提交 f1426f03 编写于 作者: L liuruilong

add log print module

---
Language: Cpp
BasedOnStyle: LLVM
Standard: Cpp11
IndentWidth: 4
NamespaceIndentation: All
...
...@@ -6,6 +6,7 @@ repos: ...@@ -6,6 +6,7 @@ repos:
files: (src).*\.(md|py|mm|swift|java|c|cc|cxx|cpp|cu|h|hpp|hxx)$ files: (src).*\.(md|py|mm|swift|java|c|cc|cxx|cpp|cu|h|hpp|hxx)$
- id: remove-tabs - id: remove-tabs
files: (src).*\.(md|py|mm|swift|java|c|cc|cxx|cpp|cu|h|hpp|hxx)$ files: (src).*\.(md|py|mm|swift|java|c|cc|cxx|cpp|cu|h|hpp|hxx)$
- repo: https://github.com/pre-commit/pre-commit-hooks - repo: https://github.com/pre-commit/pre-commit-hooks
sha: 5bf6c09bfa1297d3692cadd621ef95f1284e33c0 sha: 5bf6c09bfa1297d3692cadd621ef95f1284e33c0
hooks: hooks:
...@@ -18,11 +19,21 @@ repos: ...@@ -18,11 +19,21 @@ repos:
files: (src).*\.(md|py|mm|swift|java|c|cc|cxx|cpp|cu|h|hpp|hxx)$ files: (src).*\.(md|py|mm|swift|java|c|cc|cxx|cpp|cu|h|hpp|hxx)$
- id: trailing-whitespace - id: trailing-whitespace
files: (src).*\.(md|py|mm|swift|java|c|cc|cxx|cpp|cu|h|hpp|hxx)$ files: (src).*\.(md|py|mm|swift|java|c|cc|cxx|cpp|cu|h|hpp|hxx)$
- repo: local - repo: local
hooks: hooks:
- id: clang-format-with-version-check - id: clang-format-with-version-check
name: clang-format name: clang-format
description: Format files with ClangFormat. description: Format files with ClangFormat.
entry: bash .clang_format.hook -i entry: bash ./tools/pre-commit.hooks/.clang_format.hook -i
language: system language: system
files: (src).*\.(c|cc|cxx|cpp|h|hpp|hxx)$ files: (src).*\.(c|cc|cxx|cpp|h|hpp|hxx)$
#- repo: local
# hooks:
# - id: copyright_checker
# name: copyright_checker
# entry: python ./tools/pre-commit.hooks/.copyright.hook
# language: system
# files: (src).*\.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto|py)$
# exclude: (?!.*third_party)^.*$ | (?!.*book)^.*$
...@@ -46,7 +46,8 @@ target_link_libraries(paddle-mobile-static protobuf-lite openblas) ...@@ -46,7 +46,8 @@ target_link_libraries(paddle-mobile-static protobuf-lite openblas)
add_dependencies(paddle-mobile openblas_proj) add_dependencies(paddle-mobile openblas_proj)
# gen test # gen test
ADD_EXECUTABLE(paddle-mobile-test test/main.cpp test/test_helper.h) ADD_EXECUTABLE(paddle-mobile-test test/main.cpp test/test_helper.h
test/elementwise_add_op_test.h test/test_include.h)
target_link_libraries(paddle-mobile-test paddle-mobile) target_link_libraries(paddle-mobile-test paddle-mobile)
# gen test log # gen test log
......
# Paddle-Mobile # Paddle-Mobile
![License MIT](https://img.shields.io/github/license/mashape/apistatus.svg) [![Build Status](https://travis-ci.org/PaddlePaddle/paddle-mobile.svg?branch=develop&longCache=true&style=flat-square)](https://travis-ci.org/PaddlePaddle/paddle-mobile)
This project is used to develop the next version deep learning freamwork for mobile device. This project is used to develop the next version deep learning freamwork for mobile device.
......
...@@ -23,30 +23,31 @@ SOFTWARE. ...@@ -23,30 +23,31 @@ SOFTWARE.
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
template <typename Dtype> class OperatorBase; template <typename Dtype> class OperatorBase;
class OpDesc; class OpDesc;
class BlockDesc; class BlockDesc;
class InferShapeContext; class InferShapeContext;
} }
using VariableNameMap = std::map<std::string, std::vector<std::string>>; using VariableNameMap = std::map<std::string, std::vector<std::string>>;
template <typename Dtype> template <typename Dtype>
using OpCreator = std::function<framework::OperatorBase<Dtype> *( using OpCreator = std::function<framework::OperatorBase<Dtype> *(
const std::string & /*type*/, const VariableNameMap & /*inputs*/, const std::string & /*type*/, const VariableNameMap & /*inputs*/,
const VariableNameMap & /*outputs*/, const VariableNameMap & /*outputs*/,
const framework::AttributeMap & /*attrs*/)>; const framework::AttributeMap & /*attrs*/)>;
using GradOpMakerFN = using GradOpMakerFN =
std::function<std::vector<std::unique_ptr<framework::OpDesc>>( std::function<std::vector<std::unique_ptr<framework::OpDesc>>(
const framework::OpDesc &, const framework::OpDesc &,
const std::unordered_set<std::string> & /*no_grad_set*/, const std::unordered_set<std::string> & /*no_grad_set*/,
std::unordered_map<std::string, std::string> * /*grad_to_var*/, std::unordered_map<std::string, std::string> * /*grad_to_var*/,
const std::vector<framework::BlockDesc *> &grad_block)>; const std::vector<framework::BlockDesc *> &grad_block)>;
using InferVarTypeFN = std::function<void(const framework::OpDesc & /*op_desc*/, using InferVarTypeFN =
std::function<void(const framework::OpDesc & /*op_desc*/,
framework::BlockDesc * /*block*/)>; framework::BlockDesc * /*block*/)>;
using InferShapeFN = std::function<void(framework::InferShapeContext *)>; using InferShapeFN = std::function<void(framework::InferShapeContext *)>;
}; };
...@@ -19,19 +19,19 @@ SOFTWARE. ...@@ -19,19 +19,19 @@ SOFTWARE.
#pragma once; #pragma once;
namespace paddle_mobile { namespace paddle_mobile {
enum class Precision : int { FP32 = 0 }; enum class Precision : int { FP32 = 0 };
//! device type //! device type
enum DeviceTypeEnum { kINVALID = -1, kCPU = 0, kFPGA = 1, kGPU_MALI = 2 }; enum DeviceTypeEnum { kINVALID = -1, kCPU = 0, kFPGA = 1, kGPU_MALI = 2 };
template <DeviceTypeEnum T> struct DeviceType {}; template <DeviceTypeEnum T> struct DeviceType {};
typedef DeviceType<kCPU> CPU; typedef DeviceType<kCPU> CPU;
typedef DeviceType<kFPGA> FPGA; typedef DeviceType<kFPGA> FPGA;
typedef DeviceType<kGPU_MALI> GPU_MALI; typedef DeviceType<kGPU_MALI> GPU_MALI;
//! data type //! data type
enum DataType { enum DataType {
PM_INVALID = -1, PM_INVALID = -1,
PM_HALF = 0, PM_HALF = 0,
PM_FLOAT = 1, PM_FLOAT = 1,
...@@ -47,9 +47,9 @@ enum DataType { ...@@ -47,9 +47,9 @@ enum DataType {
PM_BOOL = 11, PM_BOOL = 11,
PM_SHAPE = 12, PM_SHAPE = 12,
PM_TENSOR = 13 PM_TENSOR = 13
}; };
//! //!
enum PMStatus { enum PMStatus {
PMSuccess = 0xFF, /*!< No errors */ PMSuccess = 0xFF, /*!< No errors */
PMNotInitialized = 0x01, /*!< Data not initialized. */ PMNotInitialized = 0x01, /*!< Data not initialized. */
PMInvalidValue = 0x02, /*!< Incorrect variable value. */ PMInvalidValue = 0x02, /*!< Incorrect variable value. */
...@@ -59,5 +59,5 @@ enum PMStatus { ...@@ -59,5 +59,5 @@ enum PMStatus {
PMOutOfMem = 0x06, /*!< OOM error*/ PMOutOfMem = 0x06, /*!< OOM error*/
PMUnImplError = 0x07, /*!< Unimplement error. */ PMUnImplError = 0x07, /*!< Unimplement error. */
PMWrongDevice = 0x08 /*!< un-correct device. */ PMWrongDevice = 0x08 /*!< un-correct device. */
}; };
} }
...@@ -21,9 +21,9 @@ SOFTWARE. ...@@ -21,9 +21,9 @@ SOFTWARE.
#pragma once #pragma once
namespace paddle_mobile { namespace paddle_mobile {
template <int ID, typename Type> struct IDToType { typedef Type type_t; }; template <int ID, typename Type> struct IDToType { typedef Type type_t; };
template <typename F, typename... Ts> struct VariantHelper { template <typename F, typename... Ts> struct VariantHelper {
static const size_t size = sizeof(F) > VariantHelper<Ts...>::size static const size_t size = sizeof(F) > VariantHelper<Ts...>::size
? sizeof(F) ? sizeof(F)
: VariantHelper<Ts...>::size; : VariantHelper<Ts...>::size;
...@@ -35,9 +35,9 @@ template <typename F, typename... Ts> struct VariantHelper { ...@@ -35,9 +35,9 @@ template <typename F, typename... Ts> struct VariantHelper {
VariantHelper<Ts...>::Destroy(id, data); VariantHelper<Ts...>::Destroy(id, data);
} }
} }
}; };
template <typename F> struct VariantHelper<F> { template <typename F> struct VariantHelper<F> {
static const size_t size = sizeof(F); static const size_t size = sizeof(F);
inline static void Destroy(size_t id, void *data) { inline static void Destroy(size_t id, void *data) {
if (id == typeid(F).hash_code()) { if (id == typeid(F).hash_code()) {
...@@ -46,19 +46,19 @@ template <typename F> struct VariantHelper<F> { ...@@ -46,19 +46,19 @@ template <typename F> struct VariantHelper<F> {
// std::cout << "未匹配到 " << std::endl; // std::cout << "未匹配到 " << std::endl;
} }
} }
}; };
template <size_t size> class RawData { template <size_t size> class RawData {
public: public:
char data[size]; char data[size];
RawData() {} RawData() {}
RawData(const RawData &raw_data) { strcpy(data, raw_data.data); } RawData(const RawData &raw_data) { strcpy(data, raw_data.data); }
// void operator=(const RawData &raw_data){ // void operator=(const RawData &raw_data){
// strcpy(data, raw_data.data); // strcpy(data, raw_data.data);
// } // }
}; };
template <typename... Ts> struct Variant { template <typename... Ts> struct Variant {
Variant(const Variant &variant) { Variant(const Variant &variant) {
// std::cout << " 赋值构造函数 " << std::endl; // std::cout << " 赋值构造函数 " << std::endl;
type_id = variant.type_id; type_id = variant.type_id;
...@@ -87,13 +87,13 @@ template <typename... Ts> struct Variant { ...@@ -87,13 +87,13 @@ template <typename... Ts> struct Variant {
size_t TypeId() const { return type_id; } size_t TypeId() const { return type_id; }
private: private:
static inline size_t invalid_type() { return typeid(void).hash_code(); } static inline size_t invalid_type() { return typeid(void).hash_code(); }
typedef VariantHelper<Ts...> helper; typedef VariantHelper<Ts...> helper;
size_t type_id; size_t type_id;
RawData<helper::size> data; RawData<helper::size> data;
}; };
template <typename T> struct Vistor { typedef T type_t; }; template <typename T> struct Vistor { typedef T type_t; };
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -19,5 +19,5 @@ SOFTWARE. ...@@ -19,5 +19,5 @@ SOFTWARE.
#include "attribute.h" #include "attribute.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework {} namespace framework {}
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -22,13 +22,14 @@ SOFTWARE. ...@@ -22,13 +22,14 @@ SOFTWARE.
#include "framework.pb.h" #include "framework.pb.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
class BlockDesc; class BlockDesc;
class Attribute { class Attribute {
public: public:
static Attribute GetAttrValue(const proto::OpDesc::Attr &attr_desc) { static Attribute
GetAttrValue(const proto::OpDesc::Attr &attr_desc) {
// std::cout << "begin get attr value" << std::endl; // std::cout << "begin get attr value" << std::endl;
Attribute attr; Attribute attr;
switch (attr_desc.type()) { switch (attr_desc.type()) {
...@@ -93,36 +94,38 @@ public: ...@@ -93,36 +94,38 @@ public:
} }
Attribute() {} Attribute() {}
template <typename T, typename... Args> Attribute &Set(Args &&... args) { template <typename T, typename... Args>
Attribute &Set(Args &&... args) {
variant_.Set<T>(args...); variant_.Set<T>(args...);
return *this; return *this;
} }
template <typename T> T &Get() const { return variant_.Get<T>(); } template <typename T> T &Get() const { return variant_.Get<T>(); }
private: private:
Variant<int, float, std::string, std::vector<int>, std::vector<float>, Variant<int, float, std::string, std::vector<int>,
std::vector<std::string>, bool, std::vector<bool>, BlockDesc *, std::vector<float>, std::vector<std::string>, bool,
int64_t> std::vector<bool>, BlockDesc *, int64_t>
variant_; variant_;
}; };
using AttributeMap = std::unordered_map<std::string, Attribute>; using AttributeMap = std::unordered_map<std::string, Attribute>;
class AttrReader { class AttrReader {
public: public:
explicit AttrReader(const AttributeMap &attrs) : attrs_(attrs) {} explicit AttrReader(const AttributeMap &attrs) : attrs_(attrs) {}
template <typename T> inline T Get(const std::string &name) const { template <typename T> inline T Get(const std::string &name) const {
// PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in // PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should
// be in
// AttributeMap", // AttributeMap",
// name); // name);
return ((Attribute)attrs_.at(name)).Get<T>(); return ((Attribute)attrs_.at(name)).Get<T>();
} }
private: private:
const AttributeMap &attrs_; const AttributeMap &attrs_;
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -19,32 +19,32 @@ SOFTWARE. ...@@ -19,32 +19,32 @@ SOFTWARE.
#include "block_desc.h" #include "block_desc.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
std::vector<std::shared_ptr<VarDesc>> BlockDesc::Vars() const { std::vector<std::shared_ptr<VarDesc>> BlockDesc::Vars() const {
std::vector<std::shared_ptr<VarDesc>> res; std::vector<std::shared_ptr<VarDesc>> res;
for (const auto &p : vars_) { for (const auto &p : vars_) {
res.push_back(p.second); res.push_back(p.second);
} }
return res; return res;
} }
std::vector<std::shared_ptr<OpDesc>> BlockDesc::Ops() const { std::vector<std::shared_ptr<OpDesc>> BlockDesc::Ops() const {
std::vector<std::shared_ptr<OpDesc>> res; std::vector<std::shared_ptr<OpDesc>> res;
for (const auto &op : ops_) { for (const auto &op : ops_) {
res.push_back(op); res.push_back(op);
} }
return res; return res;
} }
BlockDesc::BlockDesc(const proto::BlockDesc &desc) : desc_(desc) { BlockDesc::BlockDesc(const proto::BlockDesc &desc) : desc_(desc) {
for (const proto::VarDesc &var_desc : desc_.vars()) { for (const proto::VarDesc &var_desc : desc_.vars()) {
vars_[var_desc.name()].reset(new VarDesc(var_desc)); vars_[var_desc.name()].reset(new VarDesc(var_desc));
} }
for (const proto::OpDesc &op_desc : desc_.ops()) { for (const proto::OpDesc &op_desc : desc_.ops()) {
ops_.emplace_back(new framework::OpDesc(op_desc)); ops_.emplace_back(new framework::OpDesc(op_desc));
} }
} }
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -24,39 +24,43 @@ SOFTWARE. ...@@ -24,39 +24,43 @@ SOFTWARE.
#include "var_desc.h" #include "var_desc.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
class BlockDesc : PaddleMobileObject { class BlockDesc : PaddleMobileObject {
public: public:
BlockDesc(const proto::BlockDesc &desc); BlockDesc(const proto::BlockDesc &desc);
const int &ID() const { return desc_.idx(); } const int &ID() const { return desc_.idx(); }
const int &Parent() const { return desc_.parent_idx(); } const int &Parent() const { return desc_.parent_idx(); }
bool operator==(const paddle_mobile::framework::BlockDesc &in_block) const { bool operator==(
return this->ID() == in_block.ID() && this->Parent() == in_block.Parent(); const paddle_mobile::framework::BlockDesc &in_block) const {
return this->ID() == in_block.ID() &&
this->Parent() == in_block.Parent();
} }
bool operator<(const paddle_mobile::framework::BlockDesc &in_block) const { bool operator<(
return this->ID() < in_block.ID() && this->Parent() < in_block.Parent(); const paddle_mobile::framework::BlockDesc &in_block) const {
return this->ID() < in_block.ID() &&
this->Parent() < in_block.Parent();
} }
std::vector<std::shared_ptr<VarDesc>> Vars() const; std::vector<std::shared_ptr<VarDesc>> Vars() const;
std::vector<std::shared_ptr<OpDesc>> Ops() const; std::vector<std::shared_ptr<OpDesc>> Ops() const;
private: private:
proto::BlockDesc desc_; proto::BlockDesc desc_;
std::vector<std::shared_ptr<OpDesc>> ops_; std::vector<std::shared_ptr<OpDesc>> ops_;
std::unordered_map<std::string, std::shared_ptr<VarDesc>> vars_; std::unordered_map<std::string, std::shared_ptr<VarDesc>> vars_;
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
namespace std { namespace std {
template <> struct hash<paddle_mobile::framework::BlockDesc> { template <> struct hash<paddle_mobile::framework::BlockDesc> {
typedef paddle_mobile::framework::BlockDesc argument_type; typedef paddle_mobile::framework::BlockDesc argument_type;
typedef std::size_t result_type; typedef std::size_t result_type;
result_type operator()(argument_type const &s) const noexcept { result_type operator()(argument_type const &s) const noexcept {
...@@ -64,6 +68,6 @@ template <> struct hash<paddle_mobile::framework::BlockDesc> { ...@@ -64,6 +68,6 @@ template <> struct hash<paddle_mobile::framework::BlockDesc> {
result_type const h2(std::hash<int>{}(s.ID())); result_type const h2(std::hash<int>{}(s.ID()));
return h1 ^ (h2 << 1); return h1 ^ (h2 << 1);
} }
}; };
} // namespace std } // namespace std
...@@ -19,15 +19,15 @@ limitations under the License. */ ...@@ -19,15 +19,15 @@ limitations under the License. */
#include <string> #include <string>
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
enum class DataLayout { enum class DataLayout {
kNHWC = 0, kNHWC = 0,
kNCHW = 1, kNCHW = 1,
kAnyLayout = 2, kAnyLayout = 2,
}; };
inline DataLayout StringToDataLayout(const std::string &str) { inline DataLayout StringToDataLayout(const std::string &str) {
std::string s(str); std::string s(str);
for (size_t i = 0; i < s.size(); ++i) { for (size_t i = 0; i < s.size(); ++i) {
s[i] = toupper(s[i]); s[i] = toupper(s[i]);
...@@ -42,9 +42,9 @@ inline DataLayout StringToDataLayout(const std::string &str) { ...@@ -42,9 +42,9 @@ inline DataLayout StringToDataLayout(const std::string &str) {
} else { } else {
// std::cout << "Unknown storage order string: %s", s; // std::cout << "Unknown storage order string: %s", s;
} }
} }
inline std::string DataLayoutToString(const DataLayout &data_layout) { inline std::string DataLayoutToString(const DataLayout &data_layout) {
switch (data_layout) { switch (data_layout) {
case DataLayout::kNHWC: case DataLayout::kNHWC:
return "NHWC"; return "NHWC";
...@@ -56,12 +56,13 @@ inline std::string DataLayoutToString(const DataLayout &data_layout) { ...@@ -56,12 +56,13 @@ inline std::string DataLayoutToString(const DataLayout &data_layout) {
break; break;
// std::cout << "unknown DataLayou %d", data_layout; // std::cout << "unknown DataLayou %d", data_layout;
} }
} }
inline std::ostream &operator<<(std::ostream &out, const DataLayout &l) { inline std::ostream &operator<<(std::ostream &out,
const DataLayout &l) {
out << DataLayoutToString(l); out << DataLayoutToString(l);
return out; return out;
} }
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -21,14 +21,14 @@ SOFTWARE. ...@@ -21,14 +21,14 @@ SOFTWARE.
#include "data_transform.h" #include "data_transform.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
static void PassTensorData(Tensor *from, Tensor *to) { static void PassTensorData(Tensor *from, Tensor *to) {
to->ShareDataWith(*from); to->ShareDataWith(*from);
*from = Tensor(); *from = Tensor();
} }
void DataTransform(const OpKernelType &expected_kernel_type, void DataTransform(const OpKernelType &expected_kernel_type,
const OpKernelType &kernel_type_for_var, const OpKernelType &kernel_type_for_var,
const Tensor &input_tensor, Tensor *output_tensor) { const Tensor &input_tensor, Tensor *output_tensor) {
bool transformed = false; bool transformed = false;
...@@ -39,14 +39,17 @@ void DataTransform(const OpKernelType &expected_kernel_type, ...@@ -39,14 +39,17 @@ void DataTransform(const OpKernelType &expected_kernel_type,
// // do layout transform // // do layout transform
// if (NeedTransformLayout(expected_kernel_type.data_layout_, // if (NeedTransformLayout(expected_kernel_type.data_layout_,
// kernel_type_for_var.data_layout_)) { // kernel_type_for_var.data_layout_)) {
// TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out); // TransDataLayout(kernel_type_for_var, expected_kernel_type, in,
// &out);
// transformed = true; // transformed = true;
// PassTensorData(&out, &in); // PassTensorData(&out, &in);
// } // }
// //
// // do data type transform // // do data type transform
// if (expected_kernel_type.data_type_ != kernel_type_for_var.data_type_) { // if (expected_kernel_type.data_type_ !=
// TransDataType(kernel_type_for_var, expected_kernel_type, in, &out); // kernel_type_for_var.data_type_) {
// TransDataType(kernel_type_for_var, expected_kernel_type, in,
// &out);
// transformed = true; // transformed = true;
// PassTensorData(&out, &in); // PassTensorData(&out, &in);
// } // }
...@@ -59,13 +62,14 @@ void DataTransform(const OpKernelType &expected_kernel_type, ...@@ -59,13 +62,14 @@ void DataTransform(const OpKernelType &expected_kernel_type,
// PassTensorData(&out, &in); // PassTensorData(&out, &in);
// } // }
// //
// PADDLE_ENFORCE(transformed, "No transform is applied, please check!"); // PADDLE_ENFORCE(transformed, "No transform is applied, please
// check!");
// get output data // get output data
output_tensor->ShareDataWith(in); output_tensor->ShareDataWith(in);
} }
void CopyVariableWithTensor(const Variable &in_var, const Tensor &tensor, void CopyVariableWithTensor(const Variable &in_var,
Variable &out_var) { const Tensor &tensor, Variable &out_var) {
// if (in_var.IsType<LoDTensor>()) { // if (in_var.IsType<LoDTensor>()) {
// auto& in_lod_tensor = in_var.Get<LoDTensor>(); // auto& in_lod_tensor = in_var.Get<LoDTensor>();
// auto* tran_lod_tensor = out_var.GetMutable<LoDTensor>(); // auto* tran_lod_tensor = out_var.GetMutable<LoDTensor>();
...@@ -74,14 +78,15 @@ void CopyVariableWithTensor(const Variable &in_var, const Tensor &tensor, ...@@ -74,14 +78,15 @@ void CopyVariableWithTensor(const Variable &in_var, const Tensor &tensor,
// tran_lod_tensor->ShareDataWith(tensor); // tran_lod_tensor->ShareDataWith(tensor);
// } else if (in_var.IsType<SelectedRows>()) { // } else if (in_var.IsType<SelectedRows>()) {
// auto& in_selected_rows = in_var.Get<SelectedRows>(); // auto& in_selected_rows = in_var.Get<SelectedRows>();
// auto* trans_selected_rows = out_var.GetMutable<SelectedRows>(); // auto* trans_selected_rows =
// out_var.GetMutable<SelectedRows>();
// trans_selected_rows->set_height(in_selected_rows.height()); // trans_selected_rows->set_height(in_selected_rows.height());
// trans_selected_rows->set_rows(in_selected_rows.rows()); // trans_selected_rows->set_rows(in_selected_rows.rows());
// trans_selected_rows->mutable_value()->ShareDataWith(tensor); // trans_selected_rows->mutable_value()->ShareDataWith(tensor);
// } else { // } else {
// PADDLE_THROW("unknown var type"); // PADDLE_THROW("unknown var type");
// } // }
} }
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -28,14 +28,14 @@ SOFTWARE. ...@@ -28,14 +28,14 @@ SOFTWARE.
