// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/backends/opencl/cl_half.h" #include "lite/backends/opencl/cl_include.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" #include "lite/utils/replace_stl/stream.h" #include "lite/utils/string.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { class SliceComputeImage2D : public KernelLite { public: using param_t = operators::SliceParam; std::string doc() const override { return "Slice using cl::Image2D, kFP16"; } void PrepareForRun() override { auto& context = ctx_->As(); VLOG(1) << "kernel_func_name_:" << kernel_func_name_; context.cl_context()->AddKernel(kernel_func_name_, "image/slice_kernel.cl", build_options_, time_stamp_); } void Run() override { const auto& param = *param_.get_mutable(); const auto& in_dims = param.X->dims(); auto* x_img = param.X->data(); auto& out_dims = param.Out->dims(); std::vector axes = param.axes; std::vector starts = param.starts; std::vector ends = param.ends; if (axes.size() > 1 || axes[0] != 1) { LOG(FATAL) << "opencl slice_image only support channel slice "; } int axis = axes[0]; int start = starts[0]; int end = ends[0]; int dim_w = in_dims[axis + 2]; auto out_image_shape = InitImageDimInfoWith(out_dims); auto* out_img = param.Out->mutable_data( out_image_shape["width"], out_image_shape["height"]); auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_ << time_stamp_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); cl_int status; int arg_idx = 0; status = kernel.setArg(arg_idx, *x_img); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *out_img); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, start); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, end); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, dim_w); CL_CHECK_FATAL(status); const std::vector& default_work_size = DefaultWorkSize(out_dims, DDim(std::vector{ static_cast(out_image_shape["width"]), static_cast(out_image_shape["height"])})); auto global_work_size = cl::NDRange{static_cast(default_work_size.data()[0]), static_cast(default_work_size.data()[1]), static_cast(default_work_size.data()[2])}; status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, nullptr); CL_CHECK_FATAL(status); } private: std::string kernel_func_name_{"slice"}; std::string build_options_{"-DCL_DTYPE_half"}; std::string time_stamp_{GetTimeStamp()}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(slice, kOpenCL, kFP16, kImageDefault, paddle::lite::kernels::opencl::SliceComputeImage2D, image2d) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .Finalize();