“b079577e08f8b5ce7f8aa1b67e2209418be7ebc6”上不存在“demos/audio_searching/src/operations/count.py”
提交 f1426f03 编写于 作者: L liuruilong

add log print module

---
Language: Cpp
BasedOnStyle: LLVM
Standard: Cpp11
IndentWidth: 4
NamespaceIndentation: All
...
...@@ -6,6 +6,7 @@ repos: ...@@ -6,6 +6,7 @@ repos:
files: (src).*\.(md|py|mm|swift|java|c|cc|cxx|cpp|cu|h|hpp|hxx)$ files: (src).*\.(md|py|mm|swift|java|c|cc|cxx|cpp|cu|h|hpp|hxx)$
- id: remove-tabs - id: remove-tabs
files: (src).*\.(md|py|mm|swift|java|c|cc|cxx|cpp|cu|h|hpp|hxx)$ files: (src).*\.(md|py|mm|swift|java|c|cc|cxx|cpp|cu|h|hpp|hxx)$
- repo: https://github.com/pre-commit/pre-commit-hooks - repo: https://github.com/pre-commit/pre-commit-hooks
sha: 5bf6c09bfa1297d3692cadd621ef95f1284e33c0 sha: 5bf6c09bfa1297d3692cadd621ef95f1284e33c0
hooks: hooks:
...@@ -18,11 +19,21 @@ repos: ...@@ -18,11 +19,21 @@ repos:
files: (src).*\.(md|py|mm|swift|java|c|cc|cxx|cpp|cu|h|hpp|hxx)$ files: (src).*\.(md|py|mm|swift|java|c|cc|cxx|cpp|cu|h|hpp|hxx)$
- id: trailing-whitespace - id: trailing-whitespace
files: (src).*\.(md|py|mm|swift|java|c|cc|cxx|cpp|cu|h|hpp|hxx)$ files: (src).*\.(md|py|mm|swift|java|c|cc|cxx|cpp|cu|h|hpp|hxx)$
- repo: local - repo: local
hooks: hooks:
- id: clang-format-with-version-check - id: clang-format-with-version-check
name: clang-format name: clang-format
description: Format files with ClangFormat. description: Format files with ClangFormat.
entry: bash .clang_format.hook -i entry: bash ./tools/pre-commit.hooks/.clang_format.hook -i
language: system language: system
files: (src).*\.(c|cc|cxx|cpp|h|hpp|hxx)$ files: (src).*\.(c|cc|cxx|cpp|h|hpp|hxx)$
#- repo: local
# hooks:
# - id: copyright_checker
# name: copyright_checker
# entry: python ./tools/pre-commit.hooks/.copyright.hook
# language: system
# files: (src).*\.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto|py)$
# exclude: (?!.*third_party)^.*$ | (?!.*book)^.*$
...@@ -46,7 +46,8 @@ target_link_libraries(paddle-mobile-static protobuf-lite openblas) ...@@ -46,7 +46,8 @@ target_link_libraries(paddle-mobile-static protobuf-lite openblas)
add_dependencies(paddle-mobile openblas_proj) add_dependencies(paddle-mobile openblas_proj)
# gen test # gen test
ADD_EXECUTABLE(paddle-mobile-test test/main.cpp test/test_helper.h) ADD_EXECUTABLE(paddle-mobile-test test/main.cpp test/test_helper.h
test/elementwise_add_op_test.h test/test_include.h)
target_link_libraries(paddle-mobile-test paddle-mobile) target_link_libraries(paddle-mobile-test paddle-mobile)
# gen test log # gen test log
......
# Paddle-Mobile # Paddle-Mobile
![License MIT](https://img.shields.io/github/license/mashape/apistatus.svg) [![Build Status](https://travis-ci.org/PaddlePaddle/paddle-mobile.svg?branch=develop&longCache=true&style=flat-square)](https://travis-ci.org/PaddlePaddle/paddle-mobile)
This project is used to develop the next version deep learning freamwork for mobile device. This project is used to develop the next version deep learning freamwork for mobile device.
......
...@@ -23,30 +23,31 @@ SOFTWARE. ...@@ -23,30 +23,31 @@ SOFTWARE.
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
template <typename Dtype> class OperatorBase; template <typename Dtype> class OperatorBase;
class OpDesc; class OpDesc;
class BlockDesc; class BlockDesc;
class InferShapeContext; class InferShapeContext;
} }
using VariableNameMap = std::map<std::string, std::vector<std::string>>; using VariableNameMap = std::map<std::string, std::vector<std::string>>;
template <typename Dtype> template <typename Dtype>
using OpCreator = std::function<framework::OperatorBase<Dtype> *( using OpCreator = std::function<framework::OperatorBase<Dtype> *(
const std::string & /*type*/, const VariableNameMap & /*inputs*/, const std::string & /*type*/, const VariableNameMap & /*inputs*/,
const VariableNameMap & /*outputs*/, const VariableNameMap & /*outputs*/,
const framework::AttributeMap & /*attrs*/)>; const framework::AttributeMap & /*attrs*/)>;
using GradOpMakerFN = using GradOpMakerFN =
std::function<std::vector<std::unique_ptr<framework::OpDesc>>( std::function<std::vector<std::unique_ptr<framework::OpDesc>>(
const framework::OpDesc &, const framework::OpDesc &,
const std::unordered_set<std::string> & /*no_grad_set*/, const std::unordered_set<std::string> & /*no_grad_set*/,
std::unordered_map<std::string, std::string> * /*grad_to_var*/, std::unordered_map<std::string, std::string> * /*grad_to_var*/,
const std::vector<framework::BlockDesc *> &grad_block)>; const std::vector<framework::BlockDesc *> &grad_block)>;
using InferVarTypeFN = std::function<void(const framework::OpDesc & /*op_desc*/, using InferVarTypeFN =
framework::BlockDesc * /*block*/)>; std::function<void(const framework::OpDesc & /*op_desc*/,
framework::BlockDesc * /*block*/)>;
using InferShapeFN = std::function<void(framework::InferShapeContext *)>;
using InferShapeFN = std::function<void(framework::InferShapeContext *)>;
}; };
...@@ -19,45 +19,45 @@ SOFTWARE. ...@@ -19,45 +19,45 @@ SOFTWARE.
#pragma once; #pragma once;
namespace paddle_mobile { namespace paddle_mobile {
enum class Precision : int { FP32 = 0 }; enum class Precision : int { FP32 = 0 };
//! device type //! device type
enum DeviceTypeEnum { kINVALID = -1, kCPU = 0, kFPGA = 1, kGPU_MALI = 2 }; enum DeviceTypeEnum { kINVALID = -1, kCPU = 0, kFPGA = 1, kGPU_MALI = 2 };
template <DeviceTypeEnum T> struct DeviceType {}; template <DeviceTypeEnum T> struct DeviceType {};
typedef DeviceType<kCPU> CPU; typedef DeviceType<kCPU> CPU;
typedef DeviceType<kFPGA> FPGA; typedef DeviceType<kFPGA> FPGA;
typedef DeviceType<kGPU_MALI> GPU_MALI; typedef DeviceType<kGPU_MALI> GPU_MALI;
//! data type //! data type
enum DataType { enum DataType {
PM_INVALID = -1, PM_INVALID = -1,
PM_HALF = 0, PM_HALF = 0,
PM_FLOAT = 1, PM_FLOAT = 1,
PM_DOUBLE = 2, PM_DOUBLE = 2,
PM_INT8 = 3, PM_INT8 = 3,
PM_INT16 = 4, PM_INT16 = 4,
PM_INT32 = 5, PM_INT32 = 5,
PM_INT64 = 6, PM_INT64 = 6,
PM_UINT8 = 7, PM_UINT8 = 7,
PM_UINT16 = 8, PM_UINT16 = 8,
PM_UINT32 = 9, PM_UINT32 = 9,
PM_STRING = 10, PM_STRING = 10,
PM_BOOL = 11, PM_BOOL = 11,
PM_SHAPE = 12, PM_SHAPE = 12,
PM_TENSOR = 13 PM_TENSOR = 13
}; };
//! //!
enum PMStatus { enum PMStatus {
PMSuccess = 0xFF, /*!< No errors */ PMSuccess = 0xFF, /*!< No errors */
PMNotInitialized = 0x01, /*!< Data not initialized. */ PMNotInitialized = 0x01, /*!< Data not initialized. */
PMInvalidValue = 0x02, /*!< Incorrect variable value. */ PMInvalidValue = 0x02, /*!< Incorrect variable value. */
PMMemAllocFailed = 0x03, /*!< Memory allocation error. */ PMMemAllocFailed = 0x03, /*!< Memory allocation error. */
PMUnKownError = 0x04, /*!< Unknown error. */ PMUnKownError = 0x04, /*!< Unknown error. */
PMOutOfAuthority = 0x05, /*!< Try to modified data not your own*/ PMOutOfAuthority = 0x05, /*!< Try to modified data not your own*/
PMOutOfMem = 0x06, /*!< OOM error*/ PMOutOfMem = 0x06, /*!< OOM error*/
PMUnImplError = 0x07, /*!< Unimplement error. */ PMUnImplError = 0x07, /*!< Unimplement error. */
PMWrongDevice = 0x08 /*!< un-correct device. */ PMWrongDevice = 0x08 /*!< un-correct device. */
}; };
} }
...@@ -21,79 +21,79 @@ SOFTWARE. ...@@ -21,79 +21,79 @@ SOFTWARE.