#include "variable.h" #include "variable.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
void DataTransform(const OpKernelType &expected_kernel_type, void DataTransform(const OpKernelType &expected_kernel_type,
const OpKernelType &kernel_type_for_var, const OpKernelType &kernel_type_for_var,
const Tensor &input_tensor, Tensor *out); const Tensor &input_tensor, Tensor *out);
void CopyVariableWithTensor(const Variable &in_var, const Tensor &tensor, void CopyVariableWithTensor(const Variable &in_var,
Variable &out_var); const Tensor &tensor, Variable &out_var);
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -21,23 +21,23 @@ SOFTWARE. ...@@ -21,23 +21,23 @@ SOFTWARE.
#include "framework.pb.h" #include "framework.pb.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
// inline proto::VarType::Type ToDataType(std::type_index type) { // inline proto::VarType::Type ToDataType(std::type_index type) {
// using namespace paddle_mobile::framework::proto; // using namespace paddle_mobile::framework::proto;
// if (typeid(float).hash_code() == type.hash_code()) { // if (typeid(float).hash_code() == type.hash_code()) {
// return proto::VarType::FP32; // return proto::VarType::FP32;
// } else if (typeid(double).hash_code() == type.hash_code()) { // } else if (typeid(double).hash_code() == type.hash_code()) {
// return proto::VarType::FP64; // return proto::VarType::FP64;
// } else if (typeid(int).hash_code() == type.hash_code()) { // } else if (typeid(int).hash_code() == type.hash_code()) {
// return proto::VarType::INT32; // return proto::VarType::INT32;
// } else if (typeid(int64_t).hash_code() == type.hash_code()) { // } else if (typeid(int64_t).hash_code() == type.hash_code()) {
// return proto::VarType::INT64; // return proto::VarType::INT64;
// } else if (typeid(bool).hash_code() == type.hash_code()) { // } else if (typeid(bool).hash_code() == type.hash_code()) {
// return proto::VarType::BOOL; // return proto::VarType::BOOL;
// } else { // } else {
//// PADDLE_THROW("Not supported"); //// PADDLE_THROW("Not supported");
// } // }
// } // }
} }
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -15,17 +15,17 @@ limitations under the License. */ ...@@ -15,17 +15,17 @@ limitations under the License. */
#include "ddim.h" #include "ddim.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
/// @cond HIDDEN /// @cond HIDDEN
template <int i> Dim<i> make_dim(const int64_t *d) { template <int i> Dim<i> make_dim(const int64_t *d) {
return Dim<i>(*d, make_dim<i - 1>(d + 1)); return Dim<i>(*d, make_dim<i - 1>(d + 1));
} }
template <> Dim<0> make_dim<0>(const int64_t *d) { return Dim<0>(*d); } template <> Dim<0> make_dim<0>(const int64_t *d) { return Dim<0>(*d); }
void make_ddim(DDim &ddim, const int64_t *dims, int n) { void make_ddim(DDim &ddim, const int64_t *dims, int n) {
switch (n) { switch (n) {
case 0: case 0:
ddim = make_dim<0>(dims); ddim = make_dim<0>(dims);
...@@ -58,70 +58,74 @@ void make_ddim(DDim &ddim, const int64_t *dims, int n) { ...@@ -58,70 +58,74 @@ void make_ddim(DDim &ddim, const int64_t *dims, int n) {
ddim = make_dim<9>(dims); ddim = make_dim<9>(dims);
break; break;
default: default:
// std::cout << "Dynamic dimensions must have between [1, 9] // std::cout << "Dynamic dimensions must have between [1,
// 9]
// dimensions."; // dimensions.";
break; break;
} }
} }
/// @endcond /// @endcond
DDim make_ddim(std::initializer_list<int64_t> dims) { DDim make_ddim(std::initializer_list<int64_t> dims) {
DDim result(make_dim(0)); DDim result(make_dim(0));
make_ddim(result, dims.begin(), dims.size()); make_ddim(result, dims.begin(), dims.size());
return result; return result;
} }
DDim make_ddim(const std::vector<int64_t> &dims) { DDim make_ddim(const std::vector<int64_t> &dims) {
DDim result(make_dim(0)); DDim result(make_dim(0));
make_ddim(result, &dims[0], dims.size()); make_ddim(result, &dims[0], dims.size());
return result; return result;
} }
DDim make_ddim(const std::vector<int> &dims) { DDim make_ddim(const std::vector<int> &dims) {
std::vector<int64_t> res(dims.size()); std::vector<int64_t> res(dims.size());
std::transform(dims.begin(), dims.end(), res.begin(), std::transform(dims.begin(), dims.end(), res.begin(),
[](int d) { return static_cast<int64_t>(d); }); [](int d) { return static_cast<int64_t>(d); });
return make_ddim(res); return make_ddim(res);
} }
/// @cond HIDDEN /// @cond HIDDEN
// XXX For some reason, putting this in an anonymous namespace causes errors // XXX For some reason, putting this in an anonymous namespace causes
struct DynamicMutableIndexer : Vistor<int64_t &> { // errors
public: struct DynamicMutableIndexer : Vistor<int64_t &> {
public:
explicit DynamicMutableIndexer(int idx) : idx_(idx) {} explicit DynamicMutableIndexer(int idx) : idx_(idx) {}
template <int D> int64_t &operator()(Dim<D> &dim) const { return dim[idx_]; } template <int D> int64_t &operator()(Dim<D> &dim) const {
return dim[idx_];
}
private: private:
int idx_; int idx_;
}; };
struct DynamicConstIndexer : public Vistor<int64_t> { struct DynamicConstIndexer : public Vistor<int64_t> {
public: public:
explicit DynamicConstIndexer(int idx) : idx_(idx) {} explicit DynamicConstIndexer(int idx) : idx_(idx) {}
template <int D> int64_t operator()(const Dim<D> &dim) const { template <int D> int64_t operator()(const Dim<D> &dim) const {
return dim[idx_]; return dim[idx_];
} }
private: private:
int idx_; int idx_;
}; };
/// @endcond /// @endcond
int64_t &DDim::operator[](int idx) { int64_t &DDim::operator[](int idx) {
return DDim::ApplyVistor(DynamicMutableIndexer(idx), *this); return DDim::ApplyVistor(DynamicMutableIndexer(idx), *this);
} }
int64_t DDim::operator[](int idx) const { int64_t DDim::operator[](int idx) const {
return DDim::ApplyVistor(DynamicConstIndexer(idx), *this); return DDim::ApplyVistor(DynamicConstIndexer(idx), *this);
} }
int DDim::size() const { return arity(*this); } int DDim::size() const { return arity(*this); }
bool DDim::operator==(DDim d) const { bool DDim::operator==(DDim d) const {
// if (var.which() != d.getVar().which()) { // if (var.which() != d.getVar().which()) {
// return false; // return false;
// } else { // } else {
...@@ -136,11 +140,11 @@ bool DDim::operator==(DDim d) const { ...@@ -136,11 +140,11 @@ bool DDim::operator==(DDim d) const {
return true; return true;
// } // }
} }
bool DDim::operator!=(DDim d) const { return !(*this == d); } bool DDim::operator!=(DDim d) const { return !(*this == d); }
DDim DDim::operator+(DDim d) const { DDim DDim::operator+(DDim d) const {
std::vector<int64_t> v1 = vectorize(*this); std::vector<int64_t> v1 = vectorize(*this);
std::vector<int64_t> v2 = vectorize(d); std::vector<int64_t> v2 = vectorize(d);
...@@ -153,9 +157,9 @@ DDim DDim::operator+(DDim d) const { ...@@ -153,9 +157,9 @@ DDim DDim::operator+(DDim d) const {
} }
return make_ddim(v3); return make_ddim(v3);
} }
DDim DDim::operator*(DDim d) const { DDim DDim::operator*(DDim d) const {
std::vector<int64_t> v1 = vectorize(*this); std::vector<int64_t> v1 = vectorize(*this);
std::vector<int64_t> v2 = vectorize(d); std::vector<int64_t> v2 = vectorize(d);
...@@ -168,14 +172,14 @@ DDim DDim::operator*(DDim d) const { ...@@ -168,14 +172,14 @@ DDim DDim::operator*(DDim d) const {
} }
return make_ddim(v3); return make_ddim(v3);
} }
int64_t get(const DDim &ddim, int idx) { return ddim[idx]; } int64_t get(const DDim &ddim, int idx) { return ddim[idx]; }
void set(DDim &ddim, int idx, int value) { ddim[idx] = value; } void set(DDim &ddim, int idx, int value) { ddim[idx] = value; }
/// @cond HIDDEN /// @cond HIDDEN
struct VectorizeVisitor : Vistor<void> { struct VectorizeVisitor : Vistor<void> {
std::vector<int64_t> &vector; std::vector<int64_t> &vector;
explicit VectorizeVisitor(std::vector<int64_t> &v) : vector(v) {} explicit VectorizeVisitor(std::vector<int64_t> &v) : vector(v) {}
...@@ -186,36 +190,36 @@ struct VectorizeVisitor : Vistor<void> { ...@@ -186,36 +190,36 @@ struct VectorizeVisitor : Vistor<void> {
} }
void operator()(const Dim<0> &t) {} void operator()(const Dim<0> &t) {}
}; };
/// @endcond /// @endcond
std::vector<int64_t> vectorize(const DDim &ddim) { std::vector<int64_t> vectorize(const DDim &ddim) {
std::vector<int64_t> result; std::vector<int64_t> result;
VectorizeVisitor visitor(result); VectorizeVisitor visitor(result);
DDim::ApplyVistor(visitor, ddim); DDim::ApplyVistor(visitor, ddim);
return result; return result;
} }
// NOTE: framework::vectorize converts to type int64_t // NOTE: framework::vectorize converts to type int64_t
// which does not fit cudnn inputs. // which does not fit cudnn inputs.
std::vector<int> vectorize2int(const DDim &ddim) { std::vector<int> vectorize2int(const DDim &ddim) {
std::vector<int64_t> temp = vectorize(ddim); std::vector<int64_t> temp = vectorize(ddim);
std::vector<int> result(temp.begin(), temp.end()); std::vector<int> result(temp.begin(), temp.end());
return result; return result;
} }
struct ProductVisitor : Vistor<int64_t> { struct ProductVisitor : Vistor<int64_t> {
template <int D> int64_t operator()(const Dim<D> &dim) { template <int D> int64_t operator()(const Dim<D> &dim) {
return product(dim); return product(dim);
} }
}; };
int64_t product(const DDim &ddim) { int64_t product(const DDim &ddim) {
ProductVisitor visitor; ProductVisitor visitor;
return DDim::ApplyVistor(visitor, ddim); return DDim::ApplyVistor(visitor, ddim);
} }
struct SliceVectorizeVisitor : Vistor<void> { struct SliceVectorizeVisitor : Vistor<void> {
std::vector<int64_t> &vector; std::vector<int64_t> &vector;
int begin; int begin;
int end; int end;
...@@ -223,10 +227,12 @@ struct SliceVectorizeVisitor : Vistor<void> { ...@@ -223,10 +227,12 @@ struct SliceVectorizeVisitor : Vistor<void> {
SliceVectorizeVisitor(std::vector<int64_t> &v, int b, int e) SliceVectorizeVisitor(std::vector<int64_t> &v, int b, int e)
: vector(v), begin(b), end(e) { : vector(v), begin(b), end(e) {
// PADDLE_ENFORCE(begin < end, // PADDLE_ENFORCE(begin < end,
// "Begin index must be less than end index in ddim // "Begin index must be less than end index in
// ddim
// slice."); // slice.");
// PADDLE_ENFORCE(begin >= 0, // PADDLE_ENFORCE(begin >= 0,
// "Begin index can't be less than zero in ddim slice."); // "Begin index can't be less than zero in
// ddim slice.");
} }
template <int S> void operator()(const Dim<S> &dim) { template <int S> void operator()(const Dim<S> &dim) {
...@@ -242,11 +248,12 @@ struct SliceVectorizeVisitor : Vistor<void> { ...@@ -242,11 +248,12 @@ struct SliceVectorizeVisitor : Vistor<void> {
} }
void operator()(const Dim<0> &dim) { void operator()(const Dim<0> &dim) {
// PADDLE_ENFORCE(end == 0, "End index in ddim slice is out of bound."); // PADDLE_ENFORCE(end == 0, "End index in ddim slice is out
// of bound.");
} }
}; };
DDim slice_ddim(const DDim &ddim, int begin, int end) { DDim slice_ddim(const DDim &ddim, int begin, int end) {
std::vector<int64_t> vec; std::vector<int64_t> vec;
vec.reserve(end - begin); vec.reserve(end - begin);
SliceVectorizeVisitor visitor(vec, begin, end); SliceVectorizeVisitor visitor(vec, begin, end);
...@@ -254,72 +261,74 @@ DDim slice_ddim(const DDim &ddim, int begin, int end) { ...@@ -254,72 +261,74 @@ DDim slice_ddim(const DDim &ddim, int begin, int end) {
DDim::ApplyVistor(visitor, ddim); DDim::ApplyVistor(visitor, ddim);
// visitor(ddim.var.Get<Dim<4>>()); // visitor(ddim.var.Get<Dim<4>>());
return make_ddim(vec); return make_ddim(vec);
} }
/// \cond HIDDEN /// \cond HIDDEN
struct ArityVisitor : Vistor<int> { struct ArityVisitor : Vistor<int> {
template <int D> int operator()(Dim<D>) const { return D; } template <int D> int operator()(Dim<D>) const { return D; }
}; };
/// \endcond /// \endcond
int arity(const DDim &d) { int arity(const DDim &d) {
ArityVisitor arityVisitor = ArityVisitor(); ArityVisitor arityVisitor = ArityVisitor();
return DDim::ApplyVistor(arityVisitor, d); return DDim::ApplyVistor(arityVisitor, d);
// return arityVisitor(d.var.Get<Dim<4>>()); // return arityVisitor(d.var.Get<Dim<4>>());
// return boost::apply_visitor(ArityVisitor(), d); } // return boost::apply_visitor(ArityVisitor(), d); }
} }
/// \cond HIDDEN /// \cond HIDDEN
/// \endcond /// \endcond
struct OSVistor : Vistor<std::ostream &> { struct OSVistor : Vistor<std::ostream &> {
OSVistor(std::ostream &os) : os_(os) {} OSVistor(std::ostream &os) : os_(os) {}
template <int D> std::ostream &operator()(Dim<D> dim) const { template <int D> std::ostream &operator()(Dim<D> dim) const {
return os_ << dim; return os_ << dim;
} }
private: private:
std::ostream &os_; std::ostream &os_;
}; };
std::ostream &operator<<(std::ostream &os, const DDim &ddim) { std::ostream &operator<<(std::ostream &os, const DDim &ddim) {
auto vistor = OSVistor(os); auto vistor = OSVistor(os);
DDim::ApplyVistor(vistor, ddim); DDim::ApplyVistor(vistor, ddim);
return os; return os;
} }
DDim::DDim(std::initializer_list<int64_t> init_list) { DDim::DDim(std::initializer_list<int64_t> init_list) {
*this = make_ddim(init_list); *this = make_ddim(init_list);
} }
DDim flatten_to_2d(const DDim &src, int num_col_dims) { DDim flatten_to_2d(const DDim &src, int num_col_dims) {
int rank = src.size(); int rank = src.size();
return make_ddim({product(slice_ddim(src, 0, num_col_dims)), return make_ddim({product(slice_ddim(src, 0, num_col_dims)),
product(slice_ddim(src, num_col_dims, rank))}); product(slice_ddim(src, num_col_dims, rank))});
} }
DDim flatten_to_1d(const DDim &src) { return make_ddim({product(src)}); } DDim flatten_to_1d(const DDim &src) {
return make_ddim({product(src)});
}
DDim stride(const DDim &ddim) { DDim stride(const DDim &ddim) {
std::vector<int64_t> strides(ddim.size()); std::vector<int64_t> strides(ddim.size());
strides[ddim.size() - 1] = 1; strides[ddim.size() - 1] = 1;
for (int i = ddim.size() - 2; i >= 0; --i) { for (int i = ddim.size() - 2; i >= 0; --i) {
strides[i] = strides[i + 1] * ddim[i + 1]; strides[i] = strides[i + 1] * ddim[i + 1];
} }
return framework::make_ddim(strides); return framework::make_ddim(strides);
} }
DDim stride_numel(const framework::DDim &ddim) { DDim stride_numel(const framework::DDim &ddim) {
std::vector<int64_t> strides(ddim.size()); std::vector<int64_t> strides(ddim.size());
strides[ddim.size() - 1] = ddim[ddim.size() - 1]; strides[ddim.size() - 1] = ddim[ddim.size() - 1];
for (int i = ddim.size() - 2; i >= 0; --i) { for (int i = ddim.size() - 2; i >= 0; --i) {
strides[i] = strides[i + 1] * ddim[i]; strides[i] = strides[i + 1] * ddim[i];
} }
return framework::make_ddim(strides); return framework::make_ddim(strides);
} }
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -22,21 +22,22 @@ limitations under the License. */ ...@@ -22,21 +22,22 @@ limitations under the License. */
#include <vector> #include <vector>
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
/** /**
* \brief A dynamically sized dimension. * \brief A dynamically sized dimension.
* *
* The number of dimensions must be between [1, 9]. * The number of dimensions must be between [1, 9].
*/ */
struct DDim { struct DDim {
typedef Variant<Dim<0>, Dim<1>, Dim<2>, Dim<3>, Dim<4>, Dim<5>, Dim<6>, typedef Variant<Dim<0>, Dim<1>, Dim<2>, Dim<3>, Dim<4>, Dim<5>,
Dim<7>, Dim<8>, Dim<9>> Dim<6>, Dim<7>, Dim<8>, Dim<9>>
DDimVar; DDimVar;
DDimVar var; DDimVar var;
template <typename Vistor> template <typename Vistor>
static typename Vistor::type_t ApplyVistor(Vistor vistor, const DDim &d) { static typename Vistor::type_t ApplyVistor(Vistor vistor,
const DDim &d) {
if (d.var.TypeId() == typeid(Dim<0>).hash_code()) { if (d.var.TypeId() == typeid(Dim<0>).hash_code()) {
return vistor(d.var.Get<Dim<0>>()); return vistor(d.var.Get<Dim<0>>());
} else if (d.var.TypeId() == typeid(Dim<1>).hash_code()) { } else if (d.var.TypeId() == typeid(Dim<1>).hash_code()) {
...@@ -66,7 +67,9 @@ struct DDim { ...@@ -66,7 +67,9 @@ struct DDim {
DDim() { var.Set<Dim<1>>(Dim<1>()); } DDim() { var.Set<Dim<1>>(Dim<1>()); }
template <int D> explicit DDim(const Dim<D> &in) { var.Set<Dim<D>>(in); } template <int D> explicit DDim(const Dim<D> &in) {
var.Set<Dim<D>>(in);
}
/*implicit*/ DDim(std::initializer_list<int64_t> init_list); /*implicit*/ DDim(std::initializer_list<int64_t> init_list);
...@@ -85,7 +88,8 @@ struct DDim { ...@@ -85,7 +88,8 @@ struct DDim {
// } // }
// //
// template <typename Visitor> // template <typename Visitor>
// typename Visitor::result_type apply_visitor(Visitor& visitor) const { // typename Visitor::result_type apply_visitor(Visitor& visitor)
// const {
// return var.apply_visitor(visitor); // return var.apply_visitor(visitor);
// } // }
...@@ -100,62 +104,63 @@ struct DDim { ...@@ -100,62 +104,63 @@ struct DDim {
DDim operator*(DDim d) const; DDim operator*(DDim d) const;
int size() const; int size() const;
}; };
/** /**
* \brief Make a DDim from std::vector<int64_t> * \brief Make a DDim from std::vector<int64_t>
* *
* \param dims An vector of ints. Must be sized between [1, 9] * \param dims An vector of ints. Must be sized between [1, 9]
*/ */
DDim make_ddim(const std::vector<int64_t> &dims); DDim make_ddim(const std::vector<int64_t> &dims);
DDim make_ddim(const std::vector<int> &dims); DDim make_ddim(const std::vector<int> &dims);
/** /**
* \brief Make a DDim from an initializer list * \brief Make a DDim from an initializer list
* *
* \param dims An initializer list of ints. Must be sized between [1, 9] * \param dims An initializer list of ints. Must be sized between [1, 9]
* *
*/ */
DDim make_ddim(std::initializer_list<int64_t> dims); DDim make_ddim(std::initializer_list<int64_t> dims);
int64_t get(const DDim &dim, int idx); int64_t get(const DDim &dim, int idx);
void set(DDim &dim, int idx, int val); void set(DDim &dim, int idx, int val);
std::vector<int64_t> vectorize(const DDim &ddim); std::vector<int64_t> vectorize(const DDim &ddim);
std::vector<int> vectorize2int(const DDim &ddim); std::vector<int> vectorize2int(const DDim &ddim);
int64_t product(const DDim &ddim); int64_t product(const DDim &ddim);
/** /**
* \brief Slice a ddim * \brief Slice a ddim
* *
* Slice dim with [begin, end). * Slice dim with [begin, end).
* e.g. DDim d = make_ddim({1,2,3,4,5}); * e.g. DDim d = make_ddim({1,2,3,4,5});
* slice_ddim(d, 1, 3); ====> {2,3} * slice_ddim(d, 1, 3); ====> {2,3}
*/ */
DDim slice_ddim(const DDim &dim, int begin, int end); DDim slice_ddim(const DDim &dim, int begin, int end);
/** /**
* \brief What is the length of this dimension? * \brief What is the length of this dimension?
* *
* \param Dynamic dimension to inspect * \param Dynamic dimension to inspect
*/ */
int arity(const DDim &ddim); int arity(const DDim &ddim);
std::ostream &operator<<(std::ostream &, const DDim &); std::ostream &operator<<(std::ostream &, const DDim &);
// Reshape a tensor to a matrix. The matrix's first dimension(column length) // Reshape a tensor to a matrix. The matrix's first dimension(column
// will be the product of tensor's first `num_col_dims` dimensions. // length)
DDim flatten_to_2d(const DDim &src, int num_col_dims); // will be the product of tensor's first `num_col_dims` dimensions.
