_ref"); auto* x = scope.Var(x_var_name)->GetMutable(); auto* out = scope.Var(out_var_name)->GetMutable(); auto* out_ref = scope.Var(out_ref_var_name)->GetMutable(); x->Resize({bs, ic, ih, iw}); // initialize input&output data FillTensor(x); // initialize op desc cpp::OpDesc opdesc; opdesc.SetType("relu"); opdesc.SetInput("X", {x_var_name}); opdesc.SetOutput("Out", {out_var_name}); // create and convert op to NPU model, then run it on NPU auto op = CreateOp(opdesc, &scope); LauchOp(op, {x_var_name}, {out_var_name}); out_ref->CopyDataFrom(*out); // execute reference implementation and save to output tensor relu_ref(op); // compare results auto* out_data = out->mutable_data(); auto* out_ref_data = out_ref->mutable_data(); for (int i = 0; i < out->dims().production(); i++) { VLOG(5) << i; EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-5); } } TEST(NPUBridges, relu) { for (auto bs : {1, 3}) { for (auto ic : {3, 4}) { for (auto ih : {2, 5}) { for (auto iw : {5, 9}) { VLOG(3) << "bs: " << bs << " ic: " << ic << " ih: " << ih << " iw: " << iw; test_relu(bs, ic, ih, iw); } } } } } } // namespace bridge } // namespace npu } // namespace lite } // namespace paddle USE_LITE_OP(relu); USE_NPU_BRIDGE(relu);