#pragma once #pragma once
namespace paddle_mobile { namespace paddle_mobile {
template <int ID, typename Type> struct IDToType { typedef Type type_t; }; template <int ID, typename Type> struct IDToType { typedef Type type_t; };
template <typename F, typename... Ts> struct VariantHelper { template <typename F, typename... Ts> struct VariantHelper {
static const size_t size = sizeof(F) > VariantHelper<Ts...>::size static const size_t size = sizeof(F) > VariantHelper<Ts...>::size
? sizeof(F) ? sizeof(F)
: VariantHelper<Ts...>::size; : VariantHelper<Ts...>::size;
inline static void Destroy(size_t id, void *data) { inline static void Destroy(size_t id, void *data) {
if (id == typeid(F).hash_code()) { if (id == typeid(F).hash_code()) {
reinterpret_cast<F *>(data)->~F(); reinterpret_cast<F *>(data)->~F();
} else { } else {
VariantHelper<Ts...>::Destroy(id, data); VariantHelper<Ts...>::Destroy(id, data);
} }
} }
}; };
template <typename F> struct VariantHelper<F> { template <typename F> struct VariantHelper<F> {
static const size_t size = sizeof(F); static const size_t size = sizeof(F);
inline static void Destroy(size_t id, void *data) { inline static void Destroy(size_t id, void *data) {
if (id == typeid(F).hash_code()) { if (id == typeid(F).hash_code()) {
// reinterpret_cast<F*>(data)->~F(); // reinterpret_cast<F*>(data)->~F();
} else { } else {
// std::cout << "未匹配到 " << std::endl; // std::cout << "未匹配到 " << std::endl;
} }
} }
}; };
template <size_t size> class RawData { template <size_t size> class RawData {
public: public:
char data[size]; char data[size];
RawData() {} RawData() {}
RawData(const RawData &raw_data) { strcpy(data, raw_data.data); } RawData(const RawData &raw_data) { strcpy(data, raw_data.data); }
// void operator=(const RawData &raw_data){ // void operator=(const RawData &raw_data){
// strcpy(data, raw_data.data); // strcpy(data, raw_data.data);
// } // }
}; };
template <typename... Ts> struct Variant { template <typename... Ts> struct Variant {
Variant(const Variant &variant) { Variant(const Variant &variant) {
// std::cout << " 赋值构造函数 " << std::endl; // std::cout << " 赋值构造函数 " << std::endl;
type_id = variant.type_id; type_id = variant.type_id;
data = variant.data; data = variant.data;
} }
Variant() : type_id(invalid_type()) {} Variant() : type_id(invalid_type()) {}
~Variant() { ~Variant() {
// helper::Destroy(type_id, &data); // helper::Destroy(type_id, &data);
} }
template <typename T, typename... Args> void Set(Args &&... args) { template <typename T, typename... Args> void Set(Args &&... args) {
helper::Destroy(type_id, &data); helper::Destroy(type_id, &data);
new (&data) T(std::forward<Args>(args)...); new (&data) T(std::forward<Args>(args)...);
type_id = typeid(T).hash_code(); type_id = typeid(T).hash_code();
} }
template <typename T> T &Get() const { template <typename T> T &Get() const {
if (type_id == typeid(T).hash_code()) { if (type_id == typeid(T).hash_code()) {
return *const_cast<T *>(reinterpret_cast<const T *>(&data)); return *const_cast<T *>(reinterpret_cast<const T *>(&data));
} else { } else {
// std::cout << " bad cast in variant " << std::endl; // std::cout << " bad cast in variant " << std::endl;
throw std::bad_cast(); throw std::bad_cast();
} }
} }
size_t TypeId() const { return type_id; } size_t TypeId() const { return type_id; }
private: private:
static inline size_t invalid_type() { return typeid(void).hash_code(); } static inline size_t invalid_type() { return typeid(void).hash_code(); }
typedef VariantHelper<Ts...> helper; typedef VariantHelper<Ts...> helper;
size_t type_id; size_t type_id;
RawData<helper::size> data; RawData<helper::size> data;
}; };
template <typename T> struct Vistor { typedef T type_t; }; template <typename T> struct Vistor { typedef T type_t; };
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -19,5 +19,5 @@ SOFTWARE. ...@@ -19,5 +19,5 @@ SOFTWARE.
#include "attribute.h" #include "attribute.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework {} namespace framework {}
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -22,107 +22,110 @@ SOFTWARE. ...@@ -22,107 +22,110 @@ SOFTWARE.
#include "framework.pb.h" #include "framework.pb.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
class BlockDesc; class BlockDesc;
class Attribute { class Attribute {
public: public:
static Attribute GetAttrValue(const proto::OpDesc::Attr &attr_desc) { static Attribute
// std::cout << "begin get attr value" << std::endl; GetAttrValue(const proto::OpDesc::Attr &attr_desc) {
Attribute attr; // std::cout << "begin get attr value" << std::endl;
switch (attr_desc.type()) { Attribute attr;
case proto::AttrType::BOOLEAN: { switch (attr_desc.type()) {
attr.Set<bool>(attr_desc.b()); case proto::AttrType::BOOLEAN: {
break; attr.Set<bool>(attr_desc.b());
} break;
case proto::AttrType::INT: { }
attr.Set<int>(attr_desc.i()); case proto::AttrType::INT: {
break; attr.Set<int>(attr_desc.i());
} break;
case proto::AttrType::FLOAT: { }
attr.Set<float>(attr_desc.f()); case proto::AttrType::FLOAT: {
break; attr.Set<float>(attr_desc.f());
} break;
case proto::AttrType::STRING: { }
attr.Set<std::string>(attr_desc.s()); case proto::AttrType::STRING: {
break; attr.Set<std::string>(attr_desc.s());
} break;
case proto::AttrType::BOOLEANS: { }
std::vector<bool> val(attr_desc.bools_size()); case proto::AttrType::BOOLEANS: {
for (int i = 0; i < attr_desc.bools_size(); ++i) { std::vector<bool> val(attr_desc.bools_size());
val[i] = attr_desc.bools(i); for (int i = 0; i < attr_desc.bools_size(); ++i) {
} val[i] = attr_desc.bools(i);
attr.Set<std::vector<bool>>(val); }
break; attr.Set<std::vector<bool>>(val);
} break;
case proto::AttrType::INTS: { }
std::vector<int> val(attr_desc.ints_size()); case proto::AttrType::INTS: {
for (int i = 0; i < attr_desc.ints_size(); ++i) { std::vector<int> val(attr_desc.ints_size());
val[i] = attr_desc.ints(i); for (int i = 0; i < attr_desc.ints_size(); ++i) {
} val[i] = attr_desc.ints(i);
attr.Set<std::vector<int>>(val); }
break; attr.Set<std::vector<int>>(val);
} break;
case proto::AttrType::FLOATS: { }
std::vector<float> val(attr_desc.floats_size()); case proto::AttrType::FLOATS: {
for (int i = 0; i < attr_desc.floats_size(); ++i) { std::vector<float> val(attr_desc.floats_size());
val[i] = attr_desc.floats(i); for (int i = 0; i < attr_desc.floats_size(); ++i) {
} val[i] = attr_desc.floats(i);
attr.Set<std::vector<float>>(val); }
break; attr.Set<std::vector<float>>(val);
} break;
case proto::AttrType::STRINGS: { }
std::vector<std::string> val(attr_desc.strings_size()); case proto::AttrType::STRINGS: {
for (int i = 0; i < attr_desc.strings_size(); ++i) { std::vector<std::string> val(attr_desc.strings_size());
val[i] = attr_desc.strings(i); for (int i = 0; i < attr_desc.strings_size(); ++i) {
} val[i] = attr_desc.strings(i);
attr.Set<std::vector<std::string>>(val); }
break; attr.Set<std::vector<std::string>>(val);
} break;
case proto::AttrType::LONG: { }
attr.Set<int64_t>(attr_desc.l()); case proto::AttrType::LONG: {
break; attr.Set<int64_t>(attr_desc.l());
} break;
default: }
// std::cout << " not support " << std::endl; default:
break; // std::cout << " not support " << std::endl;
} break;
// std::cout << "end get attr value" << std::endl; }
return attr; // std::cout << "end get attr value" << std::endl;
} return attr;
}
Attribute() {} Attribute() {}
template <typename T, typename... Args> Attribute &Set(Args &&... args) { template <typename T, typename... Args>
variant_.Set<T>(args...); Attribute &Set(Args &&... args) {
return *this; variant_.Set<T>(args...);
} return *this;
}
template <typename T> T &Get() const { return variant_.Get<T>(); } template <typename T> T &Get() const { return variant_.Get<T>(); }
private: private:
Variant<int, float, std::string, std::vector<int>, std::vector<float>, Variant<int, float, std::string, std::vector<int>,
std::vector<std::string>, bool, std::vector<bool>, BlockDesc *, std::vector<float>, std::vector<std::string>, bool,
int64_t> std::vector<bool>, BlockDesc *, int64_t>
variant_; variant_;
}; };
using AttributeMap = std::unordered_map<std::string, Attribute>; using AttributeMap = std::unordered_map<std::string, Attribute>;
class AttrReader { class AttrReader {
public: public:
explicit AttrReader(const AttributeMap &attrs) : attrs_(attrs) {} explicit AttrReader(const AttributeMap &attrs) : attrs_(attrs) {}
template <typename T> inline T Get(const std::string &name) const { template <typename T> inline T Get(const std::string &name) const {
// PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in // PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should
// AttributeMap", // be in
// name); // AttributeMap",
return ((Attribute)attrs_.at(name)).Get<T>(); // name);
} return ((Attribute)attrs_.at(name)).Get<T>();
}
private: private:
const AttributeMap &attrs_; const AttributeMap &attrs_;
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -19,32 +19,32 @@ SOFTWARE. ...@@ -19,32 +19,32 @@ SOFTWARE.
#include "block_desc.h" #include "block_desc.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
std::vector<std::shared_ptr<VarDesc>> BlockDesc::Vars() const { std::vector<std::shared_ptr<VarDesc>> BlockDesc::Vars() const {
std::vector<std::shared_ptr<VarDesc>> res; std::vector<std::shared_ptr<VarDesc>> res;
for (const auto &p : vars_) { for (const auto &p : vars_) {
res.push_back(p.second); res.push_back(p.second);
} }
return res; return res;
} }
std::vector<std::shared_ptr<OpDesc>> BlockDesc::Ops() const { std::vector<std::shared_ptr<OpDesc>> BlockDesc::Ops() const {
std::vector<std::shared_ptr<OpDesc>> res; std::vector<std::shared_ptr<OpDesc>> res;
for (const auto &op : ops_) { for (const auto &op : ops_) {
res.push_back(op); res.push_back(op);
} }
return res; return res;
} }
BlockDesc::BlockDesc(const proto::BlockDesc &desc) : desc_(desc) { BlockDesc::BlockDesc(const proto::BlockDesc &desc) : desc_(desc) {
for (const proto::VarDesc &var_desc : desc_.vars()) { for (const proto::VarDesc &var_desc : desc_.vars()) {
vars_[var_desc.name()].reset(new VarDesc(var_desc)); vars_[var_desc.name()].reset(new VarDesc(var_desc));
} }
for (const proto::OpDesc &op_desc : desc_.ops()) { for (const proto::OpDesc &op_desc : desc_.ops()) {
ops_.emplace_back(new framework::OpDesc(op_desc)); ops_.emplace_back(new framework::OpDesc(op_desc));
} }
} }
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -24,46 +24,50 @@ SOFTWARE. ...@@ -24,46 +24,50 @@ SOFTWARE.