DDim flatten_to_2d(const DDim &src, int num_col_dims);
DDim flatten_to_1d(const DDim &src); DDim flatten_to_1d(const DDim &src);
DDim stride(const DDim &ddim); DDim stride(const DDim &ddim);
DDim stride_numel(const DDim &ddim); DDim stride_numel(const DDim &ddim);
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -21,25 +21,29 @@ ...@@ -21,25 +21,29 @@
#include "platform/hostdevice.h" #include "platform/hostdevice.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
// Statically sized, statically indexed dimension // Statically sized, statically indexed dimension
template <int i> struct Dim { template <int i> struct Dim {
static constexpr int dimensions = i; static constexpr int dimensions = i;
template <typename... Args> template <typename... Args>
HOSTDEVICE Dim(int64_t _head, Args... _tail) : head(_head), tail(_tail...) { HOSTDEVICE Dim(int64_t _head, Args... _tail)
static_assert(sizeof...(_tail) == i - 1, : head(_head), tail(_tail...) {
static_assert(
sizeof...(_tail) == i - 1,
"Dim initialized with the wrong number of parameters"); "Dim initialized with the wrong number of parameters");
} }
HOSTDEVICE HOSTDEVICE
Dim(int64_t _head, const Dim<i - 1> &_tail) : head(_head), tail(_tail) {} Dim(int64_t _head, const Dim<i - 1> &_tail)
: head(_head), tail(_tail) {}
HOSTDEVICE HOSTDEVICE
Dim() : head(0), tail() {} Dim() : head(0), tail() {}
/** Construct a Dim from a linear index and size. Uses Fortran order /** Construct a Dim from a linear index and size. Uses Fortran
* order
* indexing. */ * indexing. */
HOSTDEVICE HOSTDEVICE
Dim(int64_t idx, const Dim<i> &size) Dim(int64_t idx, const Dim<i> &size)
...@@ -66,10 +70,10 @@ template <int i> struct Dim { ...@@ -66,10 +70,10 @@ template <int i> struct Dim {
int64_t head; int64_t head;
Dim<i - 1> tail; Dim<i - 1> tail;
}; };
// Base case specialization // Base case specialization
template <> struct Dim<0> { template <> struct Dim<0> {
static constexpr int dimensions = 0; static constexpr int dimensions = 0;
HOSTDEVICE HOSTDEVICE
...@@ -99,36 +103,41 @@ template <> struct Dim<0> { ...@@ -99,36 +103,41 @@ template <> struct Dim<0> {
int64_t &operator[](int idx); int64_t &operator[](int idx);
HOSTDEVICE HOSTDEVICE
int64_t operator[](int idx) const; int64_t operator[](int idx) const;
}; };
namespace { namespace {
// Helper for accessing Dim classes // Helper for accessing Dim classes
template <int i> struct DimGetter { template <int i> struct DimGetter {
// Return a copy if Dim is const // Return a copy if Dim is const
template <typename D> HOSTDEVICE static int64_t impl(const D &d) { template <typename D>
HOSTDEVICE static int64_t impl(const D &d) {
return DimGetter<i - 1>::impl(d.tail); return DimGetter<i - 1>::impl(d.tail);
} }
// Return a reference if Dim is mutable // Return a reference if Dim is mutable
template <typename D> HOSTDEVICE static int64_t &impl(D &d) { template <typename D> HOSTDEVICE static int64_t &impl(D &d) {
return DimGetter<i - 1>::impl(d.tail); return DimGetter<i - 1>::impl(d.tail);
} }
}; };
// Eureka! We found the element! // Eureka! We found the element!
template <> struct DimGetter<0> { template <> struct DimGetter<0> {
// Return a copy if Dim is const // Return a copy if Dim is const
template <typename D> HOSTDEVICE static int64_t impl(const D &d) { template <typename D>
HOSTDEVICE static int64_t impl(const D &d) {
return d.head; return d.head;
} }
// Return a reference if Dim is mutable // Return a reference if Dim is mutable
template <typename D> HOSTDEVICE static int64_t &impl(D &d) { return d.head; } template <typename D> HOSTDEVICE static int64_t &impl(D &d) {
}; return d.head;
}
};
template <int D> HOSTDEVICE int64_t &indexer(Dim<D> &dim, int idx) { template <int D> HOSTDEVICE int64_t &indexer(Dim<D> &dim, int idx) {
#ifndef __CUDA_ARCH__ #ifndef __CUDA_ARCH__
if (idx < 0) { if (idx < 0) {
throw std::invalid_argument("Tried to access a negative dimension"); throw std::invalid_argument(
"Tried to access a negative dimension");
} }
#else #else
PADDLE_ASSERT(idx >= 0); PADDLE_ASSERT(idx >= 0);
...@@ -137,9 +146,9 @@ template <int D> HOSTDEVICE int64_t &indexer(Dim<D> &dim, int idx) { ...@@ -137,9 +146,9 @@ template <int D> HOSTDEVICE int64_t &indexer(Dim<D> &dim, int idx) {
return dim.head; return dim.head;
} }
return indexer(dim.tail, idx - 1); return indexer(dim.tail, idx - 1);
} }
template <> HOSTDEVICE int64_t &indexer<0>(Dim<0> &dim, int idx) { template <> HOSTDEVICE int64_t &indexer<0>(Dim<0> &dim, int idx) {
#ifndef __CUDA_ARCH__ #ifndef __CUDA_ARCH__
throw std::invalid_argument("Invalid index"); throw std::invalid_argument("Invalid index");
#else #else
...@@ -153,12 +162,14 @@ template <> HOSTDEVICE int64_t &indexer<0>(Dim<0> &dim, int idx) { ...@@ -153,12 +162,14 @@ template <> HOSTDEVICE int64_t &indexer<0>(Dim<0> &dim, int idx) {
#endif #endif
return head; return head;
#endif #endif
} }
template <int D> HOSTDEVICE int64_t indexer(const Dim<D> &dim, int idx) { template <int D>
HOSTDEVICE int64_t indexer(const Dim<D> &dim, int idx) {
#ifndef __CUDA_ARCH__ #ifndef __CUDA_ARCH__
if (idx < 0) { if (idx < 0) {
throw std::invalid_argument("Tried to access a negative dimension"); throw std::invalid_argument(
"Tried to access a negative dimension");
} }
#else #else
PADDLE_ASSERT(idx >= 0); PADDLE_ASSERT(idx >= 0);
...@@ -167,9 +178,10 @@ template <int D> HOSTDEVICE int64_t indexer(const Dim<D> &dim, int idx) { ...@@ -167,9 +178,10 @@ template <int D> HOSTDEVICE int64_t indexer(const Dim<D> &dim, int idx) {
return dim.head; return dim.head;
} }
return indexer(dim.tail, idx - 1); return indexer(dim.tail, idx - 1);
} }
template <> HOSTDEVICE int64_t indexer<0>(const Dim<0> &dim, int idx) { template <>
HOSTDEVICE int64_t indexer<0>(const Dim<0> &dim, int idx) {
#ifndef __CUDA_ARCH__ #ifndef __CUDA_ARCH__
throw std::invalid_argument("Invalid index"); throw std::invalid_argument("Invalid index");
#else #else
...@@ -183,146 +195,152 @@ template <> HOSTDEVICE int64_t indexer<0>(const Dim<0> &dim, int idx) { ...@@ -183,146 +195,152 @@ template <> HOSTDEVICE int64_t indexer<0>(const Dim<0> &dim, int idx) {
#endif #endif
return head; return head;
#endif #endif
} }
} // namespace } // namespace
// Static access to constant Dim // Static access to constant Dim
template <int i, int l> HOSTDEVICE int64_t get(const Dim<l> &d) { template <int i, int l> HOSTDEVICE int64_t get(const Dim<l> &d) {
return DimGetter<i>::impl(d); return DimGetter<i>::impl(d);
} }
// Static access to mutable Dim // Static access to mutable Dim
template <int i, int l> HOSTDEVICE int64_t &get(Dim<l> &d) { template <int i, int l> HOSTDEVICE int64_t &get(Dim<l> &d) {
return DimGetter<i>::impl(d); return DimGetter<i>::impl(d);
} }
// Dynamic access to constant Dim // Dynamic access to constant Dim
template <int l> HOSTDEVICE int64_t Dim<l>::operator[](int i) const { template <int l> HOSTDEVICE int64_t Dim<l>::operator[](int i) const {
// std::cout << "l: " << l << std::endl; // std::cout << "l: " << l << std::endl;
return indexer(*this, i); return indexer(*this, i);
} }
// Dynamic access to mutable Dim // Dynamic access to mutable Dim
template <int l> HOSTDEVICE int64_t &Dim<l>::operator[](int i) { template <int l> HOSTDEVICE int64_t &Dim<l>::operator[](int i) {
return indexer(*this, i); return indexer(*this, i);
} }
// Dynamic access to constant Dim // Dynamic access to constant Dim
inline HOSTDEVICE int64_t Dim<0>::operator[](int i) const { inline HOSTDEVICE int64_t Dim<0>::operator[](int i) const {
return indexer(*this, i); return indexer(*this, i);
} }
// Dynamic access to mutable Dim // Dynamic access to mutable Dim
inline HOSTDEVICE int64_t &Dim<0>::operator[](int i) { inline HOSTDEVICE int64_t &Dim<0>::operator[](int i) {
return indexer(*this, i); return indexer(*this, i);
} }
// Dynamic access to constant Dim // Dynamic access to constant Dim
// without std::enable_if will try to instantiate this on get<0>(d) // without std::enable_if will try to instantiate this on get<0>(d)
template <int l> template <int l>
HOSTDEVICE typename std::enable_if<(l > 0), int64_t>::type get(const Dim<l> &d, HOSTDEVICE typename std::enable_if<(l > 0), int64_t>::type
int i) { get(const Dim<l> &d, int i) {
return d[i]; return d[i];
} }
// Dynamic access to mutable Dim // Dynamic access to mutable Dim
template <int l> template <int l>
HOSTDEVICE typename std::enable_if<(l > 0), int64_t &>::type get(Dim<l> &d, HOSTDEVICE typename std::enable_if<(l > 0), int64_t &>::type
int i) { get(Dim<l> &d, int i) {
return d[i]; return d[i];
} }
// Dot product of two dims // Dot product of two dims
template <int i> template <int i>
HOSTDEVICE int64_t linearize(const Dim<i> &a, const Dim<i> &b) { HOSTDEVICE int64_t linearize(const Dim<i> &a, const Dim<i> &b) {
return a.head * b.head + linearize(a.tail, b.tail); return a.head * b.head + linearize(a.tail, b.tail);
} }
// Base case dot product of two Dims // Base case dot product of two Dims
// Notice it is inline because it is no longer a template // Notice it is inline because it is no longer a template
template <> template <>
HOSTDEVICE inline int64_t linearize(const Dim<0> &a, const Dim<0> &b) { HOSTDEVICE inline int64_t linearize(const Dim<0> &a, const Dim<0> &b) {
return 0; return 0;
} }
// Product of a Dim // Product of a Dim
template <int i> HOSTDEVICE int64_t product(const Dim<i> &a, int prod = 1) { template <int i>
HOSTDEVICE int64_t product(const Dim<i> &a, int prod = 1) {
return prod * a.head * product(a.tail); return prod * a.head * product(a.tail);
} }
// Base case product of a Dim // Base case product of a Dim
// Notice it is inline because it is no longer a template // Notice it is inline because it is no longer a template
template <> HOSTDEVICE inline int64_t product(const Dim<0> &a, int prod) { template <>
HOSTDEVICE inline int64_t product(const Dim<0> &a, int prod) {
return prod; return prod;
} }
// Is 0 <= idx_i < size_i for all i? // Is 0 <= idx_i < size_i for all i?
template <int i> template <int i>
HOSTDEVICE bool contained(const Dim<i> &idx, const Dim<i> &size) { HOSTDEVICE bool contained(const Dim<i> &idx, const Dim<i> &size) {
return ((0 <= idx.head) && (idx.head < size.head) && return ((0 <= idx.head) && (idx.head < size.head) &&
contained(idx.tail, size.tail)); contained(idx.tail, size.tail));
} }
// Base case of is 0 <= idx_i < size_i ? // Base case of is 0 <= idx_i < size_i ?
// Notice it is inline because it is no longer a template // Notice it is inline because it is no longer a template
template <> template <>
HOSTDEVICE inline bool contained(const Dim<0> &idx, const Dim<0> &size) { HOSTDEVICE inline bool contained(const Dim<0> &idx,
const Dim<0> &size) {
return true; return true;
} }
/** /**
* \brief Compute exclusive prefix-multiply of a Dim. * \brief Compute exclusive prefix-multiply of a Dim.
*/ */
template <int i> template <int i>
HOSTDEVICE Dim<i> ex_prefix_mul(const Dim<i> &src, int mul = 1) { HOSTDEVICE Dim<i> ex_prefix_mul(const Dim<i> &src, int mul = 1) {
return Dim<i>(mul, ex_prefix_mul(src.tail, mul * src.head)); return Dim<i>(mul, ex_prefix_mul(src.tail, mul * src.head));
} }
///\cond HIDDEN ///\cond HIDDEN
// Base case of ex_prefix_mul // Base case of ex_prefix_mul
// Notice it is inline because it is no longer a template // Notice it is inline because it is no longer a template
template <> HOSTDEVICE inline Dim<0> ex_prefix_mul(const Dim<0> &src, int mul) { template <>
HOSTDEVICE inline Dim<0> ex_prefix_mul(const Dim<0> &src, int mul) {
return Dim<0>(); return Dim<0>();
} }
///\endcond ///\endcond
/** /**
* Add two dimensions together * Add two dimensions together
*/ */
template <int i> HOSTDEVICE Dim<i> dim_plus(const Dim<i> &a, const Dim<i> &b) { template <int i>
HOSTDEVICE Dim<i> dim_plus(const Dim<i> &a, const Dim<i> &b) {
return Dim<i>(a.head + b.head, dim_plus(a.tail, b.tail)); return Dim<i>(a.head + b.head, dim_plus(a.tail, b.tail));
} }
// Base case // Base case
template <> template <>
HOSTDEVICE inline Dim<0> dim_plus(const Dim<0> &a, const Dim<0> &b) { HOSTDEVICE inline Dim<0> dim_plus(const Dim<0> &a, const Dim<0> &b) {
return Dim<0>(); return Dim<0>();
} }
template <int i> template <int i>
HOSTDEVICE Dim<i> operator+(const Dim<i> &lhs, const Dim<i> &rhs) { HOSTDEVICE Dim<i> operator+(const Dim<i> &lhs, const Dim<i> &rhs) {
return dim_plus(lhs, rhs); return dim_plus(lhs, rhs);
} }
/** /**
* Multiply two dimensions together * Multiply two dimensions together
*/ */
template <int i> HOSTDEVICE Dim<i> dim_mult(const Dim<i> &a, const Dim<i> &b) { template <int i>
HOSTDEVICE Dim<i> dim_mult(const Dim<i> &a, const Dim<i> &b) {
return Dim<i>(a.head * b.head, dim_mult(a.tail, b.tail)); return Dim<i>(a.head * b.head, dim_mult(a.tail, b.tail));
} }
// Base case // Base case
template <> template <>
HOSTDEVICE inline Dim<0> dim_mult(const Dim<0> &a, const Dim<0> &b) { HOSTDEVICE inline Dim<0> dim_mult(const Dim<0> &a, const Dim<0> &b) {
return Dim<0>(); return Dim<0>();
} }
template <int i> template <int i>
HOSTDEVICE Dim<i> operator*(const Dim<i> &lhs, const Dim<i> &rhs) { HOSTDEVICE Dim<i> operator*(const Dim<i> &lhs, const Dim<i> &rhs) {
return dim_mult(lhs, rhs); return dim_mult(lhs, rhs);
} }
/** /**
* \brief Normalize strides to ensure any dimension with extent 1 * \brief Normalize strides to ensure any dimension with extent 1
* has stride 0. * has stride 0.
* *
...@@ -332,66 +350,70 @@ HOSTDEVICE Dim<i> operator*(const Dim<i> &lhs, const Dim<i> &rhs) { ...@@ -332,66 +350,70 @@ HOSTDEVICE Dim<i> operator*(const Dim<i> &lhs, const Dim<i> &rhs) {
* *
*/ */
template <int i> template <int i>
HOSTDEVICE Dim<i> normalize_strides(const Dim<i> &size, const Dim<i> &stride) { HOSTDEVICE Dim<i> normalize_strides(const Dim<i> &size,
const Dim<i> &stride) {
int norm_stride = size.head == 1 ? 0 : stride.head; int norm_stride = size.head == 1 ? 0 : stride.head;
return Dim<i>(norm_stride, normalize_strides(size.tail, stride.tail)); return Dim<i>(norm_stride,
} normalize_strides(size.tail, stride.tail));
}
///\cond HIDDEN ///\cond HIDDEN
template <> template <>
HOSTDEVICE inline Dim<0> normalize_strides(const Dim<0> &size, HOSTDEVICE inline Dim<0> normalize_strides(const Dim<0> &size,
const Dim<0> &stride) { const Dim<0> &stride) {
return Dim<0>(); return Dim<0>();
} }
///\endcond ///\endcond
/** /**
* Helper function to create a Dim * Helper function to create a Dim
* *
* \param idxes The type of Dim constructed depends on the number of params * \param idxes The type of Dim constructed depends on the number of
* params
* *
*/ */
template <typename... Args> template <typename... Args>
HOSTDEVICE Dim<sizeof...(Args)> make_dim(Args... idxes) { HOSTDEVICE Dim<sizeof...(Args)> make_dim(Args... idxes) {
return Dim<sizeof...(Args)>(idxes...); return Dim<sizeof...(Args)>(idxes...);
} }
// Allows us to output a Dim // Allows us to output a Dim
// XXX For some reason, overloading fails to resolve this correctly // XXX For some reason, overloading fails to resolve this correctly
template <int i> template <int i>
typename std::enable_if<(i > 1), std::ostream &>::type typename std::enable_if<(i > 1), std::ostream &>::type
operator<<(std::ostream &os, const Dim<i> &d) { operator<<(std::ostream &os, const Dim<i> &d) {
os << d.head << ", " << d.tail; os << d.head << ", " << d.tail;
return os; return os;
} }
// Base case that allows us to output a Dim // Base case that allows us to output a Dim
// XXX I wish this could be an overload instead of a template // XXX I wish this could be an overload instead of a template
template <int i> template <int i>
typename std::enable_if<(i == 1), std::ostream &>::type typename std::enable_if<(i == 1), std::ostream &>::type
operator<<(std::ostream &os, const Dim<i> &d) { operator<<(std::ostream &os, const Dim<i> &d) {
os << d.head; os << d.head;
return os; return os;
} }
inline std::ostream &operator<<(std::ostream &os, const Dim<0> &d) { inline std::ostream &operator<<(std::ostream &os, const Dim<0> &d) {
return os; return os;
} }
template <int i> HOST std::string Dim<i>::to_string() const { template <int i> HOST std::string Dim<i>::to_string() const {
std::stringstream stream; std::stringstream stream;
stream << *this; stream << *this;
return stream.str(); return stream.str();
} }
template <int D> template <int D>
HOSTDEVICE Dim<D> linear_to_dimension(int linear_index, Dim<D> extents) { HOSTDEVICE Dim<D> linear_to_dimension(int linear_index,
Dim<D> extents) {
Dim<D> result; Dim<D> result;
for (int i = 0; i < D - 1; ++i) { for (int i = 0; i < D - 1; ++i) {
...@@ -402,7 +424,7 @@ HOSTDEVICE Dim<D> linear_to_dimension(int linear_index, Dim<D> extents) { ...@@ -402,7 +424,7 @@ HOSTDEVICE Dim<D> linear_to_dimension(int linear_index, Dim<D> extents) {
result[D - 1] = linear_index; result[D - 1] = linear_index;
return result; return result;
} }
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -23,10 +23,10 @@ SOFTWARE. ...@@ -23,10 +23,10 @@ SOFTWARE.
#include "variable.h" #include "variable.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
template <typename Dtype> template <typename Dtype>
Executor<Dtype>::Executor(const Program<Dtype> p) : program_(p) { Executor<Dtype>::Executor(const Program<Dtype> p) : program_(p) {
if (use_optimize_) { if (use_optimize_) {
to_predict_program_ = program_.optimizeProgram; to_predict_program_ = program_.optimizeProgram;
} else { } else {
...@@ -40,24 +40,25 @@ Executor<Dtype>::Executor(const Program<Dtype> p) : program_(p) { ...@@ -40,24 +40,25 @@ Executor<Dtype>::Executor(const Program<Dtype> p) : program_(p) {
std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops(); std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
for (int j = 0; j < ops.size(); ++j) { for (int j = 0; j < ops.size(); ++j) {
std::shared_ptr<OpDesc> op = ops[j]; std::shared_ptr<OpDesc> op = ops[j];
if (op->Type() == "conv2d" && op->Input("Input")[0] == "pixel") { if (op->Type() == "conv2d" &&
op->Input("Input")[0] == "pixel") {
Attribute strides_attr = op->GetAttrMap().at("strides"); Attribute strides_attr = op->GetAttrMap().at("strides");
std::vector<int> stride = strides_attr.Get<std::vector<int>>(); std::vector<int> stride =
strides_attr.Get<std::vector<int>>();
for (int k = 0; k < stride.size(); ++k) { for (int k = 0; k < stride.size(); ++k) {
} }
std::shared_ptr<operators::ConvOp<Dtype, float>> conv = std::shared_ptr<operators::ConvOp<Dtype, float>> conv =
std::make_shared<operators::ConvOp<Dtype, float>>( std::make_shared<operators::ConvOp<Dtype, float>>(
op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(), op->Type(), op->GetInputs(), op->GetOutputs(),
program_.scope); op->GetAttrMap(), program_.scope);
ops_of_block_[*block_desc.get()].push_back(conv); ops_of_block_[*block_desc.get()].push_back(conv);
} }
} }
} }
} }
template <typename Dtype> template <typename Dtype>
std::shared_ptr<Tensor> Executor<Dtype>::predict(Tensor &t) { std::shared_ptr<Tensor> Executor<Dtype>::predict(Tensor &t) {
// feed // feed
auto scope = program_.scope; auto scope = program_.scope;
Variable *g_feed_value = scope->Var("pixel"); Variable *g_feed_value = scope->Var("pixel");
...@@ -68,27 +69,29 @@ std::shared_ptr<Tensor> Executor<Dtype>::predict(Tensor &t) { ...@@ -68,27 +69,29 @@ std::shared_ptr<Tensor> Executor<Dtype>::predict(Tensor &t) {
Tensor *output_tensor = con_output->GetMutable<Tensor>(); Tensor *output_tensor = con_output->GetMutable<Tensor>();
output_tensor->mutable_data<float>({1, 16, 32, 32}); output_tensor->mutable_data<float>({1, 16, 32, 32});
// std::cout << typeid(output_tensor).name() << std::endl; // std::cout << typeid(output_tensor).name() << std::endl;
// std::cout << "output_tensor dims: " << output_tensor->dims() << std::endl; // std::cout << "output_tensor dims: " << output_tensor->dims() <<
// std::endl;
std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>(); std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
out_tensor.reset(output_tensor); out_tensor.reset(output_tensor);
predict(t, 0); predict(t, 0);
return out_tensor; return out_tensor;
} }
template <typename Dtype> template <typename Dtype>
void Executor<Dtype>::predict(const Tensor &t, int block_id) { void Executor<Dtype>::predict(const Tensor &t, int block_id) {
std::shared_ptr<BlockDesc> to_predict_block = std::shared_ptr<BlockDesc> to_predict_block =
to_predict_program_->Block(block_id); to_predict_program_->Block(block_id);
for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) { for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size();
++j) {
auto op = ops_of_block_[*to_predict_block.get()][j]; auto op = ops_of_block_[*to_predict_block.get()][j];
// std::cout << "开始run" << std::endl; // std::cout << "开始run" << std::endl;
op->Run(); op->Run();
} }
} }
template class Executor<CPU>; template class Executor<CPU>;
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -32,14 +32,14 @@ SOFTWARE. ...@@ -32,14 +32,14 @@ SOFTWARE.
