// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/x86/box_coder_compute.h" #include #include #include "lite/backends/x86/math/box_coder.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { void BoxCoderCompute::Run() { auto& param = *param_.get_mutable(); // required inputs auto* prior_box = param.prior_box; // M x 4 => M x [xmin, ymin, xmax, ymax] auto* target_box = param.target_box; // encode_center_size => N x 4; // decode_center_size => N x M x 4 // optional input auto* prior_box_var = param.prior_box_var; // M x 4 or 4 // output auto* output_box = param.proposals; // N x M x 4 // required attributes std::string code_type = param.code_type; bool normalized = param.box_normalized; // optional attributes std::vector variance = param.variance; const int axis = param.axis; auto row = target_box->dims()[0]; // N auto col = prior_box->dims()[0]; // M if (code_type == "decode_center_size") { // same as target_box col = target_box->dims()[1]; } auto len = prior_box->dims()[1]; // 4 output_box->Resize({row, col, len}); // N x M x 4 auto* output = output_box->mutable_data(); const float* target_box_data = target_box->data(); const float* prior_box_data = prior_box->data(); const float* prior_box_var_data = prior_box_var ? prior_box_var->data() : nullptr; if (code_type == "encode_center_size") { lite::x86::math::encode_center_size(row, col, len, target_box_data, prior_box_data, prior_box_var_data, normalized, variance, output); } else if (code_type == "decode_center_size") { int var_size = 0; if (prior_box_var) { var_size = 2; } else if (!(variance.empty())) { var_size = 1; } lite::x86::math::decode_center_size(axis, var_size, row, col, len, target_box_data, prior_box_data, prior_box_var_data, normalized, variance, output); } else { LOG(FATAL) << "box_coder don't support this code_type: " << code_type; } } } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(box_coder, kX86, kFloat, kNCHW, paddle::lite::kernels::x86::BoxCoderCompute, def) .BindInput("PriorBox", {LiteType::GetTensorTy(TARGET(kX86))}) .BindInput("PriorBoxVar", {LiteType::GetTensorTy(TARGET(kX86))}) .BindInput("TargetBox", {LiteType::GetTensorTy(TARGET(kX86))}) .BindOutput("OutputBox", {LiteType::GetTensorTy(TARGET(kX86))}) .Finalize();