#include "var_desc.h" #include "var_desc.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
class BlockDesc : PaddleMobileObject { class BlockDesc : PaddleMobileObject {
public: public:
BlockDesc(const proto::BlockDesc &desc); BlockDesc(const proto::BlockDesc &desc);
const int &ID() const { return desc_.idx(); } const int &ID() const { return desc_.idx(); }
const int &Parent() const { return desc_.parent_idx(); } const int &Parent() const { return desc_.parent_idx(); }
bool operator==(const paddle_mobile::framework::BlockDesc &in_block) const { bool operator==(
return this->ID() == in_block.ID() && this->Parent() == in_block.Parent(); const paddle_mobile::framework::BlockDesc &in_block) const {
} return this->ID() == in_block.ID() &&
this->Parent() == in_block.Parent();
}
bool operator<(const paddle_mobile::framework::BlockDesc &in_block) const { bool operator<(
return this->ID() < in_block.ID() && this->Parent() < in_block.Parent(); const paddle_mobile::framework::BlockDesc &in_block) const {
} return this->ID() < in_block.ID() &&
this->Parent() < in_block.Parent();
}
std::vector<std::shared_ptr<VarDesc>> Vars() const; std::vector<std::shared_ptr<VarDesc>> Vars() const;
std::vector<std::shared_ptr<OpDesc>> Ops() const; std::vector<std::shared_ptr<OpDesc>> Ops() const;
private: private:
proto::BlockDesc desc_; proto::BlockDesc desc_;
std::vector<std::shared_ptr<OpDesc>> ops_; std::vector<std::shared_ptr<OpDesc>> ops_;
std::unordered_map<std::string, std::shared_ptr<VarDesc>> vars_; std::unordered_map<std::string, std::shared_ptr<VarDesc>> vars_;
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
namespace std { namespace std {
template <> struct hash<paddle_mobile::framework::BlockDesc> { template <> struct hash<paddle_mobile::framework::BlockDesc> {
typedef paddle_mobile::framework::BlockDesc argument_type; typedef paddle_mobile::framework::BlockDesc argument_type;
typedef std::size_t result_type; typedef std::size_t result_type;
result_type operator()(argument_type const &s) const noexcept { result_type operator()(argument_type const &s) const noexcept {
result_type const h1(std::hash<int>{}(s.ID())); result_type const h1(std::hash<int>{}(s.ID()));
result_type const h2(std::hash<int>{}(s.ID())); result_type const h2(std::hash<int>{}(s.ID()));
return h1 ^ (h2 << 1); return h1 ^ (h2 << 1);
} }
}; };
} // namespace std } // namespace std
...@@ -19,49 +19,50 @@ limitations under the License. */ ...@@ -19,49 +19,50 @@ limitations under the License. */
#include <string> #include <string>
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
enum class DataLayout { enum class DataLayout {
kNHWC = 0, kNHWC = 0,
kNCHW = 1, kNCHW = 1,
kAnyLayout = 2, kAnyLayout = 2,
}; };
inline DataLayout StringToDataLayout(const std::string &str) { inline DataLayout StringToDataLayout(const std::string &str) {
std::string s(str); std::string s(str);
for (size_t i = 0; i < s.size(); ++i) { for (size_t i = 0; i < s.size(); ++i) {
s[i] = toupper(s[i]); s[i] = toupper(s[i]);
} }
if (s == "NHWC") { if (s == "NHWC") {
return DataLayout::kNHWC; return DataLayout::kNHWC;
} else if (s == "NCHW") { } else if (s == "NCHW") {
return DataLayout::kNCHW; return DataLayout::kNCHW;
} else if (s == "ANYLAYOUT") { } else if (s == "ANYLAYOUT") {
return DataLayout::kAnyLayout; return DataLayout::kAnyLayout;
} else { } else {
// std::cout << "Unknown storage order string: %s", s; // std::cout << "Unknown storage order string: %s", s;
} }
} }
inline std::string DataLayoutToString(const DataLayout &data_layout) { inline std::string DataLayoutToString(const DataLayout &data_layout) {
switch (data_layout) { switch (data_layout) {
case DataLayout::kNHWC: case DataLayout::kNHWC:
return "NHWC"; return "NHWC";
case DataLayout::kNCHW: case DataLayout::kNCHW:
return "NCHW"; return "NCHW";
case DataLayout::kAnyLayout: case DataLayout::kAnyLayout:
return "ANY_LAYOUT"; return "ANY_LAYOUT";
default: default:
break; break;
// std::cout << "unknown DataLayou %d", data_layout; // std::cout << "unknown DataLayou %d", data_layout;
} }
} }
inline std::ostream &operator<<(std::ostream &out, const DataLayout &l) { inline std::ostream &operator<<(std::ostream &out,
out << DataLayoutToString(l); const DataLayout &l) {
return out; out << DataLayoutToString(l);
} return out;
}
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -21,67 +21,72 @@ SOFTWARE. ...@@ -21,67 +21,72 @@ SOFTWARE.
#include "data_transform.h" #include "data_transform.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
static void PassTensorData(Tensor *from, Tensor *to) { static void PassTensorData(Tensor *from, Tensor *to) {
to->ShareDataWith(*from); to->ShareDataWith(*from);
*from = Tensor(); *from = Tensor();
} }
void DataTransform(const OpKernelType &expected_kernel_type, void DataTransform(const OpKernelType &expected_kernel_type,
const OpKernelType &kernel_type_for_var, const OpKernelType &kernel_type_for_var,
const Tensor &input_tensor, Tensor *output_tensor) { const Tensor &input_tensor, Tensor *output_tensor) {
bool transformed = false; bool transformed = false;
Tensor in; Tensor in;
in.ShareDataWith(input_tensor); in.ShareDataWith(input_tensor);
Tensor out; Tensor out;
// // do layout transform // // do layout transform
// if (NeedTransformLayout(expected_kernel_type.data_layout_, // if (NeedTransformLayout(expected_kernel_type.data_layout_,
// kernel_type_for_var.data_layout_)) { // kernel_type_for_var.data_layout_)) {
// TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out); // TransDataLayout(kernel_type_for_var, expected_kernel_type, in,
// transformed = true; // &out);
// PassTensorData(&out, &in); // transformed = true;
// } // PassTensorData(&out, &in);
// // }
// // do data type transform //
// if (expected_kernel_type.data_type_ != kernel_type_for_var.data_type_) { // // do data type transform
// TransDataType(kernel_type_for_var, expected_kernel_type, in, &out); // if (expected_kernel_type.data_type_ !=
// transformed = true; // kernel_type_for_var.data_type_) {
// PassTensorData(&out, &in); // TransDataType(kernel_type_for_var, expected_kernel_type, in,
// } // &out);
// // transformed = true;
// // do device transform // PassTensorData(&out, &in);
// if (!platform::is_same_place(kernel_type_for_var.place_, // }
// expected_kernel_type.place_)) { //
// TransDataDevice(in, expected_kernel_type.place_, &out); // // do device transform
// transformed = true; // if (!platform::is_same_place(kernel_type_for_var.place_,
// PassTensorData(&out, &in); // expected_kernel_type.place_)) {
// } // TransDataDevice(in, expected_kernel_type.place_, &out);
// // transformed = true;
// PADDLE_ENFORCE(transformed, "No transform is applied, please check!"); // PassTensorData(&out, &in);
// get output data // }
output_tensor->ShareDataWith(in); //
} // PADDLE_ENFORCE(transformed, "No transform is applied, please
// check!");
// get output data
output_tensor->ShareDataWith(in);
}
void CopyVariableWithTensor(const Variable &in_var, const Tensor &tensor, void CopyVariableWithTensor(const Variable &in_var,
Variable &out_var) { const Tensor &tensor, Variable &out_var) {
// if (in_var.IsType<LoDTensor>()) { // if (in_var.IsType<LoDTensor>()) {
// auto& in_lod_tensor = in_var.Get<LoDTensor>(); // auto& in_lod_tensor = in_var.Get<LoDTensor>();
// auto* tran_lod_tensor = out_var.GetMutable<LoDTensor>(); // auto* tran_lod_tensor = out_var.GetMutable<LoDTensor>();
// tran_lod_tensor->set_lod(in_lod_tensor.lod()); // tran_lod_tensor->set_lod(in_lod_tensor.lod());
// tran_lod_tensor->set_layout(in_lod_tensor.layout()); // tran_lod_tensor->set_layout(in_lod_tensor.layout());
// tran_lod_tensor->ShareDataWith(tensor); // tran_lod_tensor->ShareDataWith(tensor);
// } else if (in_var.IsType<SelectedRows>()) { // } else if (in_var.IsType<SelectedRows>()) {
// auto& in_selected_rows = in_var.Get<SelectedRows>(); // auto& in_selected_rows = in_var.Get<SelectedRows>();
// auto* trans_selected_rows = out_var.GetMutable<SelectedRows>(); // auto* trans_selected_rows =
// trans_selected_rows->set_height(in_selected_rows.height()); // out_var.GetMutable<SelectedRows>();
// trans_selected_rows->set_rows(in_selected_rows.rows()); // trans_selected_rows->set_height(in_selected_rows.height());
// trans_selected_rows->mutable_value()->ShareDataWith(tensor); // trans_selected_rows->set_rows(in_selected_rows.rows());
// } else { // trans_selected_rows->mutable_value()->ShareDataWith(tensor);
// PADDLE_THROW("unknown var type"); // } else {
// } // PADDLE_THROW("unknown var type");
} // }
}
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -28,14 +28,14 @@ SOFTWARE. ...@@ -28,14 +28,14 @@ SOFTWARE.
#include "variable.h" #include "variable.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
void DataTransform(const OpKernelType &expected_kernel_type, void DataTransform(const OpKernelType &expected_kernel_type,
const OpKernelType &kernel_type_for_var, const OpKernelType &kernel_type_for_var,
const Tensor &input_tensor, Tensor *out); const Tensor &input_tensor, Tensor *out);
void CopyVariableWithTensor(const Variable &in_var, const Tensor &tensor, void CopyVariableWithTensor(const Variable &in_var,
Variable &out_var); const Tensor &tensor, Variable &out_var);
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -21,23 +21,23 @@ SOFTWARE. ...@@ -21,23 +21,23 @@ SOFTWARE.