#include "variable.h" #include "variable.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
template <typename Dtype> class Executor { template <typename Dtype> class Executor {
public: public:
Executor(const Program<Dtype> p); Executor(const Program<Dtype> p);
std::shared_ptr<Tensor> predict(Tensor &t); std::shared_ptr<Tensor> predict(Tensor &t);
private: private:
const framework::Program<Dtype> program_; const framework::Program<Dtype> program_;
std::shared_ptr<ProgramDesc> to_predict_program_; std::shared_ptr<ProgramDesc> to_predict_program_;
void predict(const Tensor &t, int block_id); void predict(const Tensor &t, int block_id);
...@@ -47,7 +47,7 @@ private: ...@@ -47,7 +47,7 @@ private:
std::vector<std::shared_ptr<OperatorBase<Dtype>>>> std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
ops_of_block_; ops_of_block_;
bool use_optimize_ = false; bool use_optimize_ = false;
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
此差异已折叠。
此差异已折叠。
...@@ -19,9 +19,9 @@ limitations under the License. */ ...@@ -19,9 +19,9 @@ limitations under the License. */
#include <string.h> #include <string.h>
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
std::ostream &operator<<(std::ostream &os, const LoD &lod) { std::ostream &operator<<(std::ostream &os, const LoD &lod) {
os << "{"; os << "{";
for (auto &v : lod) { for (auto &v : lod) {
os << "{"; os << "{";
...@@ -39,10 +39,11 @@ std::ostream &operator<<(std::ostream &os, const LoD &lod) { ...@@ -39,10 +39,11 @@ std::ostream &operator<<(std::ostream &os, const LoD &lod) {
os << "}"; os << "}";
return os; return os;
} }
std::ostream &operator<<(std::ostream &os, const LoDTensor &t) { std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
// PADDLE_ENFORCE(t.type().hash_code() == typeid(float).hash_code()); // PADDLE_ENFORCE(t.type().hash_code() ==
// typeid(float).hash_code());
// if (!platform::is_cpu_place(t.place())) { // if (!platform::is_cpu_place(t.place())) {
// LoDTensor tt; // LoDTensor tt;
...@@ -65,15 +66,15 @@ std::ostream &operator<<(std::ostream &os, const LoDTensor &t) { ...@@ -65,15 +66,15 @@ std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
} }
return os; return os;
} }
std::string LoDToString(const LoD &lod) { std::string LoDToString(const LoD &lod) {
std::ostringstream stream; std::ostringstream stream;
stream << lod; stream << lod;
return stream.str(); return stream.str();
} }
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin, LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
size_t elem_end) { size_t elem_end) {
// PADDLE_ENFORCE_LT(level, in.size()); // PADDLE_ENFORCE_LT(level, in.size());
// PADDLE_ENFORCE_LT(elem_end, in[level].size()); // PADDLE_ENFORCE_LT(elem_end, in[level].size());
...@@ -91,7 +92,8 @@ LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin, ...@@ -91,7 +92,8 @@ LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
in_level.begin() + above_level.back() + 1); in_level.begin() + above_level.back() + 1);
} }
for (size_t lvl = 0; lvl < res.size(); lvl++) { for (size_t lvl = 0; lvl < res.size(); lvl++) {
// to make the first offset equals 0, all the elements minus the first // to make the first offset equals 0, all the elements minus the
// first
// element // element
size_t front = res[lvl].front(); size_t front = res[lvl].front();
for (auto &ele : res[lvl]) { for (auto &ele : res[lvl]) {
...@@ -99,23 +101,24 @@ LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin, ...@@ -99,23 +101,24 @@ LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
} }
} }
return res; return res;
} }
LoD ToAbsOffset(const LoD &in) { LoD ToAbsOffset(const LoD &in) {
// the lowest level stores relative offsets // the lowest level stores relative offsets
if (in.empty() || in.size() == 1) if (in.empty() || in.size() == 1)
return in; return in;
LoD result = in; LoD result = in;
for (auto level = static_cast<int>(in.size() - 2); level >= 0; level--) { for (auto level = static_cast<int>(in.size() - 2); level >= 0;
level--) {
for (size_t i = 0; i < in[level].size(); ++i) { for (size_t i = 0; i < in[level].size(); ++i) {
size_t index = in[level][i]; size_t index = in[level][i];
result[level][i] = result[level + 1][index]; result[level][i] = result[level + 1][index];
} }
} }
return result; return result;
} }
bool operator==(const LoD &a, const LoD &b) { bool operator==(const LoD &a, const LoD &b) {
if (a.size() != b.size()) { if (a.size() != b.size()) {
return false; return false;
} }
...@@ -133,21 +136,25 @@ bool operator==(const LoD &a, const LoD &b) { ...@@ -133,21 +136,25 @@ bool operator==(const LoD &a, const LoD &b) {
} }
} }
return true; return true;
} }
bool CheckLoD(const LoD &in, int tensor_height) { bool CheckLoD(const LoD &in, int tensor_height) {
if (in.empty()) if (in.empty())
return true; return true;
for (const auto &level : in) { for (const auto &level : in) {
// check: there should be more than 2 offsets existing in each level. // check: there should be more than 2 offsets existing in each
// level.
if (level.size() < 2) if (level.size() < 2)
return false; return false;
// check: the first offset(the begin offset) of each level should be 0. // check: the first offset(the begin offset) of each level
// should be 0.
if (level.front() != 0) if (level.front() != 0)
return false; return false;
// check: all the offsets in a level should be ascending(no same items // check: all the offsets in a level should be ascending(no same
// items
// allows). // allows).
if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) { if (!std::is_sorted(level.begin(), level.begin(),
[](size_t a, size_t b) {
if (a < b) if (a < b)
return true; return true;
return false; return false;
...@@ -156,29 +163,34 @@ bool CheckLoD(const LoD &in, int tensor_height) { ...@@ -156,29 +163,34 @@ bool CheckLoD(const LoD &in, int tensor_height) {
return false; return false;
} }
} }
// check: the lowest level's last offset should equals `tensor_height` if // check: the lowest level's last offset should equals
// `tensor_height` if
// tensor_height>0. // tensor_height>0.
if (tensor_height > 0 && (size_t)tensor_height != in.back().back()) if (tensor_height > 0 && (size_t)tensor_height != in.back().back())
return false; return false;
// check: the higher level's last offset should equals the lower level's // check: the higher level's last offset should equals the lower
// level's
// size-1. // size-1.
// NOTE LoD store the levels from top to bottom, so the higher level goes // NOTE LoD store the levels from top to bottom, so the higher level
// goes
// first. // first.
for (size_t level = 0; level < in.size() - 1; level++) { for (size_t level = 0; level < in.size() - 1; level++) {
if (in[level].back() != in[level + 1].size() - 1) if (in[level].back() != in[level + 1].size() - 1)
return false; return false;
} }
return true; return true;
} }
bool CheckAbsLoD(const LoD &in, int tensor_height) { bool CheckAbsLoD(const LoD &in, int tensor_height) {
if (in.empty()) if (in.empty())
return true; return true;
for (const auto &level : in) { for (const auto &level : in) {
// check: all the offsets in a level should be ascending(no same items // check: all the offsets in a level should be ascending(no same
// items
// allows). // allows).
if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) { if (!std::is_sorted(level.begin(), level.begin(),
[](size_t a, size_t b) {
if (a < b) if (a < b)
return true; return true;
return false; return false;
...@@ -186,11 +198,13 @@ bool CheckAbsLoD(const LoD &in, int tensor_height) { ...@@ -186,11 +198,13 @@ bool CheckAbsLoD(const LoD &in, int tensor_height) {
return false; return false;
} }
// check: there should be more than 2 offsets existing in each level. // check: there should be more than 2 offsets existing in each
// level.
if (level.size() < 2) if (level.size() < 2)
return false; return false;
// check: the first offset of each level should be 0, and the last should be // check: the first offset of each level should be 0, and the
// last should be
// the same(the height of underlying tensor). // the same(the height of underlying tensor).
if (level.front() != 0) if (level.front() != 0)
return false; return false;
...@@ -201,20 +215,24 @@ bool CheckAbsLoD(const LoD &in, int tensor_height) { ...@@ -201,20 +215,24 @@ bool CheckAbsLoD(const LoD &in, int tensor_height) {
} }
} }
return true; return true;
} }
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>; using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx, LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod,
size_t end_idx, size_t start_level) { size_t start_idx,
size_t end_idx,
size_t start_level) {
LoD sub_lod; LoD sub_lod;
for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) { for (size_t level_idx = start_level; level_idx < lod.size();
++level_idx) {
// PADDLE_ENFORCE_LE(start_idx, end_idx); // PADDLE_ENFORCE_LE(start_idx, end_idx);
// PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size()); // PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
std::vector<size_t> level_lens; std::vector<size_t> level_lens;
for (size_t i = start_idx; i < end_idx; ++i) { for (size_t i = start_idx; i < end_idx; ++i) {
level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]); level_lens.push_back(lod[level_idx][i + 1] -
lod[level_idx][i]);
} }
sub_lod.emplace_back(level_lens); sub_lod.emplace_back(level_lens);
start_idx = lod[level_idx][start_idx]; start_idx = lod[level_idx][start_idx];
...@@ -222,12 +240,13 @@ LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx, ...@@ -222,12 +240,13 @@ LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
} }
return LoDAndOffset{sub_lod, {start_idx, end_idx}}; return LoDAndOffset{sub_lod, {start_idx, end_idx}};
} }
void AppendLoD(LoD *lod, const LoD &lod_length) { void AppendLoD(LoD *lod, const LoD &lod_length) {
// PADDLE_ENFORCE( // PADDLE_ENFORCE(
// lod->empty() || lod->size() == lod_length.size(), // lod->empty() || lod->size() == lod_length.size(),
// "The lod_length should has the same size with the appended lod."); // "The lod_length should has the same size with the appended
// lod.");
if (lod->empty()) { if (lod->empty()) {
for (size_t i = 0; i < lod_length.size(); ++i) { for (size_t i = 0; i < lod_length.size(); ++i) {
lod->emplace_back(1, 0); // size = 1, value = 0; lod->emplace_back(1, 0); // size = 1, value = 0;
...@@ -240,12 +259,13 @@ void AppendLoD(LoD *lod, const LoD &lod_length) { ...@@ -240,12 +259,13 @@ void AppendLoD(LoD *lod, const LoD &lod_length) {
level.push_back(level.back() + len); level.push_back(level.back() + len);
} }
} }
} }
void SerializeToStream(std::ostream &os, const LoDTensor &tensor) { void SerializeToStream(std::ostream &os, const LoDTensor &tensor) {
{ // the 1st field, uint32_t version for LoDTensor { // the 1st field, uint32_t version for LoDTensor
constexpr uint32_t version = 0; constexpr uint32_t version = 0;
os.write(reinterpret_cast<const char *>(&version), sizeof(version)); os.write(reinterpret_cast<const char *>(&version),
sizeof(version));
} }
{ {
// the 2st field, LoD information // the 2st field, LoD information
...@@ -258,27 +278,31 @@ void SerializeToStream(std::ostream &os, const LoDTensor &tensor) { ...@@ -258,27 +278,31 @@ void SerializeToStream(std::ostream &os, const LoDTensor &tensor) {
os.write(reinterpret_cast<const char *>(&size), sizeof(size)); os.write(reinterpret_cast<const char *>(&size), sizeof(size));
for (auto &each : lod) { for (auto &each : lod) {
size = each.size() * sizeof(framework::LoD::value_type::value_type); size = each.size() *
os.write(reinterpret_cast<const char *>(&size), sizeof(size)); sizeof(framework::LoD::value_type::value_type);
os.write(reinterpret_cast<const char *>(&size),
sizeof(size));
os.write(reinterpret_cast<const char *>(each.data()), os.write(reinterpret_cast<const char *>(each.data()),
static_cast<std::streamsize>(size)); static_cast<std::streamsize>(size));
} }
} }
// the 3st field, Tensor // the 3st field, Tensor
TensorToStream(os, static_cast<Tensor>(tensor)); TensorToStream(os, static_cast<Tensor>(tensor));
} }
void DeserializeFromStream(std::istream &is, LoDTensor *tensor) { void DeserializeFromStream(std::istream &is, LoDTensor *tensor) {
{ {
// the 1st field, unit32_t version for LoDTensor // the 1st field, unit32_t version for LoDTensor
uint32_t version; uint32_t version;
is.read(reinterpret_cast<char *>(&version), sizeof(version)); is.read(reinterpret_cast<char *>(&version), sizeof(version));
// PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported"); // PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is
// supported");
} }
{ {
// the 2st field, LoD information // the 2st field, LoD information
uint64_t lod_level; uint64_t lod_level;
is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level)); is.read(reinterpret_cast<char *>(&lod_level),
sizeof(lod_level));
auto &lod = *tensor->mutable_lod(); auto &lod = *tensor->mutable_lod();
lod.resize(lod_level); lod.resize(lod_level);
for (uint64_t i = 0; i < lod_level; ++i) { for (uint64_t i = 0; i < lod_level; ++i) {
...@@ -292,7 +316,7 @@ void DeserializeFromStream(std::istream &is, LoDTensor *tensor) { ...@@ -292,7 +316,7 @@ void DeserializeFromStream(std::istream &is, LoDTensor *tensor) {
} }
// the 3st filed, Tensor // the 3st filed, Tensor
TensorFromStream(is, static_cast<Tensor *>(tensor)); TensorFromStream(is, static_cast<Tensor *>(tensor));
} }
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -23,13 +23,15 @@ limitations under the License. */ ...@@ -23,13 +23,15 @@ limitations under the License. */
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
/* /*
* LoD is short for Level of Details. * LoD is short for Level of Details.
* *
* - in a level, each element indicates relative offset of the lower level * - in a level, each element indicates relative offset of the lower
* - the first element should be 0 and that indicates that this sequence start * level
* - the first element should be 0 and that indicates that this sequence
* start
* from 0 * from 0
* - each sequence's begin and end(no-inclusive) is level[id, id+1] * - each sequence's begin and end(no-inclusive) is level[id, id+1]
* *
...@@ -40,25 +42,25 @@ namespace framework { ...@@ -40,25 +42,25 @@ namespace framework {
* 0 2 4 7 * 0 2 4 7
* 0 2 5 7 10 12 15 20 * 0 2 5 7 10 12 15 20
*/ */
using LoD = std::vector<std::vector<size_t>>; using LoD = std::vector<std::vector<size_t>>;
std::ostream &operator<<(std::ostream &os, const LoD &lod); std::ostream &operator<<(std::ostream &os, const LoD &lod);
std::ostream &operator<<(std::ostream &os, const LoDTensor &t); std::ostream &operator<<(std::ostream &os, const LoDTensor &t);
std::string LoDToString(const LoD &lod); std::string LoDToString(const LoD &lod);
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin, LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
size_t elem_end); size_t elem_end);
/* /*
* Transform an LoD from relative offsets to absolute offsets. * Transform an LoD from relative offsets to absolute offsets.
*/ */
LoD ToAbsOffset(const LoD &in); LoD ToAbsOffset(const LoD &in);
bool operator==(const LoD &a, const LoD &b); bool operator==(const LoD &a, const LoD &b);
/* /*
* Check whether this lod's format is valid. * Check whether this lod's format is valid.
* *
* ATTENTION: * ATTENTION:
...@@ -66,37 +68,41 @@ bool operator==(const LoD &a, const LoD &b); ...@@ -66,37 +68,41 @@ bool operator==(const LoD &a, const LoD &b);
* *
* It will check two things: * It will check two things:
* *
* 1. all the offsets in a level should be ascending(no same items allows). * 1. all the offsets in a level should be ascending(no same items
* allows).
* 2. there should be more than 2 offsets existing in each level. * 2. there should be more than 2 offsets existing in each level.
* 3. the higher level's last offset should equals the lower level's size-1. * 3. the higher level's last offset should equals the lower level's
* size-1.
* 4. the first offset(the begin offset) of each level should be 0. * 4. the first offset(the begin offset) of each level should be 0.
* 5. the lowest level's last offset should equals `tensor_height` if * 5. the lowest level's last offset should equals `tensor_height` if
* tensor_height>0. * tensor_height>0.
*/ */
bool CheckLoD(const LoD &in, int tensor_height = -1); bool CheckLoD(const LoD &in, int tensor_height = -1);
/* /*
* Check whether this absolute lod's format is valid. * Check whether this absolute lod's format is valid.
* *
* ATTENTION: * ATTENTION:
* - Empty lod is treated as valid. * - Empty lod is treated as valid.
* *
* It will check two things: * It will check two things:
* 1. all the offsets in a level should be ascending(no same items allows) * 1. all the offsets in a level should be ascending(no same items
* allows)
* 2. there should be more than 2 offsets existing in each level. * 2. there should be more than 2 offsets existing in each level.
* 3. the first offset of each level should be 0, and the last should be the * 3. the first offset of each level should be 0, and the last should
* be the
* same(the height of underlying tensor) or `tensor_height` if * same(the height of underlying tensor) or `tensor_height` if
* tensor_height>0. * tensor_height>0.
*/ */
bool CheckAbsLoD(const LoD &in, int tensor_height = -1); bool CheckAbsLoD(const LoD &in, int tensor_height = -1);
/* /*
* LoDTensor (Level of details Tensor) * LoDTensor (Level of details Tensor)
* see https://en.wikipedia.org/wiki/Level_of_details for reference. * see https://en.wikipedia.org/wiki/Level_of_details for reference.
*/ */
class LoDTensor : public Tensor { class LoDTensor : public Tensor {
public: public:
LoDTensor() : Tensor() {} LoDTensor() : Tensor() {}
explicit LoDTensor(const LoD &lod) : lod_(lod) {} explicit LoDTensor(const LoD &lod) : lod_(lod) {}
...@@ -110,15 +116,19 @@ public: ...@@ -110,15 +116,19 @@ public:
/* /*
* Get the start offset and end offset of an element from LoD. * Get the start offset and end offset of an element from LoD.
*/ */
std::pair<size_t, size_t> lod_element(size_t level, size_t elem) const { std::pair<size_t, size_t> lod_element(size_t level,
size_t elem) const {
// PADDLE_ENFORCE_LT(level, NumLevels()); // PADDLE_ENFORCE_LT(level, NumLevels());
// PADDLE_ENFORCE_LT(elem, NumElements(level)); // PADDLE_ENFORCE_LT(elem, NumElements(level));
return std::make_pair((lod_)[level][elem], (lod_)[level][elem + 1]); return std::make_pair((lod_)[level][elem],
(lod_)[level][elem + 1]);
} }
/* /*
* Number of LoDTensor's levels, each level has units of data, for example, * Number of LoDTensor's levels, each level has units of data, for
* in the sentence's view, article, paragraph, sentence are 3 levels. * example,
* in the sentence's view, article, paragraph, sentence are 3
* levels.
*/ */
size_t NumLevels() const { return lod_.size(); } size_t NumLevels() const { return lod_.size(); }
...@@ -131,11 +141,11 @@ public: ...@@ -131,11 +141,11 @@ public:
return (lod_)[level].size() - 1; return (lod_)[level].size() - 1;
} }
private: private:
LoD lod_; LoD lod_;
}; };
/* /*
* Expand the `source` to fit the LoD of `lod`. For example, a `source` * Expand the `source` to fit the LoD of `lod`. For example, a `source`
* LoDTensor is * LoDTensor is
* - LoD: [0, 2] * - LoD: [0, 2]
...@@ -145,8 +155,9 @@ private: ...@@ -145,8 +155,9 @@ private:
* returns a new LoDTensor * returns a new LoDTensor
* - [a0 a0 a0 a1 a1] * - [a0 a0 a0 a1 a1]
*/ */
template <typename T> template <typename T>
LoDTensor LodExpand(const LoDTensor &source, const LoD &lod, size_t level) { LoDTensor LodExpand(const LoDTensor &source, const LoD &lod,
size_t level) {
LoD abs_lod = ToAbsOffset(lod); LoD abs_lod = ToAbsOffset(lod);
const auto &lod_level = lod[level]; const auto &lod_level = lod[level];
size_t num_instances = source.dims()[0]; size_t num_instances = source.dims()[0];
...@@ -161,40 +172,41 @@ LoDTensor LodExpand(const LoDTensor &source, const LoD &lod, size_t level) { ...@@ -161,40 +172,41 @@ LoDTensor LodExpand(const LoDTensor &source, const LoD &lod, size_t level) {
// PADDLE_ENFORCE_EQ(num_instances, lod_level.size() - 1); // PADDLE_ENFORCE_EQ(num_instances, lod_level.size() - 1);
for (size_t ins = 0; ins < num_instances; ins++) { for (size_t ins = 0; ins < num_instances; ins++) {
for (size_t elem = lod_level[ins]; elem < lod_level[ins + 1]; elem++) { for (size_t elem = lod_level[ins]; elem < lod_level[ins + 1];
elem++) {
auto slice = tensor.Slice(elem, elem + 1); auto slice = tensor.Slice(elem, elem + 1);
TensorCopy(source.Slice(ins, ins + 1), &slice); TensorCopy(source.Slice(ins, ins + 1), &slice);
} }
} }
return tensor; return tensor;
} }
// Get the absolute offset of a lod[start_level][start_idx:end_idx] and // Get the absolute offset of a lod[start_level][start_idx:end_idx] and
// relative length of details for every levels(i.e., [start_level: ]). // relative length of details for every levels(i.e., [start_level: ]).
// //
// For example, // For example,
// lod = [[0, 3, 4, 8], [0, 9, 10, 11, 13, 17, 19, 22, 24]] // lod = [[0, 3, 4, 8], [0, 9, 10, 11, 13, 17, 19, 22, 24]]
// start_level = 0 // start_level = 0
// start_idx = 1 // start_idx = 1
// end_idx = 3 // end_idx = 3
// //
// Returns: // Returns:
// LoD = [[1, 4], [2, 4, 2, 3, 2]] // LoD = [[1, 4], [2, 4, 2, 3, 2]]
// pair<size_t, size_t> = {11, 24} // pair<size_t, size_t> = {11, 24}
std::pair<LoD, std::pair<size_t, size_t>> std::pair<LoD, std::pair<size_t, size_t>>
GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx, size_t end_idx, GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
size_t start_level); size_t end_idx, size_t start_level);
void AppendLoD(LoD *lod, const LoD &lod_length); void AppendLoD(LoD *lod, const LoD &lod_length);
/* /*
* Serialize/Desiralize LoDTensor to std::ostream * Serialize/Desiralize LoDTensor to std::ostream
* You can pass ofstream or ostringstream to serilize to file * You can pass ofstream or ostringstream to serilize to file
* or to a in memory string. GPU tensor will be copied to CPU. * or to a in memory string. GPU tensor will be copied to CPU.
*/ */
void SerializeToStream(std::ostream &os, const LoDTensor &tensor); void SerializeToStream(std::ostream &os, const LoDTensor &tensor);
void DeserializeFromStream(std::istream &is, LoDTensor *tensor); void DeserializeFromStream(std::istream &is, LoDTensor *tensor);
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -5,9 +5,9 @@ ...@@ -5,9 +5,9 @@
#include "op_desc.h" #include "op_desc.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
OpDesc::OpDesc(const proto::OpDesc &desc) : desc_(desc) { OpDesc::OpDesc(const proto::OpDesc &desc) : desc_(desc) {
for (int i = 0; i < desc_.inputs_size(); ++i) { for (int i = 0; i < desc_.inputs_size(); ++i) {
const proto::OpDesc::Var &var = desc_.inputs(i); const proto::OpDesc::Var &var = desc_.inputs(i);
std::vector<std::string> &args = inputs_[var.parameter()]; std::vector<std::string> &args = inputs_[var.parameter()];
...@@ -36,24 +36,27 @@ OpDesc::OpDesc(const proto::OpDesc &desc) : desc_(desc) { ...@@ -36,24 +36,27 @@ OpDesc::OpDesc(const proto::OpDesc &desc) : desc_(desc) {
// } // }
} }
} }
} }
const std::vector<std::string> &OpDesc::Input(const std::string &name) const { const std::vector<std::string> &
OpDesc::Input(const std::string &name) const {
return inputs_.find(name)->second; return inputs_.find(name)->second;
} }
const std::vector<std::string> &OpDesc::Output(const std::string &name) const { const std::vector<std::string> &
OpDesc::Output(const std::string &name) const {
return outputs_.find(name)->second; return outputs_.find(name)->second;
} }
Attribute OpDesc::GetAttr(const std::string &name) const { Attribute OpDesc::GetAttr(const std::string &name) const {
auto it = attrs_.find(name); auto it = attrs_.find(name);
return it->second; return it->second;
} }
const std::unordered_map<std::string, Attribute> &OpDesc::GetAttrMap() const { const std::unordered_map<std::string, Attribute> &
OpDesc::GetAttrMap() const {
return attrs_; return attrs_;
} }
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -23,13 +23,15 @@ SOFTWARE. ...@@ -23,13 +23,15 @@ SOFTWARE.