#include "framework.pb.h" #include "framework.pb.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
// inline proto::VarType::Type ToDataType(std::type_index type) { // inline proto::VarType::Type ToDataType(std::type_index type) {
// using namespace paddle_mobile::framework::proto; // using namespace paddle_mobile::framework::proto;
// if (typeid(float).hash_code() == type.hash_code()) { // if (typeid(float).hash_code() == type.hash_code()) {
// return proto::VarType::FP32; // return proto::VarType::FP32;
// } else if (typeid(double).hash_code() == type.hash_code()) { // } else if (typeid(double).hash_code() == type.hash_code()) {
// return proto::VarType::FP64; // return proto::VarType::FP64;
// } else if (typeid(int).hash_code() == type.hash_code()) { // } else if (typeid(int).hash_code() == type.hash_code()) {
// return proto::VarType::INT32; // return proto::VarType::INT32;
// } else if (typeid(int64_t).hash_code() == type.hash_code()) { // } else if (typeid(int64_t).hash_code() == type.hash_code()) {
// return proto::VarType::INT64; // return proto::VarType::INT64;
// } else if (typeid(bool).hash_code() == type.hash_code()) { // } else if (typeid(bool).hash_code() == type.hash_code()) {
// return proto::VarType::BOOL; // return proto::VarType::BOOL;
// } else { // } else {
//// PADDLE_THROW("Not supported"); //// PADDLE_THROW("Not supported");
// } // }
// } // }
} }
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -15,311 +15,320 @@ limitations under the License. */ ...@@ -15,311 +15,320 @@ limitations under the License. */
#include "ddim.h" #include "ddim.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
/// @cond HIDDEN /// @cond HIDDEN
template <int i> Dim<i> make_dim(const int64_t *d) { template <int i> Dim<i> make_dim(const int64_t *d) {
return Dim<i>(*d, make_dim<i - 1>(d + 1)); return Dim<i>(*d, make_dim<i - 1>(d + 1));
} }
template <> Dim<0> make_dim<0>(const int64_t *d) { return Dim<0>(*d); } template <> Dim<0> make_dim<0>(const int64_t *d) { return Dim<0>(*d); }
void make_ddim(DDim &ddim, const int64_t *dims, int n) { void make_ddim(DDim &ddim, const int64_t *dims, int n) {
switch (n) { switch (n) {
case 0: case 0:
ddim = make_dim<0>(dims); ddim = make_dim<0>(dims);
break; break;
case 1: case 1:
ddim = make_dim<1>(dims); ddim = make_dim<1>(dims);
break; break;
case 2: case 2:
ddim = make_dim<2>(dims); ddim = make_dim<2>(dims);
break; break;
case 3: case 3:
ddim = make_dim<3>(dims); ddim = make_dim<3>(dims);
break; break;
case 4: case 4:
ddim = make_dim<4>(dims); ddim = make_dim<4>(dims);
break; break;
case 5: case 5:
ddim = make_dim<5>(dims); ddim = make_dim<5>(dims);
break; break;
case 6: case 6:
ddim = make_dim<6>(dims); ddim = make_dim<6>(dims);
break; break;
case 7: case 7:
ddim = make_dim<7>(dims); ddim = make_dim<7>(dims);
break; break;
case 8: case 8:
ddim = make_dim<8>(dims); ddim = make_dim<8>(dims);
break; break;
case 9: case 9:
ddim = make_dim<9>(dims); ddim = make_dim<9>(dims);
break; break;
default: default:
// std::cout << "Dynamic dimensions must have between [1, 9] // std::cout << "Dynamic dimensions must have between [1,
// dimensions."; // 9]
break; // dimensions.";
} break;
} }
}
/// @endcond
/// @endcond
DDim make_ddim(std::initializer_list<int64_t> dims) {
DDim result(make_dim(0)); DDim make_ddim(std::initializer_list<int64_t> dims) {
make_ddim(result, dims.begin(), dims.size()); DDim result(make_dim(0));
return result; make_ddim(result, dims.begin(), dims.size());
} return result;
}
DDim make_ddim(const std::vector<int64_t> &dims) {
DDim result(make_dim(0)); DDim make_ddim(const std::vector<int64_t> &dims) {
make_ddim(result, &dims[0], dims.size()); DDim result(make_dim(0));
return result; make_ddim(result, &dims[0], dims.size());
} return result;
}
DDim make_ddim(const std::vector<int> &dims) {
std::vector<int64_t> res(dims.size()); DDim make_ddim(const std::vector<int> &dims) {
std::transform(dims.begin(), dims.end(), res.begin(), std::vector<int64_t> res(dims.size());
[](int d) { return static_cast<int64_t>(d); }); std::transform(dims.begin(), dims.end(), res.begin(),
return make_ddim(res); [](int d) { return static_cast<int64_t>(d); });
} return make_ddim(res);
}
/// @cond HIDDEN
// XXX For some reason, putting this in an anonymous namespace causes errors /// @cond HIDDEN
struct DynamicMutableIndexer : Vistor<int64_t &> { // XXX For some reason, putting this in an anonymous namespace causes
public: // errors
explicit DynamicMutableIndexer(int idx) : idx_(idx) {} struct DynamicMutableIndexer : Vistor<int64_t &> {
public:
template <int D> int64_t &operator()(Dim<D> &dim) const { return dim[idx_]; } explicit DynamicMutableIndexer(int idx) : idx_(idx) {}
private: template <int D> int64_t &operator()(Dim<D> &dim) const {
int idx_; return dim[idx_];
}; }
struct DynamicConstIndexer : public Vistor<int64_t> { private:
public: int idx_;
explicit DynamicConstIndexer(int idx) : idx_(idx) {} };
template <int D> int64_t operator()(const Dim<D> &dim) const { struct DynamicConstIndexer : public Vistor<int64_t> {
return dim[idx_]; public:
} explicit DynamicConstIndexer(int idx) : idx_(idx) {}
private: template <int D> int64_t operator()(const Dim<D> &dim) const {
int idx_; return dim[idx_];
}; }
/// @endcond private:
int idx_;
int64_t &DDim::operator[](int idx) { };
return DDim::ApplyVistor(DynamicMutableIndexer(idx), *this);
} /// @endcond
int64_t DDim::operator[](int idx) const { int64_t &DDim::operator[](int idx) {
return DDim::ApplyVistor(DynamicConstIndexer(idx), *this); return DDim::ApplyVistor(DynamicMutableIndexer(idx), *this);
} }
int DDim::size() const { return arity(*this); } int64_t DDim::operator[](int idx) const {
return DDim::ApplyVistor(DynamicConstIndexer(idx), *this);
bool DDim::operator==(DDim d) const { }
// if (var.which() != d.getVar().which()) {
// return false; int DDim::size() const { return arity(*this); }
// } else {
std::vector<int64_t> v1 = vectorize(*this); bool DDim::operator==(DDim d) const {
std::vector<int64_t> v2 = vectorize(d); // if (var.which() != d.getVar().which()) {
// return false;
for (unsigned int i = 0; i < v1.size(); i++) { // } else {
if (v1[i] != v2[i]) { std::vector<int64_t> v1 = vectorize(*this);
return false; std::vector<int64_t> v2 = vectorize(d);
}
} for (unsigned int i = 0; i < v1.size(); i++) {
if (v1[i] != v2[i]) {
return true; return false;
// } }
} }
bool DDim::operator!=(DDim d) const { return !(*this == d); } return true;
// }
DDim DDim::operator+(DDim d) const { }
std::vector<int64_t> v1 = vectorize(*this);
std::vector<int64_t> v2 = vectorize(d); bool DDim::operator!=(DDim d) const { return !(*this == d); }
std::vector<int64_t> v3; DDim DDim::operator+(DDim d) const {
std::vector<int64_t> v1 = vectorize(*this);
assert(v1.size() == v2.size()); std::vector<int64_t> v2 = vectorize(d);
for (unsigned int i = 0; i < v1.size(); i++) { std::vector<int64_t> v3;
v3.push_back(v1[i] + v2[i]);
} assert(v1.size() == v2.size());
return make_ddim(v3); for (unsigned int i = 0; i < v1.size(); i++) {
} v3.push_back(v1[i] + v2[i]);
}
DDim DDim::operator*(DDim d) const {
std::vector<int64_t> v1 = vectorize(*this); return make_ddim(v3);
std::vector<int64_t> v2 = vectorize(d); }
std::vector<int64_t> v3; DDim DDim::operator*(DDim d) const {
std::vector<int64_t> v1 = vectorize(*this);
assert(v1.size() == v2.size()); std::vector<int64_t> v2 = vectorize(d);
for (unsigned int i = 0; i < v1.size(); i++) { std::vector<int64_t> v3;
v3.push_back(v1[i] * v2[i]);
} assert(v1.size() == v2.size());
return make_ddim(v3); for (unsigned int i = 0; i < v1.size(); i++) {
} v3.push_back(v1[i] * v2[i]);
}
int64_t get(const DDim &ddim, int idx) { return ddim[idx]; }
return make_ddim(v3);
void set(DDim &ddim, int idx, int value) { ddim[idx] = value; } }
/// @cond HIDDEN int64_t get(const DDim &ddim, int idx) { return ddim[idx]; }
struct VectorizeVisitor : Vistor<void> {
std::vector<int64_t> &vector; void set(DDim &ddim, int idx, int value) { ddim[idx] = value; }
explicit VectorizeVisitor(std::vector<int64_t> &v) : vector(v) {} /// @cond HIDDEN
struct VectorizeVisitor : Vistor<void> {
template <typename T> void operator()(const T &t) { std::vector<int64_t> &vector;
vector.push_back(t.head);
this->operator()(t.tail); explicit VectorizeVisitor(std::vector<int64_t> &v) : vector(v) {}
}
template <typename T> void operator()(const T &t) {
void operator()(const Dim<0> &t) {} vector.push_back(t.head);
}; this->operator()(t.tail);
/// @endcond }
std::vector<int64_t> vectorize(const DDim &ddim) { void operator()(const Dim<0> &t) {}
std::vector<int64_t> result; };
VectorizeVisitor visitor(result); /// @endcond
DDim::ApplyVistor(visitor, ddim);
return result; std::vector<int64_t> vectorize(const DDim &ddim) {
} std::vector<int64_t> result;
VectorizeVisitor visitor(result);
// NOTE: framework::vectorize converts to type int64_t DDim::ApplyVistor(visitor, ddim);
// which does not fit cudnn inputs. return result;
std::vector<int> vectorize2int(const DDim &ddim) { }
std::vector<int64_t> temp = vectorize(ddim);
std::vector<int> result(temp.begin(), temp.end()); // NOTE: framework::vectorize converts to type int64_t
return result; // which does not fit cudnn inputs.
} std::vector<int> vectorize2int(const DDim &ddim) {
std::vector<int64_t> temp = vectorize(ddim);
struct ProductVisitor : Vistor<int64_t> { std::vector<int> result(temp.begin(), temp.end());
template <int D> int64_t operator()(const Dim<D> &dim) { return result;
return product(dim); }
}
}; struct ProductVisitor : Vistor<int64_t> {
template <int D> int64_t operator()(const Dim<D> &dim) {
int64_t product(const DDim &ddim) { return product(dim);
ProductVisitor visitor; }
return DDim::ApplyVistor(visitor, ddim); };
}
int64_t product(const DDim &ddim) {
struct SliceVectorizeVisitor : Vistor<void> { ProductVisitor visitor;
std::vector<int64_t> &vector; return DDim::ApplyVistor(visitor, ddim);
int begin; }
int end;
struct SliceVectorizeVisitor : Vistor<void> {
SliceVectorizeVisitor(std::vector<int64_t> &v, int b, int e) std::vector<int64_t> &vector;
: vector(v), begin(b), end(e) { int begin;
// PADDLE_ENFORCE(begin < end, int end;
// "Begin index must be less than end index in ddim
// slice."); SliceVectorizeVisitor(std::vector<int64_t> &v, int b, int e)
// PADDLE_ENFORCE(begin >= 0, : vector(v), begin(b), end(e) {
// "Begin index can't be less than zero in ddim slice."); // PADDLE_ENFORCE(begin < end,
} // "Begin index must be less than end index in
// ddim
template <int S> void operator()(const Dim<S> &dim) { // slice.");
if (begin == 0) { // PADDLE_ENFORCE(begin >= 0,
vector.push_back(dim.head); // "Begin index can't be less than zero in
} else { // ddim slice.");
--begin; }
}
--end; template <int S> void operator()(const Dim<S> &dim) {
if (end > 0) { if (begin == 0) {
this->operator()(dim.tail); vector.push_back(dim.head);
} } else {
} --begin;
}
void operator()(const Dim<0> &dim) { --end;
// PADDLE_ENFORCE(end == 0, "End index in ddim slice is out of bound."); if (end > 0) {
} this->operator()(dim.tail);
}; }
}
DDim slice_ddim(const DDim &ddim, int begin, int end) {
std::vector<int64_t> vec; void operator()(const Dim<0> &dim) {
vec.reserve(end - begin); // PADDLE_ENFORCE(end == 0, "End index in ddim slice is out
SliceVectorizeVisitor visitor(vec, begin, end); // of bound.");
// boost::apply_visitor(visitor, dim); }
DDim::ApplyVistor(visitor, ddim); };
// visitor(ddim.var.Get<Dim<4>>());
return make_ddim(vec); DDim slice_ddim(const DDim &ddim, int begin, int end) {
} std::vector<int64_t> vec;
vec.reserve(end - begin);
/// \cond HIDDEN SliceVectorizeVisitor visitor(vec, begin, end);
// boost::apply_visitor(visitor, dim);
struct ArityVisitor : Vistor<int> { DDim::ApplyVistor(visitor, ddim);
template <int D> int operator()(Dim<D>) const { return D; } // visitor(ddim.var.Get<Dim<4>>());
}; return make_ddim(vec);
}
/// \endcond
/// \cond HIDDEN
int arity(const DDim &d) {
ArityVisitor arityVisitor = ArityVisitor(); struct ArityVisitor : Vistor<int> {
return DDim::ApplyVistor(arityVisitor, d); template <int D> int operator()(Dim<D>) const { return D; }
// return arityVisitor(d.var.Get<Dim<4>>()); };
// return boost::apply_visitor(ArityVisitor(), d); }
} /// \endcond
/// \cond HIDDEN
int arity(const DDim &d) {
/// \endcond ArityVisitor arityVisitor = ArityVisitor();
return DDim::ApplyVistor(arityVisitor, d);
struct OSVistor : Vistor<std::ostream &> { // return arityVisitor(d.var.Get<Dim<4>>());
OSVistor(std::ostream &os) : os_(os) {} // return boost::apply_visitor(ArityVisitor(), d); }
}
template <int D> std::ostream &operator()(Dim<D> dim) const { /// \cond HIDDEN
return os_ << dim;
} /// \endcond
private: struct OSVistor : Vistor<std::ostream &> {
std::ostream &os_; OSVistor(std::ostream &os) : os_(os) {}
};
template <int D> std::ostream &operator()(Dim<D> dim) const {
std::ostream &operator<<(std::ostream &os, const DDim &ddim) { return os_ << dim;
auto vistor = OSVistor(os); }
DDim::ApplyVistor(vistor, ddim);
return os; private:
} std::ostream &os_;
};
DDim::DDim(std::initializer_list<int64_t> init_list) {
*this = make_ddim(init_list); std::ostream &operator<<(std::ostream &os, const DDim &ddim) {
} auto vistor = OSVistor(os);
DDim::ApplyVistor(vistor, ddim);
DDim flatten_to_2d(const DDim &src, int num_col_dims) { return os;
int rank = src.size(); }
return make_ddim({product(slice_ddim(src, 0, num_col_dims)),
product(slice_ddim(src, num_col_dims, rank))}); DDim::DDim(std::initializer_list<int64_t> init_list) {
} *this = make_ddim(init_list);
}
DDim flatten_to_1d(const DDim &src) { return make_ddim({product(src)}); }
DDim flatten_to_2d(const DDim &src, int num_col_dims) {
DDim stride(const DDim &ddim) { int rank = src.size();
std::vector<int64_t> strides(ddim.size()); return make_ddim({product(slice_ddim(src, 0, num_col_dims)),
strides[ddim.size() - 1] = 1; product(slice_ddim(src, num_col_dims, rank))});
for (int i = ddim.size() - 2; i >= 0; --i) { }
strides[i] = strides[i + 1] * ddim[i + 1];
} DDim flatten_to_1d(const DDim &src) {
return framework::make_ddim(strides); return make_ddim({product(src)});
} }
DDim stride_numel(const framework::DDim &ddim) { DDim stride(const DDim &ddim) {
std::vector<int64_t> strides(ddim.size()); std::vector<int64_t> strides(ddim.size());
strides[ddim.size() - 1] = ddim[ddim.size() - 1]; strides[ddim.size() - 1] = 1;
for (int i = ddim.size() - 2; i >= 0; --i) { for (int i = ddim.size() - 2; i >= 0; --i) {
strides[i] = strides[i + 1] * ddim[i]; strides[i] = strides[i + 1] * ddim[i + 1];
} }
return framework::make_ddim(strides); return framework::make_ddim(strides);
} }
} // namespace framework DDim stride_numel(const framework::DDim &ddim) {
std::vector<int64_t> strides(ddim.size());
strides[ddim.size() - 1] = ddim[ddim.size() - 1];
for (int i = ddim.size() - 2; i >= 0; --i) {
strides[i] = strides[i + 1] * ddim[i];
}
return framework::make_ddim(strides);
}
} // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -22,140 +22,145 @@ limitations under the License. */ ...@@ -22,140 +22,145 @@ limitations under the License. */
#include <vector> #include <vector>
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
/** /**
* \brief A dynamically sized dimension. * \brief A dynamically sized dimension.
* *
* The number of dimensions must be between [1, 9]. * The number of dimensions must be between [1, 9].
*/ */
struct DDim { struct DDim {
typedef Variant<Dim<0>, Dim<1>, Dim<2>, Dim<3>, Dim<4>, Dim<5>, Dim<6>, typedef Variant<Dim<0>, Dim<1>, Dim<2>, Dim<3>, Dim<4>, Dim<5>,
Dim<7>, Dim<8>, Dim<9>> Dim<6>, Dim<7>, Dim<8>, Dim<9>>
DDimVar; DDimVar;
DDimVar var; DDimVar var;
template <typename Vistor> template <typename Vistor>
static typename Vistor::type_t ApplyVistor(Vistor vistor, const DDim &d) { static typename Vistor::type_t ApplyVistor(Vistor vistor,
if (d.var.TypeId() == typeid(Dim<0>).hash_code()) { const DDim &d) {
return vistor(d.var.Get<Dim<0>>()); if (d.var.TypeId() == typeid(Dim<0>).hash_code()) {
} else if (d.var.TypeId() == typeid(Dim<1>).hash_code()) { return vistor(d.var.Get<Dim<0>>());
return vistor(d.var.Get<Dim<1>>()); } else if (d.var.TypeId() == typeid(Dim<1>).hash_code()) {
} else if (d.var.TypeId() == typeid(Dim<2>).hash_code()) { return vistor(d.var.Get<Dim<1>>());
return vistor(d.var.Get<Dim<2>>()); } else if (d.var.TypeId() == typeid(Dim<2>).hash_code()) {
} else if (d.var.TypeId() == typeid(Dim<3>).hash_code()) { return vistor(d.var.Get<Dim<2>>());
return vistor(d.var.Get<Dim<3>>()); } else if (d.var.TypeId() == typeid(Dim<3>).hash_code()) {
} else if (d.var.TypeId() == typeid(Dim<4>).hash_code()) { return vistor(d.var.Get<Dim<3>>());
return vistor(d.var.Get<Dim<4>>()); } else if (d.var.TypeId() == typeid(Dim<4>).hash_code()) {
} else if (d.var.TypeId() == typeid(Dim<5>).hash_code()) { return vistor(d.var.Get<Dim<4>>());
return vistor(d.var.Get<Dim<5>>()); } else if (d.var.TypeId() == typeid(Dim<5>).hash_code()) {
} else if (d.var.TypeId() == typeid(Dim<6>).hash_code()) { return vistor(d.var.Get<Dim<5>>());
return vistor(d.var.Get<Dim<6>>()); } else if (d.var.TypeId() == typeid(Dim<6>).hash_code()) {
} else if (d.var.TypeId() == typeid(Dim<7>).hash_code()) { return vistor(d.var.Get<Dim<6>>());
return vistor(d.var.Get<Dim<7>>()); } else if (d.var.TypeId() == typeid(Dim<7>).hash_code()) {
} else if (d.var.TypeId() == typeid(Dim<8>).hash_code()) { return vistor(d.var.Get<Dim<7>>());
return vistor(d.var.Get<Dim<8>>()); } else if (d.var.TypeId() == typeid(Dim<8>).hash_code()) {
} else if (d.var.TypeId() == typeid(Dim<9>).hash_code()) { return vistor(d.var.Get<Dim<8>>());
return vistor(d.var.Get<Dim<9>>()); } else if (d.var.TypeId() == typeid(Dim<9>).hash_code()) {
} else { return vistor(d.var.Get<Dim<9>>());
printf(" dim not support \n"); } else {
throw std::bad_exception(); printf(" dim not support \n");
// return typename Vistor::type_t(); throw std::bad_exception();
} // return typename Vistor::type_t();
} }
}
DDim() { var.Set<Dim<1>>(Dim<1>()); }
DDim() { var.Set<Dim<1>>(Dim<1>()); }
template <int D> explicit DDim(const Dim<D> &in) { var.Set<Dim<D>>(in); }
template <int D> explicit DDim(const Dim<D> &in) {
/*implicit*/ DDim(std::initializer_list<int64_t> init_list); var.Set<Dim<D>>(in);
}
template <int D> DDim &operator=(const Dim<D> &in) {
var.Set<Dim<D>>(in); /*implicit*/ DDim(std::initializer_list<int64_t> init_list);
return *this;
} template <int D> DDim &operator=(const Dim<D> &in) {
var.Set<Dim<D>>(in);
int64_t &operator[](int idx); return *this;
}
int64_t operator[](int idx) const;
int64_t &operator[](int idx);
// template <typename Visitor>
// typename Visitor::result_type apply_visitor(Visitor& visitor) { int64_t operator[](int idx) const;
// return var.apply_visitor(visitor);
// } // template <typename Visitor>
// // typename Visitor::result_type apply_visitor(Visitor& visitor) {
// template <typename Visitor> // return var.apply_visitor(visitor);
// typename Visitor::result_type apply_visitor(Visitor& visitor) const { // }
// return var.apply_visitor(visitor); //
// } // template <typename Visitor>
// typename Visitor::result_type apply_visitor(Visitor& visitor)
DDimVar getVar() { return var; } // const {
// return var.apply_visitor(visitor);
bool operator==(DDim d) const; // }
bool operator!=(DDim d) const; DDimVar getVar() { return var; }
DDim operator+(DDim d) const; bool operator==(DDim d) const;
DDim operator*(DDim d) const; bool operator!=(DDim d) const;
int size() const; DDim operator+(DDim d) const;
};
DDim operator*(DDim d) const;
/**
* \brief Make a DDim from std::vector<int64_t> int size() const;
* };
* \param dims An vector of ints. Must be sized between [1, 9]
*/ /**
DDim make_ddim(const std::vector<int64_t> &dims); * \brief Make a DDim from std::vector<int64_t>
*
DDim make_ddim(const std::vector<int> &dims); * \param dims An vector of ints. Must be sized between [1, 9]
*/
/** DDim make_ddim(const std::vector<int64_t> &dims);
* \brief Make a DDim from an initializer list
* DDim make_ddim(const std::vector<int> &dims);
* \param dims An initializer list of ints. Must be sized between [1, 9]
* /**
*/ * \brief Make a DDim from an initializer list
DDim make_ddim(std::initializer_list<int64_t> dims); *
* \param dims An initializer list of ints. Must be sized between [1, 9]
int64_t get(const DDim &dim, int idx); *
*/
void set(DDim &dim, int idx, int val); DDim make_ddim(std::initializer_list<int64_t> dims);
std::vector<int64_t> vectorize(const DDim &ddim); int64_t get(const DDim &dim, int idx);
std::vector<int> vectorize2int(const DDim &ddim); void set(DDim &dim, int idx, int val);
int64_t product(const DDim &ddim); std::vector<int64_t> vectorize(const DDim &ddim);
/** std::vector<int> vectorize2int(const DDim &ddim);
* \brief Slice a ddim
* int64_t product(const DDim &ddim);
* Slice dim with [begin, end).