#include "paddle_mobile_object.h" #include "paddle_mobile_object.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
class OpDesc : PaddleMobileObject { class OpDesc : PaddleMobileObject {
public: public:
OpDesc(const proto::OpDesc &desc); OpDesc(const proto::OpDesc &desc);
const std::vector<std::string> &Input(const std::string &name) const; const std::vector<std::string> &
const std::vector<std::string> &Output(const std::string &name) const; Input(const std::string &name) const;
const std::vector<std::string> &
Output(const std::string &name) const;
Attribute GetAttr(const std::string &name) const; Attribute GetAttr(const std::string &name) const;
const VariableNameMap &GetInputs() { return inputs_; } const VariableNameMap &GetInputs() { return inputs_; }
...@@ -40,12 +42,12 @@ public: ...@@ -40,12 +42,12 @@ public:
const std::string &Type() { return desc_.type(); }; const std::string &Type() { return desc_.type(); };
private: private:
proto::OpDesc desc_; proto::OpDesc desc_;
VariableNameMap inputs_; VariableNameMap inputs_;
VariableNameMap outputs_; VariableNameMap outputs_;
AttributeMap attrs_; AttributeMap attrs_;
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -22,23 +22,25 @@ SOFTWARE. ...@@ -22,23 +22,25 @@ SOFTWARE.
#include "framework.pb.h" #include "framework.pb.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
template <typename Dtype> struct OpInfo { template <typename Dtype> struct OpInfo {
OpCreator<Dtype> creator_; OpCreator<Dtype> creator_;
const OpCreator<Dtype> &Creator() const { const OpCreator<Dtype> &Creator() const {
// PADDLE_ENFORCE_NOT_NULL(creator_, // PADDLE_ENFORCE_NOT_NULL(creator_,
// "Operator Creator has not been registered"); // "Operator Creator has not been
// registered");
return creator_; return creator_;
} }
}; };
template <typename Dtype> class OpInfoMap; template <typename Dtype> class OpInfoMap;
template <typename Dtype> static OpInfoMap<Dtype> *g_op_info_map = nullptr; template <typename Dtype>
static OpInfoMap<Dtype> *g_op_info_map = nullptr;
template <typename Dtype> class OpInfoMap { template <typename Dtype> class OpInfoMap {
public: public:
static OpInfoMap &Instance() { static OpInfoMap &Instance() {
if (g_op_info_map<Dtype> == nullptr) { if (g_op_info_map<Dtype> == nullptr) {
g_op_info_map<Dtype> = new OpInfoMap(); g_op_info_map<Dtype> = new OpInfoMap();
...@@ -51,13 +53,15 @@ public: ...@@ -51,13 +53,15 @@ public:
} }
void Insert(const std::string &type, const OpInfo<Dtype> &info) { void Insert(const std::string &type, const OpInfo<Dtype> &info) {
// PADDLE_ENFORCE(!Has(type), "Operator %s has been registered", type); // PADDLE_ENFORCE(!Has(type), "Operator %s has been
// registered", type);
map_.insert({type, info}); map_.insert({type, info});
} }
const OpInfo<Dtype> &Get(const std::string &type) const { const OpInfo<Dtype> &Get(const std::string &type) const {
auto op_info_ptr = GetNullable(type); auto op_info_ptr = GetNullable(type);
// PADDLE_ENFORCE_NOT_NULL(op_info_ptr, "Operator %s has not been // PADDLE_ENFORCE_NOT_NULL(op_info_ptr, "Operator %s has not
// been
// registered", // registered",
// type); // type);
return *op_info_ptr; return *op_info_ptr;
...@@ -80,12 +84,12 @@ public: ...@@ -80,12 +84,12 @@ public:
return &map_; return &map_;
} }
private: private:
OpInfoMap() = default; OpInfoMap() = default;
std::unordered_map<std::string, OpInfo<Dtype>> map_; std::unordered_map<std::string, OpInfo<Dtype>> map_;
// DISABLE_COPY_AND_ASSIGN(OpInfoMap); // DISABLE_COPY_AND_ASSIGN(OpInfoMap);
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -22,12 +22,14 @@ SOFTWARE. ...@@ -22,12 +22,14 @@ SOFTWARE.
#include "framework.pb.h" #include "framework.pb.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
struct OpKernelType { struct OpKernelType {
struct Hash { struct Hash {
size_t operator()(const OpKernelType &key) const { size_t operator()(const OpKernelType &key) const {
int data_type = static_cast<int>(key.data_type_) << LEFT_SHIFT; int data_type = static_cast<int>(key.data_type_)
int data_layout = static_cast<int>(key.data_layout_) << (LEFT_SHIFT * 2); << LEFT_SHIFT;
int data_layout = static_cast<int>(key.data_layout_)
<< (LEFT_SHIFT * 2);
std::hash<int> hasher; std::hash<int> hasher;
return hasher(data_type + data_layout); return hasher(data_type + data_layout);
...@@ -45,20 +47,26 @@ struct OpKernelType { ...@@ -45,20 +47,26 @@ struct OpKernelType {
: data_type_(data_type), data_layout_(data_layout) {} : data_type_(data_type), data_layout_(data_layout) {}
bool operator==(const OpKernelType &o) const { bool operator==(const OpKernelType &o) const {
return data_type_ == o.data_type_ && data_layout_ == o.data_layout_; return data_type_ == o.data_type_ &&
data_layout_ == o.data_layout_;
} }
bool operator!=(const OpKernelType &o) const { return !(*this == o); } bool operator!=(const OpKernelType &o) const {
}; return !(*this == o);
}
};
inline bool NeedTransformLayout(const DataLayout &l, const DataLayout &r) { inline bool NeedTransformLayout(const DataLayout &l,
return l != DataLayout::kAnyLayout && r != DataLayout::kAnyLayout && l != r; const DataLayout &r) {
} return l != DataLayout::kAnyLayout && r != DataLayout::kAnyLayout &&
l != r;
}
inline bool TransFromNeeded(const OpKernelType &l, const OpKernelType &r) { inline bool TransFromNeeded(const OpKernelType &l,
const OpKernelType &r) {
return (l.data_type_ != r.data_type_) || return (l.data_type_ != r.data_type_) ||
NeedTransformLayout(l.data_layout_, r.data_layout_); NeedTransformLayout(l.data_layout_, r.data_layout_);
} }
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -19,8 +19,8 @@ SOFTWARE. ...@@ -19,8 +19,8 @@ SOFTWARE.
#pragma once #pragma once
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
// this class not only make proto but also init attribute checkers. // this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {}; class OpProtoAndCheckerMaker {};
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -20,10 +20,10 @@ SOFTWARE. ...@@ -20,10 +20,10 @@ SOFTWARE.
#include "op_info.h" #include "op_info.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
template <typename Dtype> template <typename Dtype>
OperatorBase<Dtype>::OperatorBase(const std::string &type, OperatorBase<Dtype>::OperatorBase(const std::string &type,
const VariableNameMap &inputs, const VariableNameMap &inputs,
const VariableNameMap &outputs, const VariableNameMap &outputs,
const AttributeMap &attrs, const AttributeMap &attrs,
...@@ -31,15 +31,12 @@ OperatorBase<Dtype>::OperatorBase(const std::string &type, ...@@ -31,15 +31,12 @@ OperatorBase<Dtype>::OperatorBase(const std::string &type,
: type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs), : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs),
scope_(scope) { scope_(scope) {
CheckAllInputOutputSet(); CheckAllInputOutputSet();
} }
template <typename Dtype>
void OperatorBase<Dtype>::CheckAllInputOutputSet() const {}
template <typename Dtype> void OperatorBase<Dtype>::Run() { RunImpl(); } template class OperatorBase<CPU>;
template class OperatorWithKernel<CPU>;
template <typename Dtype> } // namespace framework
void OperatorBase<Dtype>::CheckAllInputOutputSet() const {}
template class OperatorBase<CPU>;
template class OperatorWithKernel<CPU>;
} // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -18,8 +18,6 @@ SOFTWARE. ...@@ -18,8 +18,6 @@ SOFTWARE.
#pragma once #pragma once
#include <map>
#include "attribute.h" #include "attribute.h"
#include "block_desc.h" #include "block_desc.h"
#include "common/type_define.h" #include "common/type_define.h"
...@@ -31,62 +29,62 @@ SOFTWARE. ...@@ -31,62 +29,62 @@ SOFTWARE.
#include "scope.h" #include "scope.h"
#include "tensor.h" #include "tensor.h"
#include "variable.h" #include "variable.h"
#include <map>
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
template <typename Dtype> class OperatorBase : PaddleMobileObject { template <typename Dtype> class OperatorBase : PaddleMobileObject {
public: public:
OperatorBase(const std::string &type, const VariableNameMap &inputs, OperatorBase(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs, const VariableNameMap &outputs,
const AttributeMap &attrs,
std::shared_ptr<Scope> scope); std::shared_ptr<Scope> scope);
virtual ~OperatorBase() {} virtual ~OperatorBase() {}
virtual void Run(); virtual void Run() const = 0;
const VariableNameMap &Inputs() const { return inputs_; } const VariableNameMap &Inputs() const { return inputs_; }
const VariableNameMap &Outputs() const { return outputs_; } const VariableNameMap &Outputs() const { return outputs_; }
const std::string &Type() const { return type_; } const std::string &Type() const { return type_; }
const AttributeMap &Attrs() const { return attrs_; } const AttributeMap &Attrs() const { return attrs_; }
void ClearVariables() const {
if (this->scope_) {
this->scope_->EraseVars(this->inputs_.at("Filter"));
this->scope_->EraseVars(this->inputs_.at("Input"));
}
}
protected: protected:
std::shared_ptr<Scope> scope_; std::shared_ptr<Scope> scope_;
std::string type_; std::string type_;
VariableNameMap inputs_; VariableNameMap inputs_;
VariableNameMap outputs_; VariableNameMap outputs_;
AttributeMap attrs_; AttributeMap attrs_;
private: private:
void CheckAllInputOutputSet() const; void CheckAllInputOutputSet() const;
virtual void RunImpl() const = 0; };
};
template <typename Dtype> template <typename Dtype>
class OperatorWithKernel : public OperatorBase<Dtype> { class OperatorWithKernel : public OperatorBase<Dtype> {
public: public:
OperatorWithKernel(const std::string &type, const VariableNameMap &inputs, OperatorWithKernel(const std::string &type,
const VariableNameMap &outputs, const AttributeMap &attrs, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const AttributeMap &attrs,
std::shared_ptr<Scope> scope) std::shared_ptr<Scope> scope)
: OperatorBase<Dtype>(type, inputs, outputs, attrs, scope) {} : OperatorBase<Dtype>(type, inputs, outputs, attrs, scope) {}
virtual void InferShape() const = 0; virtual void InferShape() const = 0;
virtual void Run() const = 0;
};
void ClearVariables() const { template <typename Dtype, typename P>
if (this->scope_) { class OpKernelBase : PaddleMobileObject {
this->scope_->EraseVars(this->inputs_.at("Filter")); public:
this->scope_->EraseVars(this->inputs_.at("Input"));
}
}
protected:
virtual void RunImpl() const = 0;
private:
};
template <typename Dtype, typename P> class OpKernelBase : PaddleMobileObject {
public:
virtual void Compute(const P &para) const = 0; virtual void Compute(const P &para) const = 0;
virtual ~OpKernelBase() = default; virtual ~OpKernelBase() = default;
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -23,14 +23,14 @@ SOFTWARE. ...@@ -23,14 +23,14 @@ SOFTWARE.
namespace paddle_mobile { namespace paddle_mobile {
class PaddleMobileObject { class PaddleMobileObject {
public: public:
virtual inline const std::string &ToString() { virtual inline const std::string &ToString() {
char address[128] = {0}; char address[128] = {0};
sprintf(address, "%p", this); sprintf(address, "%p", this);
return std::string(address); return std::string(address);
} }
private: private:
}; };
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -17,5 +17,5 @@ SOFTWARE. ...@@ -17,5 +17,5 @@ SOFTWARE.
==============================================================================*/ ==============================================================================*/
namespace paddle_mobile { namespace paddle_mobile {
namespace framework {} namespace framework {}
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -24,17 +24,17 @@ SOFTWARE. ...@@ -24,17 +24,17 @@ SOFTWARE.
#include "scope.h" #include "scope.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
template <typename Dtype, Precision P = Precision::FP32> template <typename Dtype, Precision P = Precision::FP32>
class Program : PaddleMobileObject { class Program : PaddleMobileObject {
public: public:
std::shared_ptr<ProgramDesc> originProgram; std::shared_ptr<ProgramDesc> originProgram;
std::shared_ptr<ProgramDesc> optimizeProgram; std::shared_ptr<ProgramDesc> optimizeProgram;
std::shared_ptr<Scope> scope; std::shared_ptr<Scope> scope;
private: private:
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -5,18 +5,18 @@ ...@@ -5,18 +5,18 @@
#include "program_desc.h" #include "program_desc.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
ProgramDesc::ProgramDesc(const proto::ProgramDesc &desc) : desc_(desc) { ProgramDesc::ProgramDesc(const proto::ProgramDesc &desc) : desc_(desc) {
for (auto &block_desc : *desc_.mutable_blocks()) { for (auto &block_desc : *desc_.mutable_blocks()) {
// new framework::BlockDesc(block_desc) // new framework::BlockDesc(block_desc)
blocks_.emplace_back(std::make_shared<BlockDesc>(block_desc)); blocks_.emplace_back(std::make_shared<BlockDesc>(block_desc));
} }
} }
std::shared_ptr<BlockDesc> ProgramDesc::Block(size_t idx) { std::shared_ptr<BlockDesc> ProgramDesc::Block(size_t idx) {
return blocks_[idx]; return blocks_[idx];
} }
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -25,18 +25,20 @@ SOFTWARE. ...@@ -25,18 +25,20 @@ SOFTWARE.
#include "paddle_mobile_object.h" #include "paddle_mobile_object.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
class ProgramDesc : PaddleMobileObject { class ProgramDesc : PaddleMobileObject {
public: public:
ProgramDesc(const proto::ProgramDesc &desc); ProgramDesc(const proto::ProgramDesc &desc);
std::shared_ptr<BlockDesc> Block(size_t idx); std::shared_ptr<BlockDesc> Block(size_t idx);
const std::vector<std::shared_ptr<BlockDesc>> &Blocks() { return blocks_; }; const std::vector<std::shared_ptr<BlockDesc>> &Blocks() {
return blocks_;
};
private: private:
std::vector<std::shared_ptr<BlockDesc>> blocks_; std::vector<std::shared_ptr<BlockDesc>> blocks_;
proto::ProgramDesc desc_; proto::ProgramDesc desc_;
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -4,15 +4,15 @@ ...@@ -4,15 +4,15 @@
#include <vector> #include <vector>
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
Scope &Scope::NewScope() const { Scope &Scope::NewScope() const {
std::unique_lock<std::mutex> lock(mutex_); std::unique_lock<std::mutex> lock(mutex_);
kids_.push_back(new Scope(this)); kids_.push_back(new Scope(this));
return *kids_.back(); return *kids_.back();
} }
Variable *Scope::Var(const std::string &name) { Variable *Scope::Var(const std::string &name) {
auto *pvar = FindVarLocally(name); auto *pvar = FindVarLocally(name);
if (pvar != nullptr) { if (pvar != nullptr) {
return pvar; return pvar;
...@@ -21,58 +21,59 @@ Variable *Scope::Var(const std::string &name) { ...@@ -21,58 +21,59 @@ Variable *Scope::Var(const std::string &name) {
vars_[name] = pvar; vars_[name] = pvar;
pvar->name_ = &(vars_.find(name)->first); pvar->name_ = &(vars_.find(name)->first);
return pvar; return pvar;
} }
// Variable* Scope::Var(std::string* name) { // Variable* Scope::Var(std::string* name) {
// auto var_name = string::Sprintf("%p.%d", this, vars_.size()); // auto var_name = string::Sprintf("%p.%d", this,
// if (name != nullptr) { // vars_.size());
// *name = var_name; // if (name != nullptr) {
// } // *name = var_name;
// return Var(var_name); // }
// } // return Var(var_name);
// }
Variable *Scope::FindVar(const std::string &name) const { Variable *Scope::FindVar(const std::string &name) const {
auto *pvar = FindVarLocally(name); auto *pvar = FindVarLocally(name);
if (pvar != nullptr) { if (pvar != nullptr) {
return pvar; return pvar;
} }
return (parent_ == nullptr) ? nullptr : parent_->FindVar(name); return (parent_ == nullptr) ? nullptr : parent_->FindVar(name);
} }
const Scope *Scope::FindScope(const Variable *var) const { const Scope *Scope::FindScope(const Variable *var) const {
for (auto &name_var : vars_) { for (auto &name_var : vars_) {
if (name_var.second == var) { if (name_var.second == var) {
return this; return this;
} }
} }
return (parent_ == nullptr) ? nullptr : parent_->FindScope(var); return (parent_ == nullptr) ? nullptr : parent_->FindScope(var);
} }
void Scope::DropKids() { void Scope::DropKids() {
for (Scope *s : kids_) { for (Scope *s : kids_) {
delete s; delete s;
} }
kids_.clear(); kids_.clear();
} }
std::vector<std::string> Scope::LocalVarNames() const { std::vector<std::string> Scope::LocalVarNames() const {
std::vector<std::string> known_vars; std::vector<std::string> known_vars;
known_vars.reserve(vars_.size()); known_vars.reserve(vars_.size());
for (auto &name_var : vars_) { for (auto &name_var : vars_) {
known_vars.emplace_back(name_var.first); known_vars.emplace_back(name_var.first);
} }
return known_vars; return known_vars;
} }
void Scope::DeleteScope(Scope *scope) const { void Scope::DeleteScope(Scope *scope) const {
std::unique_lock<std::mutex> lock(mutex_); std::unique_lock<std::mutex> lock(mutex_);
auto it = std::find(kids_.begin(), kids_.end(), scope); auto it = std::find(kids_.begin(), kids_.end(), scope);
kids_.erase(it); kids_.erase(it);
delete scope; delete scope;
// deferent // deferent
} }
void Scope::EraseVars(const std::vector<std::string> &var_names) { void Scope::EraseVars(const std::vector<std::string> &var_names) {
std::set<std::string> var_set(var_names.begin(), var_names.end()); std::set<std::string> var_set(var_names.begin(), var_names.end());
for (auto it = vars_.begin(); it != vars_.end();) { for (auto it = vars_.begin(); it != vars_.end();) {
if (var_set.find(it->first) != var_set.end()) { if (var_set.find(it->first) != var_set.end()) {
...@@ -82,9 +83,9 @@ void Scope::EraseVars(const std::vector<std::string> &var_names) { ...@@ -82,9 +83,9 @@ void Scope::EraseVars(const std::vector<std::string> &var_names) {
++it; ++it;
} }
} }
} }
void Scope::Rename(const std::string &origin_name, void Scope::Rename(const std::string &origin_name,
const std::string &new_name) const { const std::string &new_name) const {
auto origin_it = vars_.find(origin_name); auto origin_it = vars_.find(origin_name);
if (origin_it == vars_.end()) { if (origin_it == vars_.end()) {
...@@ -96,21 +97,23 @@ void Scope::Rename(const std::string &origin_name, ...@@ -96,21 +97,23 @@ void Scope::Rename(const std::string &origin_name,
} }
vars_[new_name] = origin_it->second; vars_[new_name] = origin_it->second;
vars_.erase(origin_it); vars_.erase(origin_it);
} }
// //
// std::string Scope::Rename(const std::string& origin_name) const { // std::string Scope::Rename(const std::string& origin_name)
// auto var_name = string::Sprintf("%p.%d", this, vars_.size()); // const {
// Rename(origin_name, var_name); // auto var_name = string::Sprintf("%p.%d", this,
// return var_name; // vars_.size());
// } // Rename(origin_name, var_name);
// return var_name;
// }
Variable *Scope::FindVarLocally(const std::string &name) const { Variable *Scope::FindVarLocally(const std::string &name) const {
auto it = vars_.find(name); auto it = vars_.find(name);
if (it != vars_.end()) { if (it != vars_.end()) {
return it->second; return it->second;
} }
return nullptr; return nullptr;
} }
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -24,9 +24,9 @@ SOFTWARE. ...@@ -24,9 +24,9 @@ SOFTWARE.
#include <unordered_map> //std::unordered_map #include <unordered_map> //std::unordered_map
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
class Scope { class Scope {
public: public:
Scope() {} Scope() {}
~Scope() {} ~Scope() {}
...@@ -46,7 +46,8 @@ public: ...@@ -46,7 +46,8 @@ public:
const Scope *parent() const { return parent_; } const Scope *parent() const { return parent_; }
/// Find the scope or an ancestor scope that contains the given variable. /// Find the scope or an ancestor scope that contains the given
/// variable.
const Scope *FindScope(const Variable *var) const; const Scope *FindScope(const Variable *var) const;
void DeleteScope(Scope *scope) const; void DeleteScope(Scope *scope) const;
...@@ -66,7 +67,7 @@ public: ...@@ -66,7 +67,7 @@ public:
Variable *FindVarLocally(const std::string &name) const; Variable *FindVarLocally(const std::string &name) const;
private: private:
// Call Scope::NewScope for a sub-scope. // Call Scope::NewScope for a sub-scope.
explicit Scope(Scope const *parent) : parent_(parent) {} explicit Scope(Scope const *parent) : parent_(parent) {}
...@@ -75,6 +76,6 @@ private: ...@@ -75,6 +76,6 @@ private:
Scope const *parent_{nullptr}; Scope const *parent_{nullptr};
mutable std::mutex mutex_; mutable std::mutex mutex_;
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -24,11 +24,12 @@ SOFTWARE. ...@@ -24,11 +24,12 @@ SOFTWARE.
#include "tensor.h" #include "tensor.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
class SelectedRows { class SelectedRows {
public: public:
SelectedRows(const std::vector<int64_t> &rows, const int64_t &height) SelectedRows(const std::vector<int64_t> &rows,
const int64_t &height)
: rows_(rows), height_(height) { : rows_(rows), height_(height) {
value_.reset(new Tensor()); value_.reset(new Tensor());
} }
...@@ -67,14 +68,15 @@ public: ...@@ -67,14 +68,15 @@ public:
return make_ddim(dims); return make_ddim(dims);
} }
private: private:
// Notice: rows can be duplicate. We can have {0, 4, 7, 0, 5, 7, 9} here. // Notice: rows can be duplicate. We can have {0, 4, 7, 0, 5, 7, 9}
// here.
// SelectedRows are simply concated when adding together. Until a // SelectedRows are simply concated when adding together. Until a
// SelectedRows add a Tensor, will the duplicate rows be handled. // SelectedRows add a Tensor, will the duplicate rows be handled.
std::vector<int64_t> rows_; std::vector<int64_t> rows_;
std::unique_ptr<Tensor> value_{nullptr}; std::unique_ptr<Tensor> value_{nullptr};
int64_t height_; int64_t height_;
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -25,10 +25,10 @@ limitations under the License. */ ...@@ -25,10 +25,10 @@ limitations under the License. */
#include "memory/t_malloc.h" #include "memory/t_malloc.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
template <typename... T> struct SizeOfTypeFunctor; template <typename... T> struct SizeOfTypeFunctor;
template <typename T> struct SizeOfTypeFunctor<T> { template <typename T> struct SizeOfTypeFunctor<T> {
size_t operator()(std::type_index type) const { size_t operator()(std::type_index type) const {
if (typeid(T).hash_code() == type.hash_code()) { if (typeid(T).hash_code() == type.hash_code()) {
return sizeof(T); return sizeof(T);
...@@ -36,14 +36,14 @@ template <typename T> struct SizeOfTypeFunctor<T> { ...@@ -36,14 +36,14 @@ template <typename T> struct SizeOfTypeFunctor<T> {
return 0UL; return 0UL;
} }
} }
}; };
template <> struct SizeOfTypeFunctor<> { template <> struct SizeOfTypeFunctor<> {
size_t operator()(std::type_index type) const { return 0UL; } size_t operator()(std::type_index type) const { return 0UL; }
}; };
template <typename HEAD, typename... TAIL> template <typename HEAD, typename... TAIL>
struct SizeOfTypeFunctor<HEAD, TAIL...> { struct SizeOfTypeFunctor<HEAD, TAIL...> {
size_t operator()(std::type_index type) const { size_t operator()(std::type_index type) const {
SizeOfTypeFunctor<HEAD> head; SizeOfTypeFunctor<HEAD> head;
size_t head_size = head(type); size_t head_size = head(type);
...@@ -53,37 +53,42 @@ struct SizeOfTypeFunctor<HEAD, TAIL...> { ...@@ -53,37 +53,42 @@ struct SizeOfTypeFunctor<HEAD, TAIL...> {
SizeOfTypeFunctor<TAIL...> tail; SizeOfTypeFunctor<TAIL...> tail;
return tail(type); return tail(type);
} }
}; };
static inline size_t SizeOfType(std::type_index type) { static inline size_t SizeOfType(std::type_index type) {
SizeOfTypeFunctor<int, float, double, int16_t, int64_t, bool, size_t> functor; SizeOfTypeFunctor<int, float, double, int16_t, int64_t, bool,
size_t>
functor;
size_t size = functor(type); size_t size = functor(type);
// PADDLE_ENFORCE(size != 0UL, "Cannot get size of type %s", type.name()); // PADDLE_ENFORCE(size != 0UL, "Cannot get size of type %s",
// type.name());
return size; return size;
} }
class LoDTensor; class LoDTensor;
class Tensor { class Tensor {
public: public:
Tensor() : offset_(0) {} Tensor() : offset_(0) {}
/*! Return a pointer to mutable memory block. */ /*! Return a pointer to mutable memory block. */
template <typename T> inline T *data() { template <typename T> inline T *data() {
check_memory_size(); check_memory_size();
// PADDLE_ENFORCE(std::is_same<T, void>::value || // PADDLE_ENFORCE(std::is_same<T, void>::value ||
// holder_->type().hash_code() == typeid(T).hash_code(), // holder_->type().hash_code() ==
// typeid(T).hash_code(),
// "Tensor holds the wrong type, it holds %s", // "Tensor holds the wrong type, it holds %s",
// this->holder_->type().name()); // this->holder_->type().name());
return reinterpret_cast<T *>(reinterpret_cast<uintptr_t>(holder_->ptr()) + return reinterpret_cast<T *>(
offset_); reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
} }
/*! Return a pointer to constant memory block. */ /*! Return a pointer to constant memory block. */
template <typename T> inline const T *data() const { template <typename T> inline const T *data() const {
check_memory_size(); check_memory_size();
// PADDLE_ENFORCE(std::is_same<T, void>::value || // PADDLE_ENFORCE(std::is_same<T, void>::value ||
// holder_->type().hash_code() == typeid(T).hash_code(), // holder_->type().hash_code() ==
// typeid(T).hash_code(),
// "Tensor holds the wrong type, it holds %s", // "Tensor holds the wrong type, it holds %s",
// this->holder_->type().name()); // this->holder_->type().name());
...@@ -107,8 +112,10 @@ public: ...@@ -107,8 +112,10 @@ public:
holder_->set_type(type); holder_->set_type(type);
} }
// PADDLE_ENFORCE_GE(numel(), 0, // PADDLE_ENFORCE_GE(numel(), 0,
// "When calling this method, the Tensor's numel must be // "When calling this method, the Tensor's
// " "equal or larger than zero. " "Please check // numel must be
// " "equal or larger than zero. " "Please
// check
// Tensor::Resize has been called first."); // Tensor::Resize has been called first.");
int64_t size = numel() * SizeOfType(type); int64_t size = numel() * SizeOfType(type);
/* some versions of boost::variant don't have operator!= */ /* some versions of boost::variant don't have operator!= */
...@@ -123,7 +130,8 @@ public: ...@@ -123,7 +130,8 @@ public:
inline void *mutable_data() { inline void *mutable_data() {
// PADDLE_ENFORCE(this->holder_ != nullptr, // PADDLE_ENFORCE(this->holder_ != nullptr,
// "Cannot invoke mutable data if current hold nothing."); // "Cannot invoke mutable data if current hold
// nothing.");
return mutable_data(holder_->type()); return mutable_data(holder_->type());
} }
...@@ -163,19 +171,24 @@ public: ...@@ -163,19 +171,24 @@ public:
/** /**
* @brief Return a sub-tensor of the given tensor. * @brief Return a sub-tensor of the given tensor.
* *
* @param[in] begin_idx The index of the start row(inclusive) to slice. * @param[in] begin_idx The index of the start row(inclusive) to
* slice.
* The index number begins from 0. * The index number begins from 0.
* @param[in] end_idx The index of the end row(exclusive) to slice. * @param[in] end_idx The index of the end row(exclusive) to
* slice.
* The index number begins from 0. * The index number begins from 0.
*/ */
inline Tensor Slice(int begin_idx, int end_idx) const { inline Tensor Slice(int begin_idx, int end_idx) const {
check_memory_size(); check_memory_size();
// PADDLE_ENFORCE_GE(begin_idx, 0, // PADDLE_ENFORCE_GE(begin_idx, 0,
// "The start row index must be greater than 0."); // "The start row index must be greater than
// PADDLE_ENFORCE_LE(end_idx, dims_[0], "The end row index is out of // 0.");
// PADDLE_ENFORCE_LE(end_idx, dims_[0], "The end row index is
// out of
// bound."); PADDLE_ENFORCE_LT( // bound."); PADDLE_ENFORCE_LT(
// begin_idx, end_idx, // begin_idx, end_idx,
// "The start row index must be lesser than the end row index."); // "The start row index must be lesser than the end row
// index.");
if (dims_[0] == 1) { if (dims_[0] == 1) {
return *this; return *this;
...@@ -187,14 +200,16 @@ public: ...@@ -187,14 +200,16 @@ public:
DDim dst_dims = dims_; DDim dst_dims = dims_;
dst_dims[0] = end_idx - begin_idx; dst_dims[0] = end_idx - begin_idx;
dst.Resize(dst_dims); dst.Resize(dst_dims);
dst.offset_ = offset_ + begin_idx * base * SizeOfType(type()); dst.offset_ =
offset_ + begin_idx * base * SizeOfType(type());
return dst; return dst;
} }
} }
std::type_index type() const { std::type_index type() const {
// PADDLE_ENFORCE_NOT_NULL( // PADDLE_ENFORCE_NOT_NULL(
// holder_, "Tensor not initialized yet when // holder_, "Tensor not initialized yet
// when
// Tensor::type() is called."); // Tensor::type() is called.");
return holder_->type(); return holder_->type();
} }
...@@ -206,23 +221,29 @@ public: ...@@ -206,23 +221,29 @@ public:
inline void check_memory_size() const { inline void check_memory_size() const {
// PADDLE_ENFORCE_NOT_NULL( // PADDLE_ENFORCE_NOT_NULL(
// holder_, "Tensor holds no memory. Call Tensor::mutable_data // holder_, "Tensor holds no memory. Call
// Tensor::mutable_data
// first."); // first.");
// PADDLE_ENFORCE_LE( // PADDLE_ENFORCE_LE(
// numel() * SizeOfType(type()), memory_size(), // numel() * SizeOfType(type()), memory_size(),
// "Tensor's dims_ is out of bound. Call Tensor::mutable_data " // "Tensor's dims_ is out of bound. Call
// Tensor::mutable_data "
// "first to re-allocate memory.\n" // "first to re-allocate memory.\n"
// "or maybe the required data-type mismatches the data already // "or maybe the required data-type mismatches the data
// already
// stored."); // stored.");
} }
inline DataLayout layout() const { return layout_; } inline DataLayout layout() const { return layout_; }
inline void set_layout(const DataLayout layout) { layout_ = layout; } inline void set_layout(const DataLayout layout) {
layout_ = layout;
}
private: private:
/** /**
* @note Placeholder hides type T, so it doesn't appear as a template * @note Placeholder hides type T, so it doesn't appear as a
* template
* parameter of Variable. * parameter of Variable.
*/ */
struct Placeholder { struct Placeholder {
...@@ -242,15 +263,20 @@ private: ...@@ -242,15 +263,20 @@ private:
: ptr_(static_cast<uint8_t *>(memory::Alloc(size)), : ptr_(static_cast<uint8_t *>(memory::Alloc(size)),
memory::PODDeleter<uint8_t>()), memory::PODDeleter<uint8_t>()),
size_(size), type_(type) { size_(size), type_(type) {
// PADDLE_ENFORCE_NOT_NULL(ptr_, "Insufficient %s // PADDLE_ENFORCE_NOT_NULL(ptr_,
// "Insufficient %s
// memory to allocation.", // memory to allocation.",
// (is_cpu_place(place_) ? // (is_cpu_place(place_)
// "CPU" : "GPU")); // ?
// "CPU" :
// "GPU"));
} }
virtual size_t size() const { return size_; } virtual size_t size() const { return size_; }
virtual void *ptr() const { return static_cast<void *>(ptr_.get()); } virtual void *ptr() const {
return static_cast<void *>(ptr_.get());
}
virtual std::type_index type() const { return type_; } virtual std::type_index type() const { return type_; }
...@@ -280,8 +306,10 @@ private: ...@@ -280,8 +306,10 @@ private:
/** /**
* @brief the layout of memory block, default is NHWC. * @brief the layout of memory block, default is NHWC.
* *
* @note the memory allocation order, describe how weight/data is stored * @note the memory allocation order, describe how weight/data is
* For example, in 4-D Tensor(rank=4), there are three commonly * stored
* For example, in 4-D Tensor(rank=4), there are three
* commonly
* used layout. They are * used layout. They are
* NCHW, NHWC, CHWN. * NCHW, NHWC, CHWN.
* N,C,H,W for respectively the batch size, the number of * N,C,H,W for respectively the batch size, the number of
...@@ -295,17 +323,18 @@ private: ...@@ -295,17 +323,18 @@ private:
* *
* @note Some of them may be slices of the others. So the offset_ * @note Some of them may be slices of the others. So the offset_
* is introduced here to indicate the byte offset between * is introduced here to indicate the byte offset between
* PlaceHolder::ptr_ and where the tensor data really begins. * PlaceHolder::ptr_ and where the tensor data really
* begins.
*/ */
size_t offset_; size_t offset_;
}; };
inline Tensor ReshapeToMatrix(const Tensor &src, int num_col_dims) { inline Tensor ReshapeToMatrix(const Tensor &src, int num_col_dims) {
Tensor res; Tensor res;
res.ShareDataWith(src); res.ShareDataWith(src);
res.Resize(flatten_to_2d(src.dims(), num_col_dims)); res.Resize(flatten_to_2d(src.dims(), num_col_dims));
return res; return res;
} }
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -18,10 +18,11 @@ ...@@ -18,10 +18,11 @@
#include <vector> #include <vector>
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
void TensorCopy(const Tensor &src, Tensor *dst) { void TensorCopy(const Tensor &src, Tensor *dst) {
// VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to // VLOG(3) << "TensorCopy " << src.dims() << " from " <<
// src.place() << " to
// " // "
// << dst_place; // << dst_place;
src.check_memory_size(); src.check_memory_size();
...@@ -35,10 +36,11 @@ void TensorCopy(const Tensor &src, Tensor *dst) { ...@@ -35,10 +36,11 @@ void TensorCopy(const Tensor &src, Tensor *dst) {
auto size = src.numel() * SizeOfType(src.type()); auto size = src.numel() * SizeOfType(src.type());
memory::Copy(dst_ptr, src_ptr, size); memory::Copy(dst_ptr, src_ptr, size);
} }
void TensorCopySync(const Tensor &src, Tensor *dst) { void TensorCopySync(const Tensor &src, Tensor *dst) {
// VLOG(3) << "TensorCopySync " << src.dims() << " from " << src.place() // VLOG(3) << "TensorCopySync " << src.dims() << " from " <<
// src.place()
// << " to " << dst_place; // << " to " << dst_place;
src.check_memory_size(); src.check_memory_size();
dst->Resize(src.dims()); dst->Resize(src.dims());
...@@ -47,14 +49,15 @@ void TensorCopySync(const Tensor &src, Tensor *dst) { ...@@ -47,14 +49,15 @@ void TensorCopySync(const Tensor &src, Tensor *dst) {
auto dst_ptr = dst->mutable_data(src.type()); auto dst_ptr = dst->mutable_data(src.type());
auto size = src.numel() * SizeOfType(src.type()); auto size = src.numel() * SizeOfType(src.type());
memory::Copy(dst_ptr, src_ptr, size); memory::Copy(dst_ptr, src_ptr, size);
} }
template <typename Predicate> struct AnyDTypeVisitor { template <typename Predicate> struct AnyDTypeVisitor {
Predicate predicate_; Predicate predicate_;
const Tensor &tensor_; const Tensor &tensor_;
Tensor *out_; Tensor *out_;
AnyDTypeVisitor(Predicate predicate, const Tensor &tensor, Tensor *out) AnyDTypeVisitor(Predicate predicate, const Tensor &tensor,
Tensor *out)
: predicate_(predicate), tensor_(tensor), out_(out) {} : predicate_(predicate), tensor_(tensor), out_(out) {}
template <typename T> void operator()() const { template <typename T> void operator()() const {
...@@ -63,16 +66,16 @@ template <typename Predicate> struct AnyDTypeVisitor { ...@@ -63,16 +66,16 @@ template <typename Predicate> struct AnyDTypeVisitor {
// return any of predicate_(t) is true. // return any of predicate_(t) is true.
// o.device(*ctx_.eigen_device()) = predicate_(t).any(); // o.device(*ctx_.eigen_device()) = predicate_(t).any();
} }
}; };
template <typename Predicate> template <typename Predicate>
inline void AnyImpl(Predicate predicate, const Tensor &tensor, inline void AnyImpl(Predicate predicate, const Tensor &tensor,
framework::Tensor *out) { framework::Tensor *out) {
VisitDataType(ToDataType(tensor.type()), VisitDataType(ToDataType(tensor.type()),
AnyDTypeVisitor<Predicate>(predicate, tensor, out)); AnyDTypeVisitor<Predicate>(predicate, tensor, out));
} }
template <typename Predicate> struct AnyVisitor { template <typename Predicate> struct AnyVisitor {
const framework::Tensor &tensor_; const framework::Tensor &tensor_;
Predicate predicate_; Predicate predicate_;
...@@ -90,47 +93,48 @@ template <typename Predicate> struct AnyVisitor { ...@@ -90,47 +93,48 @@ template <typename Predicate> struct AnyVisitor {
bool GetResult(const framework::Tensor &out) const { bool GetResult(const framework::Tensor &out) const {
return *out.data<bool>(); return *out.data<bool>();
} }
}; };
template <typename Predicate> template <typename Predicate>
inline bool Any(const framework::Tensor &tensor, Predicate predicate) { inline bool Any(const framework::Tensor &tensor, Predicate predicate) {
AnyVisitor<Predicate> visitor(tensor, predicate); AnyVisitor<Predicate> visitor(tensor, predicate);
// return platform::VisitPlace(visitor); // return platform::VisitPlace(visitor);
return visitor(); return visitor();
} }
struct ContainsNANPredicate { struct ContainsNANPredicate {
template <typename T> template <typename T>
auto operator()(const T &eigen_vec) const auto operator()(const T &eigen_vec) const
-> decltype(std::declval<T>().isnan()) { -> decltype(std::declval<T>().isnan()) {
// Cast eigen_vector to vector of bool. true if is inf. // Cast eigen_vector to vector of bool. true if is inf.
return eigen_vec.isnan(); return eigen_vec.isnan();
} }
}; };
bool TensorContainsNAN(const framework::Tensor &tensor) { bool TensorContainsNAN(const framework::Tensor &tensor) {
ContainsNANPredicate predicate; ContainsNANPredicate predicate;
return Any(tensor, predicate); return Any(tensor, predicate);
} }
struct ContainsInfPredicate { struct ContainsInfPredicate {
template <typename T> template <typename T>
auto operator()(const T &eigen_vec) const auto operator()(const T &eigen_vec) const
-> decltype(std::declval<T>().isinf()) { -> decltype(std::declval<T>().isinf()) {
// Cast eigen_vector to vector of bool. true if is inf. // Cast eigen_vector to vector of bool. true if is inf.
return eigen_vec.isinf(); return eigen_vec.isinf();
} }
}; };
bool TensorContainsInf(const framework::Tensor &tensor) { bool TensorContainsInf(const framework::Tensor &tensor) {
ContainsInfPredicate predicate; ContainsInfPredicate predicate;
return Any(tensor, predicate); return Any(tensor, predicate);
} }
void TensorToStream(std::ostream &os, const Tensor &tensor) { void TensorToStream(std::ostream &os, const Tensor &tensor) {
{ // the 1st field, uint32_t version { // the 1st field, uint32_t version
constexpr uint32_t version = 0; constexpr uint32_t version = 0;
os.write(reinterpret_cast<const char *>(&version), sizeof(version)); os.write(reinterpret_cast<const char *>(&version),
sizeof(version));
} }
{ // the 2nd field, tensor description { // the 2nd field, tensor description
// int32_t size // int32_t size
...@@ -149,15 +153,16 @@ void TensorToStream(std::ostream &os, const Tensor &tensor) { ...@@ -149,15 +153,16 @@ void TensorToStream(std::ostream &os, const Tensor &tensor) {
{ // the 3rd field, tensor data { // the 3rd field, tensor data
uint64_t size = tensor.memory_size(); uint64_t size = tensor.memory_size();
auto *data_ptr = tensor.data<void>(); auto *data_ptr = tensor.data<void>();
// PADDLE_ENFORCE(size < std::numeric_limits<std::streamsize>::max(), // PADDLE_ENFORCE(size <
// std::numeric_limits<std::streamsize>::max(),
// "Index overflow when writing tensor"); // "Index overflow when writing tensor");
os.write(static_cast<const char *>(data_ptr), os.write(static_cast<const char *>(data_ptr),
static_cast<std::streamsize>(size)); static_cast<std::streamsize>(size));
} }
} }
struct DeserializedDataFunctor { struct DeserializedDataFunctor {
DeserializedDataFunctor(void **buf, Tensor *tensor) DeserializedDataFunctor(void **buf, Tensor *tensor)
: buf_(buf), tensor_(tensor) {} : buf_(buf), tensor_(tensor) {}
...@@ -167,9 +172,9 @@ struct DeserializedDataFunctor { ...@@ -167,9 +172,9 @@ struct DeserializedDataFunctor {
void **buf_; void **buf_;
Tensor *tensor_; Tensor *tensor_;
}; };
void TensorFromStream(std::istream &is, framework::Tensor *tensor) { void TensorFromStream(std::istream &is, framework::Tensor *tensor) {
uint32_t version; uint32_t version;
is.read(reinterpret_cast<char *>(&version), sizeof(version)); is.read(reinterpret_cast<char *>(&version), sizeof(version));
// PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported"); // PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
...@@ -186,7 +191,8 @@ void TensorFromStream(std::istream &is, framework::Tensor *tensor) { ...@@ -186,7 +191,8 @@ void TensorFromStream(std::istream &is, framework::Tensor *tensor) {
{ // read tensor { // read tensor
std::vector<int64_t> dims; std::vector<int64_t> dims;
dims.reserve(static_cast<size_t>(desc.dims().size())); dims.reserve(static_cast<size_t>(desc.dims().size()));
std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims)); std::copy(desc.dims().begin(), desc.dims().end(),
std::back_inserter(dims));
tensor->Resize(framework::make_ddim(dims)); tensor->Resize(framework::make_ddim(dims));
void *buf; void *buf;
...@@ -194,7 +200,7 @@ void TensorFromStream(std::istream &is, framework::Tensor *tensor) { ...@@ -194,7 +200,7 @@ void TensorFromStream(std::istream &is, framework::Tensor *tensor) {
DeserializedDataFunctor(&buf, tensor)); DeserializedDataFunctor(&buf, tensor));
is.read(static_cast<char *>(buf), tensor->memory_size()); is.read(static_cast<char *>(buf), tensor->memory_size());
} }
} }
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -20,39 +20,39 @@ limitations under the License. */ ...@@ -20,39 +20,39 @@ limitations under the License. */
#include <vector> #include <vector>
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
void TensorCopy(const Tensor &src, Tensor *dst); void TensorCopy(const Tensor &src, Tensor *dst);
void TensorCopySync(const Tensor &src, Tensor *dst); void TensorCopySync(const Tensor &src, Tensor *dst);
template <typename T> template <typename T>
void TensorFromVector(const std::vector<T> &src, Tensor *dst); void TensorFromVector(const std::vector<T> &src, Tensor *dst);
template <typename T> template <typename T>
void TesnorToVector(const Tensor &src, std::vector<T> *dst); void TesnorToVector(const Tensor &src, std::vector<T> *dst);
bool TensorContainsNAN(const framework::Tensor &tensor); bool TensorContainsNAN(const framework::Tensor &tensor);
bool TensorContainsInf(const framework::Tensor &tensor); bool TensorContainsInf(const framework::Tensor &tensor);
void TensorToStream(std::ostream &os, const Tensor &tensor); void TensorToStream(std::ostream &os, const Tensor &tensor);
void TensorFromStream(std::istream &is, Tensor *tensor); void TensorFromStream(std::istream &is, Tensor *tensor);
// //
// The implementation of template functions. // The implementation of template functions.
// //
template <typename T> template <typename T>
void TensorFromVector(const std::vector<T> &src, Tensor *dst) { void TensorFromVector(const std::vector<T> &src, Tensor *dst) {
auto src_ptr = static_cast<const void *>(src.data()); auto src_ptr = static_cast<const void *>(src.data());
dst->Resize({static_cast<int64_t>(src.size())}); dst->Resize({static_cast<int64_t>(src.size())});
auto dst_ptr = static_cast<void *>(dst->mutable_data<T>()); auto dst_ptr = static_cast<void *>(dst->mutable_data<T>());
auto size = src.size() * sizeof(T); auto size = src.size() * sizeof(T);
memory::Copy(dst_ptr, src_ptr, size); memory::Copy(dst_ptr, src_ptr, size);
} }
template <typename T> template <typename T>
void TensorToVector(const Tensor &src, std::vector<T> *dst) { void TensorToVector(const Tensor &src, std::vector<T> *dst) {
auto src_ptr = static_cast<const void *>(src.data<T>()); auto src_ptr = static_cast<const void *>(src.data<T>());
auto size = src.numel() * sizeof(T); auto size = src.numel() * sizeof(T);
...@@ -60,7 +60,7 @@ void TensorToVector(const Tensor &src, std::vector<T> *dst) { ...@@ -60,7 +60,7 @@ void TensorToVector(const Tensor &src, std::vector<T> *dst) {
auto dst_ptr = static_cast<void *>(dst->data()); auto dst_ptr = static_cast<void *>(dst->data());
memory::Copy(dst_ptr, src_ptr, size); memory::Copy(dst_ptr, src_ptr, size);
} }
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -20,9 +20,9 @@ SOFTWARE. ...@@ -20,9 +20,9 @@ SOFTWARE.
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
VarDesc::VarDesc(const proto::VarDesc &desc) : desc_(desc) {} VarDesc::VarDesc(const proto::VarDesc &desc) : desc_(desc) {}
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -22,10 +22,10 @@ SOFTWARE. ...@@ -22,10 +22,10 @@ SOFTWARE.
#include "paddle_mobile_object.h" #include "paddle_mobile_object.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
class VarDesc { class VarDesc {
public: public:
VarDesc(const proto::VarDesc &desc); VarDesc(const proto::VarDesc &desc);
std::string Name() const { return desc_.name(); } std::string Name() const { return desc_.name(); }
...@@ -68,7 +68,8 @@ public: ...@@ -68,7 +68,8 @@ public:
template <typename T> template <typename T>
std::vector<T> RepeatedToVector( std::vector<T> RepeatedToVector(
const google::protobuf::RepeatedField<T> &repeated_field) const { const google::protobuf::RepeatedField<T> &repeated_field)
const {
std::vector<T> ret; std::vector<T> ret;
ret.reserve(repeated_field.size()); ret.reserve(repeated_field.size());
std::copy(repeated_field.begin(), repeated_field.end(), std::copy(repeated_field.begin(), repeated_field.end(),
...@@ -80,9 +81,9 @@ public: ...@@ -80,9 +81,9 @@ public:
return this->RepeatedToVector(tensor_desc().dims()); return this->RepeatedToVector(tensor_desc().dims());
} }
private: private:
proto::VarDesc desc_; proto::VarDesc desc_;
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -23,16 +23,17 @@ SOFTWARE. ...@@ -23,16 +23,17 @@ SOFTWARE.