* e.g. DDim d = make_ddim({1,2,3,4,5}); /**
* slice_ddim(d, 1, 3); ====> {2,3} * \brief Slice a ddim
*/ *
DDim slice_ddim(const DDim &dim, int begin, int end); * Slice dim with [begin, end).
* e.g. DDim d = make_ddim({1,2,3,4,5});
/** * slice_ddim(d, 1, 3); ====> {2,3}
* \brief What is the length of this dimension? */
* DDim slice_ddim(const DDim &dim, int begin, int end);
* \param Dynamic dimension to inspect
*/ /**
* \brief What is the length of this dimension?
*
* \param Dynamic dimension to inspect
*/
int arity(const DDim &ddim); int arity(const DDim &ddim);
std::ostream &operator<<(std::ostream &, const DDim &); std::ostream &operator<<(std::ostream &, const DDim &);
// Reshape a tensor to a matrix. The matrix's first dimension(column length) // Reshape a tensor to a matrix. The matrix's first dimension(column
// will be the product of tensor's first `num_col_dims` dimensions. // length)
DDim flatten_to_2d(const DDim &src, int num_col_dims); // will be the product of tensor's first `num_col_dims` dimensions.
DDim flatten_to_2d(const DDim &src, int num_col_dims);
DDim flatten_to_1d(const DDim &src); DDim flatten_to_1d(const DDim &src);
DDim stride(const DDim &ddim); DDim stride(const DDim &ddim);
DDim stride_numel(const DDim &ddim); DDim stride_numel(const DDim &ddim);
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -21,388 +21,410 @@ ...@@ -21,388 +21,410 @@
#include "platform/hostdevice.h" #include "platform/hostdevice.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
// Statically sized, statically indexed dimension // Statically sized, statically indexed dimension
template <int i> struct Dim { template <int i> struct Dim {
static constexpr int dimensions = i; static constexpr int dimensions = i;
template <typename... Args> template <typename... Args>
HOSTDEVICE Dim(int64_t _head, Args... _tail) : head(_head), tail(_tail...) { HOSTDEVICE Dim(int64_t _head, Args... _tail)
static_assert(sizeof...(_tail) == i - 1, : head(_head), tail(_tail...) {
"Dim initialized with the wrong number of parameters"); static_assert(
} sizeof...(_tail) == i - 1,
"Dim initialized with the wrong number of parameters");
}
HOSTDEVICE HOSTDEVICE
Dim(int64_t _head, const Dim<i - 1> &_tail) : head(_head), tail(_tail) {} Dim(int64_t _head, const Dim<i - 1> &_tail)
: head(_head), tail(_tail) {}
HOSTDEVICE HOSTDEVICE
Dim() : head(0), tail() {} Dim() : head(0), tail() {}
/** Construct a Dim from a linear index and size. Uses Fortran order /** Construct a Dim from a linear index and size. Uses Fortran
* indexing. */ * order
HOSTDEVICE * indexing. */
Dim(int64_t idx, const Dim<i> &size) HOSTDEVICE
: head(idx % size.head), tail(idx / size.head, size.tail) {} Dim(int64_t idx, const Dim<i> &size)
: head(idx % size.head), tail(idx / size.head, size.tail) {}
/** Construct a Dim with each dimension set to the given index */ /** Construct a Dim with each dimension set to the given index */
HOSTDEVICE HOSTDEVICE
Dim(int64_t idx) : head(idx), tail(idx) {} Dim(int64_t idx) : head(idx), tail(idx) {}
HOSTDEVICE HOSTDEVICE
bool operator==(const Dim<i> &o) const { bool operator==(const Dim<i> &o) const {
return (head == o.head) && (tail == o.tail); return (head == o.head) && (tail == o.tail);
} }
HOSTDEVICE HOSTDEVICE
bool operator!=(const Dim<i> &o) const { return !(*this == o); } bool operator!=(const Dim<i> &o) const { return !(*this == o); }
HOSTDEVICE HOSTDEVICE
int64_t &operator[](int idx); int64_t &operator[](int idx);
HOSTDEVICE HOSTDEVICE
int64_t operator[](int idx) const; int64_t operator[](int idx) const;
HOST std::string to_string() const; HOST std::string to_string() const;
int64_t head; int64_t head;
Dim<i - 1> tail; Dim<i - 1> tail;
}; };
// Base case specialization // Base case specialization
template <> struct Dim<0> { template <> struct Dim<0> {
static constexpr int dimensions = 0; static constexpr int dimensions = 0;
HOSTDEVICE HOSTDEVICE
Dim(int64_t _head) {} Dim(int64_t _head) {}
HOSTDEVICE HOSTDEVICE
Dim() {} Dim() {}
HOSTDEVICE HOSTDEVICE
Dim(int idx, const Dim<0> &size) { Dim(int idx, const Dim<0> &size) {
#ifndef __CUDA_ARCH__ #ifndef __CUDA_ARCH__
if (idx > 0) { if (idx > 0) {
throw std::invalid_argument("Index out of range."); throw std::invalid_argument("Index out of range.");
} }
#else #else
PADDLE_ASSERT(idx == 0); PADDLE_ASSERT(idx == 0);
#endif #endif
} }
HOSTDEVICE HOSTDEVICE
bool operator==(const Dim<0> &o) const { return true; } bool operator==(const Dim<0> &o) const { return true; }
HOSTDEVICE HOSTDEVICE
bool operator!=(const Dim<0> &o) const { return false; } bool operator!=(const Dim<0> &o) const { return false; }
HOSTDEVICE HOSTDEVICE
int64_t &operator[](int idx); int64_t &operator[](int idx);
HOSTDEVICE HOSTDEVICE
int64_t operator[](int idx) const; int64_t operator[](int idx) const;
}; };
namespace { namespace {
// Helper for accessing Dim classes // Helper for accessing Dim classes
template <int i> struct DimGetter { template <int i> struct DimGetter {
// Return a copy if Dim is const // Return a copy if Dim is const
template <typename D> HOSTDEVICE static int64_t impl(const D &d) { template <typename D>
return DimGetter<i - 1>::impl(d.tail); HOSTDEVICE static int64_t impl(const D &d) {
} return DimGetter<i - 1>::impl(d.tail);
// Return a reference if Dim is mutable }
template <typename D> HOSTDEVICE static int64_t &impl(D &d) { // Return a reference if Dim is mutable
return DimGetter<i - 1>::impl(d.tail); template <typename D> HOSTDEVICE static int64_t &impl(D &d) {
} return DimGetter<i - 1>::impl(d.tail);
}; }
};
// Eureka! We found the element!
template <> struct DimGetter<0> { // Eureka! We found the element!
// Return a copy if Dim is const template <> struct DimGetter<0> {
template <typename D> HOSTDEVICE static int64_t impl(const D &d) { // Return a copy if Dim is const
return d.head; template <typename D>
} HOSTDEVICE static int64_t impl(const D &d) {
// Return a reference if Dim is mutable return d.head;
template <typename D> HOSTDEVICE static int64_t &impl(D &d) { return d.head; } }
}; // Return a reference if Dim is mutable
template <typename D> HOSTDEVICE static int64_t &impl(D &d) {
template <int D> HOSTDEVICE int64_t &indexer(Dim<D> &dim, int idx) { return d.head;
}
};
template <int D> HOSTDEVICE int64_t &indexer(Dim<D> &dim, int idx) {
#ifndef __CUDA_ARCH__ #ifndef __CUDA_ARCH__
if (idx < 0) { if (idx < 0) {
throw std::invalid_argument("Tried to access a negative dimension"); throw std::invalid_argument(
} "Tried to access a negative dimension");
}
#else #else
PADDLE_ASSERT(idx >= 0); PADDLE_ASSERT(idx >= 0);
#endif #endif
if (idx == 0) { if (idx == 0) {
return dim.head; return dim.head;
} }
return indexer(dim.tail, idx - 1); return indexer(dim.tail, idx - 1);
} }
template <> HOSTDEVICE int64_t &indexer<0>(Dim<0> &dim, int idx) { template <> HOSTDEVICE int64_t &indexer<0>(Dim<0> &dim, int idx) {
#ifndef __CUDA_ARCH__ #ifndef __CUDA_ARCH__
throw std::invalid_argument("Invalid index"); throw std::invalid_argument("Invalid index");
#else #else
PADDLE_ASSERT(false); PADDLE_ASSERT(false);
#if CUDA_VERSION < 8000 #if CUDA_VERSION < 8000
// On CUDA versions previous to 8.0, only __shared__ variables // On CUDA versions previous to 8.0, only __shared__ variables
// could be declared as static in the device code. // could be declared as static in the device code.