#include "variable.h" #include "variable.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
inline proto::VarType::Type ToVarType(std::type_index type) { inline proto::VarType::Type ToVarType(std::type_index type) {
if (type.hash_code() == typeid(LoDTensor).hash_code()) { if (type.hash_code() == typeid(LoDTensor).hash_code()) {
return proto::VarType_Type_LOD_TENSOR; return proto::VarType_Type_LOD_TENSOR;
} else if (type.hash_code() == typeid(SelectedRows).hash_code()) { } else if (type.hash_code() == typeid(SelectedRows).hash_code()) {
return proto::VarType_Type_SELECTED_ROWS; return proto::VarType_Type_SELECTED_ROWS;
} else { } else {
// PADDLE_THROW("ToVarType:Unsupported type %s", type.name()); // PADDLE_THROW("ToVarType:Unsupported type %s",
// type.name());
}
} }
}
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -26,12 +26,9 @@ SOFTWARE. ...@@ -26,12 +26,9 @@ SOFTWARE.
#include <typeinfo> #include <typeinfo>
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
class Variable : public PaddleMobileObject { class Variable : public PaddleMobileObject {
public: public:
Variable() {}
~Variable() {}
template <typename T> const T *Get() const { template <typename T> const T *Get() const {
return static_cast<const T *>(holder_->Ptr()); return static_cast<const T *>(holder_->Ptr());
} }
...@@ -43,7 +40,8 @@ public: ...@@ -43,7 +40,8 @@ public:
template <typename T> T *GetMutable() { template <typename T> T *GetMutable() {
if (!IsType<T>()) { if (!IsType<T>()) {
if (*Name() == "pixel") { if (*Name() == "pixel") {
// std::cout << " reset " << *Name() << std::endl; // std::cout << " reset " << *Name() <<
// std::endl;
} }
holder_.reset(new PlaceholderImp<T>(new T())); holder_.reset(new PlaceholderImp<T>(new T()));
} }
...@@ -53,11 +51,12 @@ public: ...@@ -53,11 +51,12 @@ public:
template <typename T> bool IsType() const { template <typename T> bool IsType() const {
if (holder_) { if (holder_) {
// printf("not null \n"); // printf("not null \n");
printf(" holder type : %s, this type %s \n", holder_->Type().name(), printf(" holder type : %s, this type %s \n",
typeid(T).name()); holder_->Type().name(), typeid(T).name());
} }
// std::cout << " " << holder_->Type() << " " << typeid(T) << // std::cout << " " << holder_->Type() << " " <<
// typeid(T) <<
// std::endl; // std::endl;
return holder_ != nullptr && holder_->Type() == typeid(T); return holder_ != nullptr && holder_->Type() == typeid(T);
} }
...@@ -68,7 +67,7 @@ public: ...@@ -68,7 +67,7 @@ public:
void SetName(const std::string *name) { name_ = name; } void SetName(const std::string *name) { name_ = name; }
private: private:
struct Placeholder { struct Placeholder {
Placeholder() = default; Placeholder() = default;
virtual ~Placeholder() = default; virtual ~Placeholder() = default;
...@@ -92,6 +91,6 @@ private: ...@@ -92,6 +91,6 @@ private:
std::unique_ptr<Placeholder> holder_; std::unique_ptr<Placeholder> holder_;
friend class Scope; friend class Scope;
const std::string *name_; const std::string *name_;
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -29,7 +29,7 @@ SOFTWARE. ...@@ -29,7 +29,7 @@ SOFTWARE.
namespace paddle_mobile { namespace paddle_mobile {
void ReadBinaryFile(const std::string &filename, std::string *contents) { void ReadBinaryFile(const std::string &filename, std::string *contents) {
std::ifstream fin(filename, std::ios::in | std::ios::binary); std::ifstream fin(filename, std::ios::in | std::ios::binary);
fin.seekg(0, std::ios::end); fin.seekg(0, std::ios::end);
contents->clear(); contents->clear();
...@@ -37,10 +37,10 @@ void ReadBinaryFile(const std::string &filename, std::string *contents) { ...@@ -37,10 +37,10 @@ void ReadBinaryFile(const std::string &filename, std::string *contents) {
fin.seekg(0, std::ios::beg); fin.seekg(0, std::ios::beg);
fin.read(&(contents->at(0)), contents->size()); fin.read(&(contents->at(0)), contents->size());
fin.close(); fin.close();
} }
template <typename Dtype, Precision P> template <typename Dtype, Precision P>
void Loader<Dtype, P>::LoadVar(framework::LoDTensor *tensor, void Loader<Dtype, P>::LoadVar(framework::LoDTensor *tensor,
const std::string &file_path) { const std::string &file_path) {
LOG(kLOG_DEBUG) << " to load " << file_path; LOG(kLOG_DEBUG) << " to load " << file_path;
...@@ -79,7 +79,8 @@ void Loader<Dtype, P>::LoadVar(framework::LoDTensor *tensor, ...@@ -79,7 +79,8 @@ void Loader<Dtype, P>::LoadVar(framework::LoDTensor *tensor,
// 3. tensor version // 3. tensor version
uint32_t tensor_version; uint32_t tensor_version;
is.read(reinterpret_cast<char *>(&tensor_version), sizeof(tensor_version)); is.read(reinterpret_cast<char *>(&tensor_version),
sizeof(tensor_version));
// std::cout << " tensor_version: " << tensor_version << std::endl; // std::cout << " tensor_version: " << tensor_version << std::endl;
// 4. tensor desc // 4. tensor desc
...@@ -92,17 +93,20 @@ void Loader<Dtype, P>::LoadVar(framework::LoDTensor *tensor, ...@@ -92,17 +93,20 @@ void Loader<Dtype, P>::LoadVar(framework::LoDTensor *tensor,
framework::proto::VarType::TensorDesc desc; framework::proto::VarType::TensorDesc desc;
desc.ParseFromArray(buf.get(), size); desc.ParseFromArray(buf.get(), size);
// std::cout << " desc dims size " << desc.dims().size() << std::endl; // std::cout << " desc dims size " << desc.dims().size() <<
// std::endl;
int memory_size = 1; int memory_size = 1;
for (int l = 0; l < desc.dims().size(); ++l) { for (int l = 0; l < desc.dims().size(); ++l) {
// std::cout << " dim " << l << " value: " << desc.dims()[l] << // std::cout << " dim " << l << " value: " << desc.dims()[l]
// <<
// std::endl; // std::endl;
memory_size *= desc.dims()[l]; memory_size *= desc.dims()[l];
} }
std::vector<int64_t> dims; std::vector<int64_t> dims;
dims.reserve(static_cast<size_t>(desc.dims().size())); dims.reserve(static_cast<size_t>(desc.dims().size()));
std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims)); std::copy(desc.dims().begin(), desc.dims().end(),
std::back_inserter(dims));
tensor->Resize(framework::make_ddim(dims)); tensor->Resize(framework::make_ddim(dims));
void *memory; void *memory;
...@@ -139,15 +143,16 @@ void Loader<Dtype, P>::LoadVar(framework::LoDTensor *tensor, ...@@ -139,15 +143,16 @@ void Loader<Dtype, P>::LoadVar(framework::LoDTensor *tensor,
// std::cout << " not support" << std::endl; // std::cout << " not support" << std::endl;
} }
// std::cout << " malloc size: " << memory_size * type_size << std::endl; // std::cout << " malloc size: " << memory_size * type_size <<
// std::endl;
is.read(static_cast<char *>(memory), memory_size * type_size); is.read(static_cast<char *>(memory), memory_size * type_size);
// std::cout << " memory: " << memory << std::endl; // std::cout << " memory: " << memory << std::endl;
is.close(); is.close();
}; };
template <typename Dtype, Precision P> template <typename Dtype, Precision P>
const framework::Program<Dtype, P> const framework::Program<Dtype, P>
Loader<Dtype, P>::Load(const std::string &dirname) { Loader<Dtype, P>::Load(const std::string &dirname) {
std::string model_filename = dirname + "/__model__"; std::string model_filename = dirname + "/__model__";
std::string program_desc_str; std::string program_desc_str;
ReadBinaryFile(model_filename, &program_desc_str); ReadBinaryFile(model_filename, &program_desc_str);
...@@ -171,10 +176,13 @@ Loader<Dtype, P>::Load(const std::string &dirname) { ...@@ -171,10 +176,13 @@ Loader<Dtype, P>::Load(const std::string &dirname) {
for (int i = 0; i < block->Vars().size(); ++i) { for (int i = 0; i < block->Vars().size(); ++i) {
std::shared_ptr<framework::VarDesc> var_desc = block->Vars()[i]; std::shared_ptr<framework::VarDesc> var_desc = block->Vars()[i];
auto var = scope->Var(var_desc->Name()); auto var = scope->Var(var_desc->Name());
if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) { if (var_desc->GetType() ==
framework::proto::VarType::LOD_TENSOR) {
if (var_desc->Persistable() && if (var_desc->Persistable() &&
var_desc->GetType() != framework::proto::VarType::FEED_MINIBATCH && var_desc->GetType() !=
var_desc->GetType() != framework::proto::VarType::FETCH_LIST) { framework::proto::VarType::FEED_MINIBATCH &&
var_desc->GetType() !=
framework::proto::VarType::FETCH_LIST) {
framework::LoDTensor *tensor = framework::LoDTensor *tensor =
var->GetMutable<framework::LoDTensor>(); var->GetMutable<framework::LoDTensor>();
// to load // to load
...@@ -196,64 +204,79 @@ Loader<Dtype, P>::Load(const std::string &dirname) { ...@@ -196,64 +204,79 @@ Loader<Dtype, P>::Load(const std::string &dirname) {
// std::cout << " op: " << op.type() << std::endl; // std::cout << " op: " << op.type() << std::endl;
for (int m = 0; m < op.inputs_size(); ++m) { for (int m = 0; m < op.inputs_size(); ++m) {
const framework::proto::OpDesc::Var &var = op.inputs(m); const framework::proto::OpDesc::Var &var = op.inputs(m);
// std::cout << " input parameter: " << var.parameter() << // std::cout << " input parameter: " <<
// var.parameter() <<
// std::endl; // std::endl;
for (int n = 0; n < var.arguments().size(); ++n) { for (int n = 0; n < var.arguments().size(); ++n) {
// std::cout << " argument - " << var.arguments()[n] << // std::cout << " argument - " <<
// var.arguments()[n] <<
// std::endl; // std::endl;
} }
} }
for (int y = 0; y < op.outputs_size(); ++y) { for (int y = 0; y < op.outputs_size(); ++y) {
const framework::proto::OpDesc::Var &var = op.outputs(y); const framework::proto::OpDesc::Var &var = op.outputs(y);
// std::cout << " output parameter: " << var.parameter() << // std::cout << " output parameter: " <<
// var.parameter() <<
// std::endl; // std::endl;
for (int z = 0; z < var.arguments().size(); ++z) { for (int z = 0; z < var.arguments().size(); ++z) {
// std::cout << " argument - " << var.arguments()[z] << // std::cout << " argument - " <<
// var.arguments()[z] <<
// std::endl; // std::endl;
} }
} }
for (int x = 0; x < op.attrs().size(); ++x) { for (int x = 0; x < op.attrs().size(); ++x) {
const framework::proto::OpDesc_Attr attr = op.attrs()[x]; const framework::proto::OpDesc_Attr attr = op.attrs()[x];
// std::cout << " attr name: " << attr.name() << std::endl; // std::cout << " attr name: " << attr.name() <<
// std::cout << " attr type: " << attr.type() << std::endl; // std::endl;
// std::cout << " attr type: " << attr.type() <<
// std::endl;
switch (attr.type()) { switch (attr.type()) {
case framework::proto::AttrType::BOOLEAN: case framework::proto::AttrType::BOOLEAN:
// std::cout << " boolen: " << attr.b() << std::endl; // std::cout << " boolen: " << attr.b() <<
// std::endl;
break; break;
case framework::proto::AttrType::INT: case framework::proto::AttrType::INT:
// std::cout << " int: " << attr.i() << std::endl; // std::cout << " int: " << attr.i() <<
// std::endl;
break; break;
case framework::proto::AttrType::FLOAT: case framework::proto::AttrType::FLOAT:
// std::cout << " float: " << attr.f() << std::endl; // std::cout << " float: " << attr.f() <<
// std::endl;
case framework::proto::AttrType::STRING: case framework::proto::AttrType::STRING:
// std::cout << " string: " << attr.s() << std::endl; // std::cout << " string: " << attr.s() <<
// std::endl;
case framework::proto::AttrType::BOOLEANS: case framework::proto::AttrType::BOOLEANS:
// std::vector<bool> // std::vector<bool>
// bools(attr.bools_size()); // bools(attr.bools_size());
for (int y = 0; y < attr.bools_size(); ++y) { for (int y = 0; y < attr.bools_size(); ++y) {
// std::cout << " bool - " << attr.bools(y) << // std::cout << " bool - " <<
// attr.bools(y) <<
// std::endl; // std::endl;
} }
case framework::proto::AttrType::LONG: case framework::proto::AttrType::LONG:
// std::cout << " long: " << attr.l() << std::endl; // std::cout << " long: " << attr.l() <<
// std::endl;
case framework::proto::AttrType::FLOATS: case framework::proto::AttrType::FLOATS:
for (int y = 0; y < attr.floats_size(); ++y) { for (int y = 0; y < attr.floats_size(); ++y) {
// std::cout << " float - " << y << ": " << // std::cout << " float - " << y <<
// ": " <<
// attr.floats(y) // attr.floats(y)
// << std::endl; // << std::endl;
} }
case framework::proto::AttrType::INTS: case framework::proto::AttrType::INTS:
for (int y = 0; y < attr.ints_size(); ++y) { for (int y = 0; y < attr.ints_size(); ++y) {
// std::cout << " int - " << y << ": " << // std::cout << " int - " << y << ":
// " <<
// attr.ints(y) // attr.ints(y)
// << std::endl; // << std::endl;
} }
case framework::proto::AttrType::STRINGS: case framework::proto::AttrType::STRINGS:
for (int y = 0; y < attr.strings_size(); ++y) { for (int y = 0; y < attr.strings_size(); ++y) {
// std::cout << " string - " << y << ": " << // std::cout << " string - " << y <<
// ": " <<
// attr.strings(y) // attr.strings(y)
// << std::endl; // << std::endl;
} }
...@@ -263,40 +286,53 @@ Loader<Dtype, P>::Load(const std::string &dirname) { ...@@ -263,40 +286,53 @@ Loader<Dtype, P>::Load(const std::string &dirname) {
for (int k = 0; k < block.vars().size(); ++k) { for (int k = 0; k < block.vars().size(); ++k) {
framework::proto::VarDesc var = block.vars()[k]; framework::proto::VarDesc var = block.vars()[k];
if (var.type().type() == framework::proto::VarType::LOD_TENSOR) { if (var.type().type() ==
// std::cout << " var name: " << var.name() << std::endl; framework::proto::VarType::LOD_TENSOR) {
// std::cout << " var name: " << var.name() <<
// std::endl;
const framework::proto::VarType::TensorDesc &tensor_desc = const framework::proto::VarType::TensorDesc &tensor_desc =
var.type().lod_tensor().tensor(); var.type().lod_tensor().tensor();
// std::cout << " in var tensor desc dims size " // std::cout << " in var tensor desc dims size "
// << tensor_desc.dims().size() << std::endl; // << tensor_desc.dims().size() <<
// std::endl;
int memory_size = 1; int memory_size = 1;
for (int l = 0; l < tensor_desc.dims().size(); ++l) { for (int l = 0; l < tensor_desc.dims().size(); ++l) {
// std::cout << " var tensor desc dim " << l // std::cout << " var tensor desc dim " << l
// << " value: " << tensor_desc.dims()[l] << // << " value: " <<
// tensor_desc.dims()[l] <<
// std::endl; // std::endl;
} }
} }
if (var.persistable() && if (var.persistable() &&
var.type().type() != framework::proto::VarType::FEED_MINIBATCH && var.type().type() !=
var.type().type() != framework::proto::VarType::FETCH_LIST) { framework::proto::VarType::FEED_MINIBATCH &&
// std::cout << " to load " << var.name() << std::endl; var.type().type() !=
framework::proto::VarType::FETCH_LIST) {
// std::cout << " to load " << var.name() <<
// std::endl;
std::string file_path = dirname + "/" + var.name(); std::string file_path = dirname + "/" + var.name();
std::ifstream is(file_path); std::ifstream is(file_path);
std::streampos pos = is.tellg(); // save current position std::streampos pos =
is.tellg(); // save current position
is.seekg(0, std::ios::end); is.seekg(0, std::ios::end);
// std::cout << " file length = " << is.tellg() << std::endl; // std::cout << " file length = " << is.tellg() <<
// std::endl;
is.seekg(pos); // restore saved position is.seekg(pos); // restore saved position
// 1. version // 1. version
uint32_t version; uint32_t version;
is.read(reinterpret_cast<char *>(&version), sizeof(version)); is.read(reinterpret_cast<char *>(&version),
// std::cout << " version: " << version << std::endl; sizeof(version));
// std::cout << " version: " << version <<
// std::endl;
// 2 Lod information // 2 Lod information
uint64_t lod_level; uint64_t lod_level;
is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level)); is.read(reinterpret_cast<char *>(&lod_level),
// std::cout << " load level: " << lod_level << std::endl; sizeof(lod_level));
// std::cout << " load level: " << lod_level <<
// std::endl;
// std::cout << " lod info: " << std::endl; // std::cout << " lod info: " << std::endl;
for (uint64_t i = 0; i < lod_level; ++i) { for (uint64_t i = 0; i < lod_level; ++i) {
uint64_t size; uint64_t size;
...@@ -305,29 +341,35 @@ Loader<Dtype, P>::Load(const std::string &dirname) { ...@@ -305,29 +341,35 @@ Loader<Dtype, P>::Load(const std::string &dirname) {
is.read(reinterpret_cast<char *>(tmp.data()), is.read(reinterpret_cast<char *>(tmp.data()),
static_cast<std::streamsize>(size)); static_cast<std::streamsize>(size));
for (int j = 0; j < tmp.size(); ++j) { for (int j = 0; j < tmp.size(); ++j) {
// std::cout << " lod - " << tmp[j] << std::endl; // std::cout << " lod - " << tmp[j] <<
// std::endl;
} }
} }
uint32_t tensor_version; uint32_t tensor_version;
is.read(reinterpret_cast<char *>(&version), sizeof(version)); is.read(reinterpret_cast<char *>(&version),
// std::cout << " tensor_version: " << tensor_version << sizeof(version));
// std::cout << " tensor_version: " <<
// tensor_version <<
// std::endl; // std::endl;
int32_t size; int32_t size;
is.read(reinterpret_cast<char *>(&size), sizeof(size)); is.read(reinterpret_cast<char *>(&size), sizeof(size));
// std::cout << " tensor desc size: " << size << std::endl; // std::cout << " tensor desc size: " << size <<
// std::endl;
std::unique_ptr<char[]> buf(new char[size]); std::unique_ptr<char[]> buf(new char[size]);
is.read(reinterpret_cast<char *>(buf.get()), size); is.read(reinterpret_cast<char *>(buf.get()), size);
framework::proto::VarType::TensorDesc desc; framework::proto::VarType::TensorDesc desc;
desc.ParseFromArray(buf.get(), size); desc.ParseFromArray(buf.get(), size);
// std::cout << " desc dims size " << desc.dims().size() << // std::cout << " desc dims size " <<
// desc.dims().size() <<
// std::endl; // std::endl;
int memory_size = 1; int memory_size = 1;
for (int l = 0; l < desc.dims().size(); ++l) { for (int l = 0; l < desc.dims().size(); ++l) {
// std::cout << " dim " << l << " value: " << // std::cout << " dim " << l << " value: "
// <<
// desc.dims()[l] // desc.dims()[l]
// << std::endl; // << std::endl;
memory_size *= desc.dims()[l]; memory_size *= desc.dims()[l];
...@@ -362,14 +404,18 @@ Loader<Dtype, P>::Load(const std::string &dirname) { ...@@ -362,14 +404,18 @@ Loader<Dtype, P>::Load(const std::string &dirname) {
break; break;
default: default:
break; break;
// std::cout << " not support" << std::endl; // std::cout << " not support" <<
// std::endl;
} }
// std::cout << " malloc size: " << memory_size * type_size // std::cout << " malloc size: " << memory_size *
// type_size
// << std::endl; // << std::endl;
void *memory = malloc(memory_size * type_size); void *memory = malloc(memory_size * type_size);
is.read(static_cast<char *>(memory), memory_size * type_size); is.read(static_cast<char *>(memory),
// std::cout << " memory: " << memory << std::endl; memory_size * type_size);
// std::cout << " memory: " << memory <<
// std::endl;
is.close(); is.close();
} else { } else {
// std::cout << " *not load " // std::cout << " *not load "
...@@ -380,8 +426,8 @@ Loader<Dtype, P>::Load(const std::string &dirname) { ...@@ -380,8 +426,8 @@ Loader<Dtype, P>::Load(const std::string &dirname) {
#endif #endif
return program; return program;
} }
template class Loader<CPU, Precision::FP32>; template class Loader<CPU, Precision::FP32>;
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -27,13 +27,14 @@ SOFTWARE. ...@@ -27,13 +27,14 @@ SOFTWARE.
namespace paddle_mobile { namespace paddle_mobile {
template <typename Dtype, Precision P = Precision::FP32> template <typename Dtype, Precision P = Precision::FP32>
class Loader : PaddleMobileObject { class Loader : PaddleMobileObject {
public: public:
const framework::Program<Dtype, P> Load(const std::string &dirname); const framework::Program<Dtype, P> Load(const std::string &dirname);
private: private:
void LoadVar(framework::LoDTensor *tensor, const std::string &file_path); void LoadVar(framework::LoDTensor *tensor,
}; const std::string &file_path);
};
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -22,30 +22,30 @@ SOFTWARE. ...@@ -22,30 +22,30 @@ SOFTWARE.
#include <cstring> #include <cstring>
namespace paddle_mobile { namespace paddle_mobile {
namespace memory { namespace memory {
const int MALLOC_ALIGN = 16; const int MALLOC_ALIGN = 16;
void Copy(void *dst, const void *src, size_t num) { void Copy(void *dst, const void *src, size_t num) {
std::memcpy(dst, src, num); std::memcpy(dst, src, num);
}; };
void *Alloc(size_t size) { void *Alloc(size_t size) {
size_t offset = sizeof(void *) + MALLOC_ALIGN - 1; size_t offset = sizeof(void *) + MALLOC_ALIGN - 1;
char *p = static_cast<char *>(malloc(offset + size)); char *p = static_cast<char *>(malloc(offset + size));
if (!p) { if (!p) {
return nullptr; return nullptr;
} }
void *r = reinterpret_cast<void *>(reinterpret_cast<size_t>(p + offset) & void *r = reinterpret_cast<void *>(
(~(MALLOC_ALIGN - 1))); reinterpret_cast<size_t>(p + offset) & (~(MALLOC_ALIGN - 1)));
static_cast<void **>(r)[-1] = p; static_cast<void **>(r)[-1] = p;
return r; return r;
} }
void Free(void *ptr) { void Free(void *ptr) {
if (ptr) { if (ptr) {
free(static_cast<void **>(ptr)[-1]); free(static_cast<void **>(ptr)[-1]);
} }
} }
} // namespace memory } // namespace memory
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -21,15 +21,15 @@ SOFTWARE. ...@@ -21,15 +21,15 @@ SOFTWARE.
#include <type_traits> #include <type_traits>
namespace paddle_mobile { namespace paddle_mobile {
namespace memory { namespace memory {
void Copy(void *dst, const void *src, size_t num); void Copy(void *dst, const void *src, size_t num);
void *Alloc(size_t size); void *Alloc(size_t size);
void Free(void *ptr); void Free(void *ptr);
/** /**
* \brief Free memory block in one place. * \brief Free memory block in one place.