int64_t head = 0; int64_t head = 0;
#else #else
static int64_t head = 0; static int64_t head = 0;
#endif #endif
return head; return head;
#endif #endif
} }
template <int D> HOSTDEVICE int64_t indexer(const Dim<D> &dim, int idx) { template <int D>
HOSTDEVICE int64_t indexer(const Dim<D> &dim, int idx) {
#ifndef __CUDA_ARCH__ #ifndef __CUDA_ARCH__
if (idx < 0) { if (idx < 0) {
throw std::invalid_argument("Tried to access a negative dimension"); throw std::invalid_argument(
} "Tried to access a negative dimension");
}
#else #else
PADDLE_ASSERT(idx >= 0); PADDLE_ASSERT(idx >= 0);
#endif #endif
if (idx == 0) { if (idx == 0) {
return dim.head; return dim.head;
} }
return indexer(dim.tail, idx - 1); return indexer(dim.tail, idx - 1);
} }
template <> HOSTDEVICE int64_t indexer<0>(const Dim<0> &dim, int idx) { template <>
HOSTDEVICE int64_t indexer<0>(const Dim<0> &dim, int idx) {
#ifndef __CUDA_ARCH__ #ifndef __CUDA_ARCH__
throw std::invalid_argument("Invalid index"); throw std::invalid_argument("Invalid index");
#else #else
PADDLE_ASSERT(false); PADDLE_ASSERT(false);
#if CUDA_VERSION < 8000 #if CUDA_VERSION < 8000
// On CUDA versions previous to 8.0, only __shared__ variables // On CUDA versions previous to 8.0, only __shared__ variables
// could be declared as static in the device code. // could be declared as static in the device code.
int64_t head = 0; int64_t head = 0;
#else #else
static int64_t head = 0; static int64_t head = 0;
#endif #endif
return head; return head;
#endif #endif
} }
} // namespace } // namespace
// Static access to constant Dim // Static access to constant Dim
template <int i, int l> HOSTDEVICE int64_t get(const Dim<l> &d) { template <int i, int l> HOSTDEVICE int64_t get(const Dim<l> &d) {
return DimGetter<i>::impl(d); return DimGetter<i>::impl(d);
} }
// Static access to mutable Dim // Static access to mutable Dim
template <int i, int l> HOSTDEVICE int64_t &get(Dim<l> &d) { template <int i, int l> HOSTDEVICE int64_t &get(Dim<l> &d) {
return DimGetter<i>::impl(d); return DimGetter<i>::impl(d);
} }
// Dynamic access to constant Dim // Dynamic access to constant Dim
template <int l> HOSTDEVICE int64_t Dim<l>::operator[](int i) const { template <int l> HOSTDEVICE int64_t Dim<l>::operator[](int i) const {
// std::cout << "l: " << l << std::endl; // std::cout << "l: " << l << std::endl;
return indexer(*this, i); return indexer(*this, i);
} }
// Dynamic access to mutable Dim // Dynamic access to mutable Dim
template <int l> HOSTDEVICE int64_t &Dim<l>::operator[](int i) { template <int l> HOSTDEVICE int64_t &Dim<l>::operator[](int i) {
return indexer(*this, i); return indexer(*this, i);
} }
// Dynamic access to constant Dim // Dynamic access to constant Dim
inline HOSTDEVICE int64_t Dim<0>::operator[](int i) const { inline HOSTDEVICE int64_t Dim<0>::operator[](int i) const {
return indexer(*this, i); return indexer(*this, i);
} }
// Dynamic access to mutable Dim // Dynamic access to mutable Dim
inline HOSTDEVICE int64_t &Dim<0>::operator[](int i) { inline HOSTDEVICE int64_t &Dim<0>::operator[](int i) {
return indexer(*this, i); return indexer(*this, i);
} }
// Dynamic access to constant Dim // Dynamic access to constant Dim
// without std::enable_if will try to instantiate this on get<0>(d) // without std::enable_if will try to instantiate this on get<0>(d)
template <int l> template <int l>
HOSTDEVICE typename std::enable_if<(l > 0), int64_t>::type get(const Dim<l> &d, HOSTDEVICE typename std::enable_if<(l > 0), int64_t>::type
int i) { get(const Dim<l> &d, int i) {
return d[i]; return d[i];
} }
// Dynamic access to mutable Dim // Dynamic access to mutable Dim
template <int l> template <int l>
HOSTDEVICE typename std::enable_if<(l > 0), int64_t &>::type get(Dim<l> &d, HOSTDEVICE typename std::enable_if<(l > 0), int64_t &>::type
int i) { get(Dim<l> &d, int i) {
return d[i]; return d[i];
} }
// Dot product of two dims // Dot product of two dims
template <int i> template <int i>
HOSTDEVICE int64_t linearize(const Dim<i> &a, const Dim<i> &b) { HOSTDEVICE int64_t linearize(const Dim<i> &a, const Dim<i> &b) {
return a.head * b.head + linearize(a.tail, b.tail); return a.head * b.head + linearize(a.tail, b.tail);
} }
// Base case dot product of two Dims // Base case dot product of two Dims
// Notice it is inline because it is no longer a template // Notice it is inline because it is no longer a template
template <> template <>
HOSTDEVICE inline int64_t linearize(const Dim<0> &a, const Dim<0> &b) { HOSTDEVICE inline int64_t linearize(const Dim<0> &a, const Dim<0> &b) {
return 0; return 0;
} }
// Product of a Dim // Product of a Dim
template <int i> HOSTDEVICE int64_t product(const Dim<i> &a, int prod = 1) { template <int i>
return prod * a.head * product(a.tail); HOSTDEVICE int64_t product(const Dim<i> &a, int prod = 1) {
} return prod * a.head * product(a.tail);
}
// Base case product of a Dim
// Notice it is inline because it is no longer a template // Base case product of a Dim
template <> HOSTDEVICE inline int64_t product(const Dim<0> &a, int prod) { // Notice it is inline because it is no longer a template
return prod; template <>
} HOSTDEVICE inline int64_t product(const Dim<0> &a, int prod) {
return prod;
// Is 0 <= idx_i < size_i for all i? }
template <int i>
HOSTDEVICE bool contained(const Dim<i> &idx, const Dim<i> &size) { // Is 0 <= idx_i < size_i for all i?
return ((0 <= idx.head) && (idx.head < size.head) && template <int i>
contained(idx.tail, size.tail)); HOSTDEVICE bool contained(const Dim<i> &idx, const Dim<i> &size) {
} return ((0 <= idx.head) && (idx.head < size.head) &&
contained(idx.tail, size.tail));
// Base case of is 0 <= idx_i < size_i ? }
// Notice it is inline because it is no longer a template
template <> // Base case of is 0 <= idx_i < size_i ?
HOSTDEVICE inline bool contained(const Dim<0> &idx, const Dim<0> &size) { // Notice it is inline because it is no longer a template
return true; template <>
} HOSTDEVICE inline bool contained(const Dim<0> &idx,
const Dim<0> &size) {
/** return true;
* \brief Compute exclusive prefix-multiply of a Dim. }
*/
template <int i> /**
HOSTDEVICE Dim<i> ex_prefix_mul(const Dim<i> &src, int mul = 1) { * \brief Compute exclusive prefix-multiply of a Dim.
return Dim<i>(mul, ex_prefix_mul(src.tail, mul * src.head)); */
} template <int i>
HOSTDEVICE Dim<i> ex_prefix_mul(const Dim<i> &src, int mul = 1) {
///\cond HIDDEN return Dim<i>(mul, ex_prefix_mul(src.tail, mul * src.head));
// Base case of ex_prefix_mul }
// Notice it is inline because it is no longer a template
template <> HOSTDEVICE inline Dim<0> ex_prefix_mul(const Dim<0> &src, int mul) { ///\cond HIDDEN
return Dim<0>(); // Base case of ex_prefix_mul
} // Notice it is inline because it is no longer a template
///\endcond template <>
HOSTDEVICE inline Dim<0> ex_prefix_mul(const Dim<0> &src, int mul) {
/** return Dim<0>();
* Add two dimensions together }
*/ ///\endcond
template <int i> HOSTDEVICE Dim<i> dim_plus(const Dim<i> &a, const Dim<i> &b) {
return Dim<i>(a.head + b.head, dim_plus(a.tail, b.tail)); /**
} * Add two dimensions together
*/
// Base case template <int i>
template <> HOSTDEVICE Dim<i> dim_plus(const Dim<i> &a, const Dim<i> &b) {
HOSTDEVICE inline Dim<0> dim_plus(const Dim<0> &a, const Dim<0> &b) { return Dim<i>(a.head + b.head, dim_plus(a.tail, b.tail));
return Dim<0>(); }
}
// Base case
template <int i> template <>
HOSTDEVICE Dim<i> operator+(const Dim<i> &lhs, const Dim<i> &rhs) { HOSTDEVICE inline Dim<0> dim_plus(const Dim<0> &a, const Dim<0> &b) {
return dim_plus(lhs, rhs); return Dim<0>();
} }
/** template <int i>
* Multiply two dimensions together HOSTDEVICE Dim<i> operator+(const Dim<i> &lhs, const Dim<i> &rhs) {
*/ return dim_plus(lhs, rhs);
template <int i> HOSTDEVICE Dim<i> dim_mult(const Dim<i> &a, const Dim<i> &b) { }
return Dim<i>(a.head * b.head, dim_mult(a.tail, b.tail));
} /**
* Multiply two dimensions together
// Base case */
template <> template <int i>
HOSTDEVICE inline Dim<0> dim_mult(const Dim<0> &a, const Dim<0> &b) { HOSTDEVICE Dim<i> dim_mult(const Dim<i> &a, const Dim<i> &b) {
return Dim<0>(); return Dim<i>(a.head * b.head, dim_mult(a.tail, b.tail));
} }
template <int i> // Base case
HOSTDEVICE Dim<i> operator*(const Dim<i> &lhs, const Dim<i> &rhs) { template <>
return dim_mult(lhs, rhs); HOSTDEVICE inline Dim<0> dim_mult(const Dim<0> &a, const Dim<0> &b) {
} return Dim<0>();
}
/**
* \brief Normalize strides to ensure any dimension with extent 1 template <int i>
* has stride 0. HOSTDEVICE Dim<i> operator*(const Dim<i> &lhs, const Dim<i> &rhs) {
* return dim_mult(lhs, rhs);
* \param size Dim object containing the size of an array }
* \param stride Dim object containing stride of an array
* \return Dim object the same size as \p size with normalized strides /**
* * \brief Normalize strides to ensure any dimension with extent 1
*/ * has stride 0.