* *
* \note In some cases, custom deleter is used to * \note In some cases, custom deleter is used to
...@@ -37,16 +37,16 @@ void Free(void *ptr); ...@@ -37,16 +37,16 @@ void Free(void *ptr);
* std::unique_ptr<T> in tensor.h. * std::unique_ptr<T> in tensor.h.
* static_cast * static_cast
*/ */
template <typename T> class PODDeleter { template <typename T> class PODDeleter {
static_assert(std::is_pod<T>::value, "T must be POD"); static_assert(std::is_pod<T>::value, "T must be POD");
public: public:
explicit PODDeleter(){}; explicit PODDeleter(){};
void operator()(T *ptr) { Free(static_cast<void *>(ptr)); } void operator()(T *ptr) { Free(static_cast<void *>(ptr)); }
}; };
/** /**
* \brief Free memory block in one place does not meet POD * \brief Free memory block in one place does not meet POD
* *
* \note In some cases, custom deleter is used to * \note In some cases, custom deleter is used to
...@@ -54,11 +54,11 @@ public: ...@@ -54,11 +54,11 @@ public:
* std::unique_ptr<T> in tensor.h. * std::unique_ptr<T> in tensor.h.
* reinterpret_cast * reinterpret_cast
*/ */
template <typename T> class PlainDeleter { template <typename T> class PlainDeleter {
public: public:
explicit PlainDeleter(){}; explicit PlainDeleter(){};
void operator()(T *ptr) { Free(reinterpret_cast<void *>(ptr)); } void operator()(T *ptr) { Free(reinterpret_cast<void *>(ptr)); }
}; };
} // namespace memory } // namespace memory
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -22,17 +22,17 @@ SOFTWARE. ...@@ -22,17 +22,17 @@ SOFTWARE.
#include "framework/operator.h" #include "framework/operator.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
int ConvOutputSize(int input_size, int filter_size, int dilation, int padding, int ConvOutputSize(int input_size, int filter_size, int dilation,
int stride) { int padding, int stride) {
const int dkernel = dilation * (filter_size - 1) + 1; const int dkernel = dilation * (filter_size - 1) + 1;
int output_size = (input_size + 2 * padding - dkernel) / stride + 1; int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
return output_size; return output_size;
} }
template <typename Dtype, typename T> template <typename Dtype, typename T>
void ConvOp<Dtype, T>::InferShape() const { void ConvOp<Dtype, T>::InferShape() const {
// std::cout << " begin get dims: " << std::endl; // std::cout << " begin get dims: " << std::endl;
auto in_dims = param_.Input()->dims(); auto in_dims = param_.Input()->dims();
...@@ -61,16 +61,16 @@ void ConvOp<Dtype, T>::InferShape() const { ...@@ -61,16 +61,16 @@ void ConvOp<Dtype, T>::InferShape() const {
std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]}); std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
for (size_t i = 0; i < strides.size(); ++i) { for (size_t i = 0; i < strides.size(); ++i) {
output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2], output_shape.push_back(
dilations[i], paddings[i], ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
strides[i])); dilations[i], paddings[i], strides[i]));
} }
framework::DDim ddim = framework::make_ddim(output_shape); framework::DDim ddim = framework::make_ddim(output_shape);
param_.Output()->Resize(ddim); param_.Output()->Resize(ddim);
} }
template class ConvOp<CPU, float>; template class ConvOp<CPU, float>;
} // namespace operators } // namespace operators
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -22,32 +22,33 @@ SOFTWARE. ...@@ -22,32 +22,33 @@ SOFTWARE.
#include "operators/kernel/conv_kernel.h" #include "operators/kernel/conv_kernel.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
using namespace framework; using namespace framework;
template <typename DeviceType, typename T> template <typename DeviceType, typename T>
class ConvOp : public framework::OperatorWithKernel<DeviceType> { class ConvOp : public framework::OperatorWithKernel<DeviceType> {
public: public:
ConvOp(const std::string &type, const VariableNameMap &inputs, ConvOp(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const framework::AttributeMap &attrs, const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
std::shared_ptr<framework::Scope> scope) std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<DeviceType>(type, inputs, outputs, attrs, : framework::OperatorWithKernel<DeviceType>(
scope), type, inputs, outputs, attrs, scope),
param_(inputs, outputs, attrs, *scope) {} param_(inputs, outputs, attrs, *scope) {}
using framework::OperatorWithKernel<DeviceType>::OperatorWithKernel; using framework::OperatorWithKernel<DeviceType>::OperatorWithKernel;
void InferShape() const override; void InferShape() const override;
protected: void Run() const {
void RunImpl() const {
operators::ConvKernel<DeviceType, T, ConvParam> kernel; operators::ConvKernel<DeviceType, T, ConvParam> kernel;
kernel.Compute(param_); kernel.Compute(param_);
this->ClearVariables(); this->ClearVariables();
} }
private:
ConvParam param_; ConvParam param_;
}; };
} // operators } // operators
} // paddle_mobile } // paddle_mobile
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include "elementwise_add_op.h"
namespace paddle_mobile {
namespace operators {
template <typename Dtype, typename T>
void ElementwiseAddOp<Dtype, T>::InferShape() const {
auto x_dim = param_.InputX()->dims();
param_.Out()->Resize(x_dim);
}
template class ElementwiseAddOp<CPU, float>;
}
}
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include "framework/operator.h"
#include "kernel/elementwise_add_kernel.h"
#include "op_param.h"
namespace paddle_mobile {
namespace operators {
using namespace framework;
template <typename DeviceType, typename T>
class ElementwiseAddOp
: public framework::OperatorWithKernel<DeviceType> {
public:
ElementwiseAddOp(const std::string &type,
const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<DeviceType>(
type, inputs, outputs, attrs, scope),
param_(inputs, outputs, attrs, *scope) {}
void Run() const {
operators::ElementwiseAddKernel<DeviceType, T,
ElementwiseAddParam>
kernel;
kernel.Compute(param_);
}
using framework::OperatorWithKernel<DeviceType>::OperatorWithKernel;
void InferShape() const override;
protected:
ElementwiseAddParam param_;
};
}
}
...@@ -19,27 +19,31 @@ SOFTWARE. ...@@ -19,27 +19,31 @@ SOFTWARE.
#include "operators/kernel/conv_kernel.h" #include "operators/kernel/conv_kernel.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
bool IsExpand(const std::vector<int64_t> &filter_dim, bool IsExpand(const std::vector<int64_t> &filter_dim,
const std::vector<int> &strides, const std::vector<int> &paddings, const std::vector<int> &strides,
const std::vector<int> &paddings,
const std::vector<int> &dilations) { const std::vector<int> &dilations) {
bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true; bool filter_1 = true, strides_1 = true, padding_0 = true,
dilation_1 = true;
for (size_t j = 0; j < strides.size(); ++j) { for (size_t j = 0; j < strides.size(); ++j) {
filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1); filter_1 =
filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
strides_1 = strides_1 && (strides[j] == 1); strides_1 = strides_1 && (strides[j] == 1);
padding_0 = padding_0 && (paddings[j] == 0); padding_0 = padding_0 && (paddings[j] == 0);
dilation_1 = dilation_1 && (dilations[j] == 1); dilation_1 = dilation_1 && (dilations[j] == 1);
} }
return !(filter_1 && strides_1 && padding_0 && dilation_1); return !(filter_1 && strides_1 && padding_0 && dilation_1);
} }
template <>
void ConvKernel<CPU, float, ConvParam>::Compute(const ConvParam &param) const {
const Tensor *input = param.Input();
template <>
void ConvKernel<CPU, float, ConvParam>::Compute(
const ConvParam &param) const {
LOG(kLOG_DEBUG) << param; LOG(kLOG_DEBUG) << param;
const Tensor *input = param.Input();
// The filter will be reshaped in the calculations, // The filter will be reshaped in the calculations,
// so here use an assignment operation, // so here use an assignment operation,
// that avoids modifying the variable in the Scope. // that avoids modifying the variable in the Scope.
...@@ -57,13 +61,18 @@ void ConvKernel<CPU, float, ConvParam>::Compute(const ConvParam &param) const { ...@@ -57,13 +61,18 @@ void ConvKernel<CPU, float, ConvParam>::Compute(const ConvParam &param) const {
const int batch_size = static_cast<int>(input->dims()[0]); const int batch_size = static_cast<int>(input->dims()[0]);
// filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w} // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h,
std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims())); // k_w}
// output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w} std::vector<int64_t> filter_shape_vec(
std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims())); framework::vectorize(filter.dims()));
// output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h,
// o_w}
std::vector<int64_t> output_shape_vec(
framework::vectorize(output->dims()));
// use col_shape in the im2col calculation // use col_shape in the im2col calculation
// col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d, // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h,
// k_w, o_d,
// o_h, o_w} // o_h, o_w}
size_t data_dim = filter_shape_vec.size() - 2; size_t data_dim = filter_shape_vec.size() - 2;
std::vector<int64_t> col_shape_vec(1 + 2 * data_dim); std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
...@@ -75,12 +84,14 @@ void ConvKernel<CPU, float, ConvParam>::Compute(const ConvParam &param) const { ...@@ -75,12 +84,14 @@ void ConvKernel<CPU, float, ConvParam>::Compute(const ConvParam &param) const {
framework::DDim col_shape(framework::make_ddim(col_shape_vec)); framework::DDim col_shape(framework::make_ddim(col_shape_vec));
// use col_matrix_shape in the gemm calculation // use col_matrix_shape in the gemm calculation
// size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d * // size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w,
// o_d *
// o_h * o_w) // o_h * o_w)
framework::DDim col_matrix_shape = framework::DDim col_matrix_shape =
framework::flatten_to_2d(col_shape, data_dim + 1); framework::flatten_to_2d(col_shape, data_dim + 1);
bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations); bool is_expand =
IsExpand(filter_shape_vec, strides, paddings, dilations);
Tensor col; Tensor col;
// col_matrix shares the same piece of data with col, // col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape // but will be reshaped into a two-dimensional matrix shape
...@@ -95,14 +106,10 @@ void ConvKernel<CPU, float, ConvParam>::Compute(const ConvParam &param) const { ...@@ -95,14 +106,10 @@ void ConvKernel<CPU, float, ConvParam>::Compute(const ConvParam &param) const {
framework::DDim input_shape = framework::slice_ddim( framework::DDim input_shape = framework::slice_ddim(
input->dims(), 1, static_cast<int>(input->dims().size())); input->dims(), 1, static_cast<int>(input->dims().size()));
framework::DDim filter_matrix_shape = {filter.dims()[0], framework::DDim filter_matrix_shape = {
filter.numel() / filter.dims()[0]}; filter.dims()[0], filter.numel() / filter.dims()[0]};
filter.Resize(filter_matrix_shape); filter.Resize(filter_matrix_shape);
DLOG << " input dim " << input->dims();
DLOG << " output dim " << output->dims();
framework::DDim output_matrix_shape = { framework::DDim output_matrix_shape = {
output->dims()[1], output->dims()[1],
output->numel() / (output->dims()[0] * output->dims()[1])}; output->numel() / (output->dims()[0] * output->dims()[1])};
...@@ -118,10 +125,12 @@ void ConvKernel<CPU, float, ConvParam>::Compute(const ConvParam &param) const { ...@@ -118,10 +125,12 @@ void ConvKernel<CPU, float, ConvParam>::Compute(const ConvParam &param) const {
// device_context<DeviceContext>(); // device_context<DeviceContext>();
for (int i = 0; i < batch_size; i++) { for (int i = 0; i < batch_size; i++) {
Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape); Tensor out_batch =
output->Slice(i, i + 1).Resize(output_matrix_shape);
for (int g = 0; g < groups; g++) { for (int g = 0; g < groups; g++) {
Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); Tensor in_slice =
in_batch.Slice(g * in_step, (g + 1) * in_step);
if (!is_expand) { if (!is_expand) {
col.ShareDataWith(in_slice); col.ShareDataWith(in_slice);
...@@ -130,8 +139,8 @@ void ConvKernel<CPU, float, ConvParam>::Compute(const ConvParam &param) const { ...@@ -130,8 +139,8 @@ void ConvKernel<CPU, float, ConvParam>::Compute(const ConvParam &param) const {
} else if (data_dim == 2U) { } else if (data_dim == 2U) {
// im2col // im2col
im2col(in_slice, dilations, strides, im2col(in_slice, dilations, strides,
std::vector<int>{paddings[0], paddings[1], paddings[0], std::vector<int>{paddings[0], paddings[1],
paddings[1]}, paddings[0], paddings[1]},
&col); &col);
} else if (data_dim == 3U) { } else if (data_dim == 3U) {
// vol2col // vol2col
...@@ -139,15 +148,17 @@ void ConvKernel<CPU, float, ConvParam>::Compute(const ConvParam &param) const { ...@@ -139,15 +148,17 @@ void ConvKernel<CPU, float, ConvParam>::Compute(const ConvParam &param) const {
} }
// gemm // gemm
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); Tensor out_slice =
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); out_batch.Slice(g * out_step, (g + 1) * out_step);
math::matmul<float>(filter_slice, false, col_matrix, false, float(1.0), Tensor filter_slice =
&out_slice, float(0.0)); filter.Slice(g * out_step, (g + 1) * out_step);
math::matmul<float>(filter_slice, false, col_matrix, false,
float(1.0), &out_slice, float(0.0));
}
} }
} }
}
template class ConvKernel<CPU, float, ConvParam>; template class ConvKernel<CPU, float, ConvParam>;
} // namespace operators } // namespace operators
} // namespace paddle_mobile } // namespace paddle_mobile
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "operators/kernel/elementwise_add_kernel.h"
namespace paddle_mobile {
namespace operators {
template <typename T> struct AddFunctor {
inline T operator()(T a, T b) const { return a + b; }
};
template <>
void ElementwiseAddKernel<CPU, float, ElementwiseAddParam>::Compute(
const ElementwiseAddParam &param) const {
const Tensor *input_x = param.InputX();
const Tensor *input_y = param.InputY();
Tensor *Out = param.Out();
Out->mutable_data<float>();
const int axis = param.Axis();
ElementwiseComputeEx<AddFunctor<float>, float>(
input_x, input_y, axis, AddFunctor<float>(), Out);
}
template class ElementwiseAddKernel<CPU, float, ElementwiseAddParam>;
} // namespace operators
} // namespace paddle
...@@ -25,14 +25,15 @@ SOFTWARE. ...@@ -25,14 +25,15 @@ SOFTWARE.
#pragma once; #pragma once;
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
using namespace framework; using namespace framework;
template <typename DeviceType, typename T, typename P> template <typename DeviceType, typename T, typename P>
class ConvKernel : public framework::OpKernelBase<DeviceType, ConvParam> { class ConvKernel
public: : public framework::OpKernelBase<DeviceType, ConvParam> {
public:
void Compute(const ConvParam &param) const; void Compute(const ConvParam &param) const;
}; };
} }
} }
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#pragma once;
#include "framework/operator.h"
#include "operators/math/elementwise_op_function.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
using namespace framework;
template <typename DeviceType, typename T, typename P>
class ElementwiseAddKernel
: public framework::OpKernelBase<DeviceType, ElementwiseAddParam> {
public:
void Compute(const ElementwiseAddParam &param) const;
};
}
}
...@@ -19,11 +19,12 @@ SOFTWARE. ...@@ -19,11 +19,12 @@ SOFTWARE.
#include "operators/kernel/conv_kernel.h" #include "operators/kernel/conv_kernel.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
// template<> // template<>
// void ConvKernel<FPGA, float>::Compute(const ConvParam &param) const {} // void ConvKernel<FPGA, float>::Compute(const ConvParam &param) const
// // {}
// template class ConvKernel<FPGA, float>; //
} // template class ConvKernel<FPGA, float>;
}
} }
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "transform.h"
#define UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)
namespace paddle_mobile {
namespace operators {
/*
* Out = X ⊙ Y
* If Y's shape does not match X' shape, they will be reshaped.
* For example:
* 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
* pre=2, n=3*4, post=5
* x.shape(2, 12, 5) * y.shape(1, 12, 1).broadcast(2, 12, 5)
* 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
* pre=2*3, n=4*5, post=1
* x.shape(6, 20, 1) * y.shape(1, 20, 1).broadcast(6, 20, 1)
*/
inline void get_mid_dims(const framework::DDim &x_dims,
const framework::DDim &y_dims, const int axis,
int *pre, int *n, int *post) {
*pre = 1;
*n = 1;
*post = 1;
// compute pre
for (int i = 0; i < axis; ++i) {
(*pre) *= x_dims[i];
}
for (int i = 0; i < y_dims.size(); ++i) {
assert(x_dims[i + axis] == y_dims[i]);
/// "Broadcast dimension mismatch.");
(*n) *= y_dims[i];
}
for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
(*post) *= x_dims[i];
}
}
/// remove dims tail 1. (4,20,1,1) -> (4,20)
inline void trim_trailing_singular_dims(framework::DDim *dims) {
// Remove trailing dimensions of size 1 for y
auto actual_dims_size = dims->size();
for (; actual_dims_size != 0; --actual_dims_size) {
if ((*dims)[actual_dims_size - 1] != 1)
break;
}
if (actual_dims_size != dims->size()) {
auto actual_dims = framework::vectorize(*dims);
actual_dims.resize(actual_dims_size);
*dims = framework::make_ddim(actual_dims);
}
}
template <typename T> class RowwiseTransformIterator {
public:
RowwiseTransformIterator(const T *ptr, int n)
: ptr_(ptr), i_(0), n_(n) {}
RowwiseTransformIterator<T> &operator++() {
++i_;
if (UNLIKELY(i_ == n_)) {
i_ = 0;
}
return *this;
}
bool operator==(const RowwiseTransformIterator<T> &rhs) const {
return (ptr_ + i_) == &(*rhs);
}
bool operator!=(const RowwiseTransformIterator<T> &rhs) const {
return (ptr_ + i_) != &(*rhs);
}
const T &operator*() { return ptr_[i_]; }
private:
const T *ptr_;
int i_;
int64_t n_;
};
/// (4,20,2)+(20,): (20,) just as (20,1), when move 2 strides in last
/// dimension
/// in (4,20,2) is 2 ,
/// (20,1) move 1 stride , to fill(add) 2 element with the same number.
template <typename T> class MidWiseTransformIterator {
public:
MidWiseTransformIterator(const T *ptr, int n, int post)
: ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}
MidWiseTransformIterator<T> &operator++() {
++j_;
if (UNLIKELY(j_ == post_)) {
++i_;
j_ = 0;
if (UNLIKELY(i_ == n_)) {
i_ = 0;
}
}
return *this;
}
bool operator==(const MidWiseTransformIterator<T> &rhs) const {
return (ptr_ + i_) == &(*rhs);
}
bool operator!=(const MidWiseTransformIterator<T> &rhs) const {
return (ptr_ + i_) != &(*rhs);
}
const T &operator*() { return ptr_[i_]; }
private:
const T *ptr_;
int64_t i_;
int64_t j_;
int64_t n_;
int64_t post_;
};
template <typename Functor, typename T, typename OutType = T>
class TransformFunctor {
public:
TransformFunctor(const framework::Tensor *x,
const framework::Tensor *y, framework::Tensor *z,
Functor func)
: x_(x->data<T>()), y_(y->data<T>()),
z_(z->mutable_data<OutType>()), nx_(x->numel()), func_(func) {
}
inline void Run() const {
math::Transform trans;
// 同时执行func(x_, y_)传入z_。
trans(x_, x_ + nx_, y_, z_, func_);
}
inline void RunRowWise(int n, int pre) const {
math::Transform trans;
trans(x_, x_ + nx_, RowwiseTransformIterator<T>(y_, n), z_,
func_);
}
inline void RunMidWise(int n, int pre, int post) const {
math::Transform trans;
trans(x_, x_ + nx_, MidWiseTransformIterator<T>(y_, n, post),
z_, func_);
}
private:
const T *x_;
const T *y_;
OutType *z_;
int64_t nx_;
Functor func_;
};
template <typename Functor, typename T, typename OutType = T>
void ElementwiseComputeEx(const framework::Tensor *x,
const framework::Tensor *y, int axis,
Functor func, framework::Tensor *z) {
TransformFunctor<Functor, T, OutType> functor(x, y, z, func);
auto x_dims = x->dims();
auto y_dims = y->dims();
// PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
// "Rank of first input must >= rank of second
// input.");
if (x_dims == y_dims) {
functor.Run();
return;
}
/// axis = -1 represent the last dimension.
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
// PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
// "Axis should be in range [0, x_dims)");
trim_trailing_singular_dims(&y_dims);
axis = (y_dims.size() == 0) ? x_dims.size() : axis;
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);
if (post == 1) {
functor.RunRowWise(n, pre);
return;
} else {
functor.RunMidWise(n, pre, post);
return;
}
}
} // namespace operators
} // namespace paddle
此差异已折叠。
此差异已折叠。
此差异已折叠。
...@@ -19,24 +19,26 @@ limitations under the License. */ ...@@ -19,24 +19,26 @@ limitations under the License. */
#include <cmath> #include <cmath>
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
namespace math { namespace math {
template <typename T> template <typename T>
void gemm(const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, void gemm(const CBLAS_TRANSPOSE transA,
const int M, const int N, const int K, const T alpha, const T *A, const CBLAS_TRANSPOSE transB, const int M, const int N,
const T *B, const T beta, T *C); const int K, const T alpha, const T *A, const T *B,
const T beta, T *C);
template <typename T>
void gemm(const bool transA, const bool transB, const int M, const int N, template <typename T>
const int K, const T alpha, const T *A, const int lda, const T *B, void gemm(const bool transA, const bool transB, const int M,
const int ldb, const T beta, T *C, const int ldc); const int N, const int K, const T alpha, const T *A,
const int lda, const T *B, const int ldb, const T beta,
// matrix multiply with continuous memory T *C, const int ldc);
template <typename T>
void matmul(const framework::Tensor &matrix_a, bool trans_a, // matrix multiply with continuous memory
const framework::Tensor &matrix_b, bool trans_b, T alpha, template <typename T>
framework::Tensor *matrix_out, T beta); void matmul(const framework::Tensor &matrix_a, bool trans_a,
} // namespace math const framework::Tensor &matrix_b, bool trans_b,
} // namespace operators T alpha, framework::Tensor *matrix_out, T beta);
} // namespace math
} // namespace operators
} // namespace paddle_mobile } // namespace paddle_mobile
此差异已折叠。
此差异已折叠。
此差异已折叠。
...@@ -19,28 +19,27 @@ SOFTWARE. ...@@ -19,28 +19,27 @@ SOFTWARE.
#include "op_param.h" #include "op_param.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
Print &operator<<(Print &printer, const ConvParam &conv_param) {
Print &operator<<(Print &printer, const ConvParam &conv_param) {
printer << "parameter of conv: " printer << "parameter of conv: "
<< "\n"; << "\n";
printer << " stride: " printer << " stride: "
<< " (" << conv_param.Strides()[0] << conv_param.Strides()[1] << ") " << " (" << conv_param.Strides()[0]
<< conv_param.Strides()[1] << ") "
<< "\n"; << "\n";
printer << " paddings: " printer << " paddings: "
<< " (" << conv_param.Paddings()[0] << conv_param.Paddings()[1] << " (" << conv_param.Paddings()[0]
<< ") " << conv_param.Paddings()[1] << ") "
<< "\n"; << "\n";
printer << " dilations: " printer << " dilations: "
<< " (" << conv_param.Dilations()[0] << conv_param.Dilations()[1] << " (" << conv_param.Dilations()[0]
<< ") " << conv_param.Dilations()[1] << ") "
<< "\n"; << "\n";
printer << " groups: " << conv_param.Groups() << "\n"; printer << " groups: " << conv_param.Groups() << "\n";
printer << " input dims: " << conv_param.Input()->dims() << "\n"; printer << " input dims: " << conv_param.Input()->dims() << "\n";
printer << " filter dims: " << conv_param.Filter()->dims() << "\n"; printer << " filter dims: " << conv_param.Filter()->dims() << "\n";
printer << " output dims: " << conv_param.Output()->dims(); printer << " output dims: " << conv_param.Output()->dims();
return printer; return printer;
} }
} // namespace operators
} // namespace operators
} // namespace paddle_mobile } // namespace paddle_mobile
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册