*
template <int i> * \param size Dim object containing the size of an array
HOSTDEVICE Dim<i> normalize_strides(const Dim<i> &size, const Dim<i> &stride) { * \param stride Dim object containing stride of an array
int norm_stride = size.head == 1 ? 0 : stride.head; * \return Dim object the same size as \p size with normalized strides
return Dim<i>(norm_stride, normalize_strides(size.tail, stride.tail)); *
} */
///\cond HIDDEN template <int i>
HOSTDEVICE Dim<i> normalize_strides(const Dim<i> &size,
template <> const Dim<i> &stride) {
HOSTDEVICE inline Dim<0> normalize_strides(const Dim<0> &size, int norm_stride = size.head == 1 ? 0 : stride.head;
const Dim<0> &stride) { return Dim<i>(norm_stride,
return Dim<0>(); normalize_strides(size.tail, stride.tail));
} }
///\endcond ///\cond HIDDEN
/** template <>
* Helper function to create a Dim HOSTDEVICE inline Dim<0> normalize_strides(const Dim<0> &size,
* const Dim<0> &stride) {
* \param idxes The type of Dim constructed depends on the number of params return Dim<0>();
* }
*/
///\endcond
template <typename... Args>
HOSTDEVICE Dim<sizeof...(Args)> make_dim(Args... idxes) { /**
return Dim<sizeof...(Args)>(idxes...); * Helper function to create a Dim
} *
* \param idxes The type of Dim constructed depends on the number of
// Allows us to output a Dim * params
// XXX For some reason, overloading fails to resolve this correctly *
template <int i> */
typename std::enable_if<(i > 1), std::ostream &>::type
operator<<(std::ostream &os, const Dim<i> &d) { template <typename... Args>
os << d.head << ", " << d.tail; HOSTDEVICE Dim<sizeof...(Args)> make_dim(Args... idxes) {
return os; return Dim<sizeof...(Args)>(idxes...);
} }
// Base case that allows us to output a Dim // Allows us to output a Dim
// XXX I wish this could be an overload instead of a template // XXX For some reason, overloading fails to resolve this correctly
template <int i> template <int i>
typename std::enable_if<(i == 1), std::ostream &>::type typename std::enable_if<(i > 1), std::ostream &>::type
operator<<(std::ostream &os, const Dim<i> &d) { operator<<(std::ostream &os, const Dim<i> &d) {
os << d.head; os << d.head << ", " << d.tail;
return os; return os;
} }
inline std::ostream &operator<<(std::ostream &os, const Dim<0> &d) { // Base case that allows us to output a Dim
return os; // XXX I wish this could be an overload instead of a template
} template <int i>
typename std::enable_if<(i == 1), std::ostream &>::type
template <int i> HOST std::string Dim<i>::to_string() const { operator<<(std::ostream &os, const Dim<i> &d) {
std::stringstream stream; os << d.head;
return os;
stream << *this; }
return stream.str(); inline std::ostream &operator<<(std::ostream &os, const Dim<0> &d) {
} return os;
}
template <int D>
HOSTDEVICE Dim<D> linear_to_dimension(int linear_index, Dim<D> extents) { template <int i> HOST std::string Dim<i>::to_string() const {
Dim<D> result; std::stringstream stream;
for (int i = 0; i < D - 1; ++i) { stream << *this;
result[i] = linear_index % extents[i];
linear_index /= extents[i]; return stream.str();
} }
result[D - 1] = linear_index; template <int D>
HOSTDEVICE Dim<D> linear_to_dimension(int linear_index,
return result; Dim<D> extents) {
} Dim<D> result;
} // namespace framework for (int i = 0; i < D - 1; ++i) {
result[i] = linear_index % extents[i];
linear_index /= extents[i];
}
result[D - 1] = linear_index;
return result;
}
} // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -23,72 +23,75 @@ SOFTWARE. ...@@ -23,72 +23,75 @@ SOFTWARE.
#include "variable.h" #include "variable.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
template <typename Dtype> template <typename Dtype>
Executor<Dtype>::Executor(const Program<Dtype> p) : program_(p) { Executor<Dtype>::Executor(const Program<Dtype> p) : program_(p) {
if (use_optimize_) { if (use_optimize_) {
to_predict_program_ = program_.optimizeProgram; to_predict_program_ = program_.optimizeProgram;
} else { } else {
to_predict_program_ = program_.originProgram; to_predict_program_ = program_.originProgram;
} }
const std::vector<std::shared_ptr<BlockDesc>> blocks = const std::vector<std::shared_ptr<BlockDesc>> blocks =
to_predict_program_->Blocks(); to_predict_program_->Blocks();
for (int i = 0; i < blocks.size(); ++i) { for (int i = 0; i < blocks.size(); ++i) {
std::shared_ptr<BlockDesc> block_desc = blocks[i]; std::shared_ptr<BlockDesc> block_desc = blocks[i];
std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops(); std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
for (int j = 0; j < ops.size(); ++j) { for (int j = 0; j < ops.size(); ++j) {
std::shared_ptr<OpDesc> op = ops[j]; std::shared_ptr<OpDesc> op = ops[j];
if (op->Type() == "conv2d" && op->Input("Input")[0] == "pixel") { if (op->Type() == "conv2d" &&
Attribute strides_attr = op->GetAttrMap().at("strides"); op->Input("Input")[0] == "pixel") {
std::vector<int> stride = strides_attr.Get<std::vector<int>>(); Attribute strides_attr = op->GetAttrMap().at("strides");
for (int k = 0; k < stride.size(); ++k) { std::vector<int> stride =
strides_attr.Get<std::vector<int>>();
for (int k = 0; k < stride.size(); ++k) {
}
std::shared_ptr<operators::ConvOp<Dtype, float>> conv =
std::make_shared<operators::ConvOp<Dtype, float>>(
op->Type(), op->GetInputs(), op->GetOutputs(),
op->GetAttrMap(), program_.scope);
ops_of_block_[*block_desc.get()].push_back(conv);
}
}
}
} }
std::shared_ptr<operators::ConvOp<Dtype, float>> conv = template <typename Dtype>
std::make_shared<operators::ConvOp<Dtype, float>>( std::shared_ptr<Tensor> Executor<Dtype>::predict(Tensor &t) {
op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(), // feed
program_.scope); auto scope = program_.scope;
ops_of_block_[*block_desc.get()].push_back(conv); Variable *g_feed_value = scope->Var("pixel");
} auto tensor = g_feed_value->GetMutable<Tensor>();
} tensor->ShareDataWith(t);
}
}
template <typename Dtype> Variable *con_output = scope->Var("conv2d_0.tmp_0");
std::shared_ptr<Tensor> Executor<Dtype>::predict(Tensor &t) { Tensor *output_tensor = con_output->GetMutable<Tensor>();
// feed output_tensor->mutable_data<float>({1, 16, 32, 32});
auto scope = program_.scope; // std::cout << typeid(output_tensor).name() << std::endl;
Variable *g_feed_value = scope->Var("pixel"); // std::cout << "output_tensor dims: " << output_tensor->dims() <<
auto tensor = g_feed_value->GetMutable<Tensor>(); // std::endl;
tensor->ShareDataWith(t);
Variable *con_output = scope->Var("conv2d_0.tmp_0"); std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
Tensor *output_tensor = con_output->GetMutable<Tensor>(); out_tensor.reset(output_tensor);
output_tensor->mutable_data<float>({1, 16, 32, 32});
// std::cout << typeid(output_tensor).name() << std::endl;
// std::cout << "output_tensor dims: " << output_tensor->dims() << std::endl;
std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>(); predict(t, 0);
out_tensor.reset(output_tensor); return out_tensor;
}
predict(t, 0);
return out_tensor;
}
template <typename Dtype> template <typename Dtype>
void Executor<Dtype>::predict(const Tensor &t, int block_id) { void Executor<Dtype>::predict(const Tensor &t, int block_id) {
std::shared_ptr<BlockDesc> to_predict_block = std::shared_ptr<BlockDesc> to_predict_block =
to_predict_program_->Block(block_id); to_predict_program_->Block(block_id);
for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) { for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size();
auto op = ops_of_block_[*to_predict_block.get()][j]; ++j) {
// std::cout << "开始run" << std::endl; auto op = ops_of_block_[*to_predict_block.get()][j];
op->Run(); // std::cout << "开始run" << std::endl;
} op->Run();
} }
}
template class Executor<CPU>; template class Executor<CPU>;
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -32,22 +32,22 @@ SOFTWARE. ...@@ -32,22 +32,22 @@ SOFTWARE.
#include "variable.h" #include "variable.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
template <typename Dtype> class Executor { template <typename Dtype> class Executor {
public: public:
Executor(const Program<Dtype> p); Executor(const Program<Dtype> p);
std::shared_ptr<Tensor> predict(Tensor &t); std::shared_ptr<Tensor> predict(Tensor &t);
private: private:
const framework::Program<Dtype> program_; const framework::Program<Dtype> program_;
std::shared_ptr<ProgramDesc> to_predict_program_; std::shared_ptr<ProgramDesc> to_predict_program_;
void predict(const Tensor &t, int block_id); void predict(const Tensor &t, int block_id);
std::map<framework::BlockDesc, std::map<framework::BlockDesc,
std::vector<std::shared_ptr<OperatorBase<Dtype>>>> std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
ops_of_block_; ops_of_block_;
bool use_optimize_ = false; bool use_optimize_ = false;
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
因为 它太大了无法显示 source diff 。你可以改为 查看blob
因为 它太大了无法显示 source diff 。你可以改为 查看blob
...@@ -19,280 +19,304 @@ limitations under the License. */ ...@@ -19,280 +19,304 @@ limitations under the License. */
#include <string.h> #include <string.h>
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
std::ostream &operator<<(std::ostream &os, const LoD &lod) { std::ostream &operator<<(std::ostream &os, const LoD &lod) {
os << "{"; os << "{";
for (auto &v : lod) { for (auto &v : lod) {
os << "{"; os << "{";
bool is_first = true; bool is_first = true;
for (auto &i : v) { for (auto &i : v) {
if (is_first) { if (is_first) {
os << i; os << i;
is_first = false; is_first = false;
} else { } else {
os << ", " << i; os << ", " << i;
} }
} }
os << "}"; os << "}";
} }
os << "}"; os << "}";
return os; return os;
} }
std::ostream &operator<<(std::ostream &os, const LoDTensor &t) { std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
// PADDLE_ENFORCE(t.type().hash_code() == typeid(float).hash_code()); // PADDLE_ENFORCE(t.type().hash_code() ==
// typeid(float).hash_code());
// if (!platform::is_cpu_place(t.place())) {
// LoDTensor tt; // if (!platform::is_cpu_place(t.place())) {
// framework::TensorCopy(t, platform::CPUPlace(), &tt); // LoDTensor tt;
// platform::DeviceContextPool &pool = // framework::TensorCopy(t, platform::CPUPlace(), &tt);
// platform::DeviceContextPool::Instance(); auto &dev_ctx = // platform::DeviceContextPool &pool =
// *pool.Get(t.place()); dev_ctx.Wait(); // platform::DeviceContextPool::Instance(); auto &dev_ctx =
// // *pool.Get(t.place()); dev_ctx.Wait();
// os << tt; //
// return os; // os << tt;
// } // return os;
// }
os << "dim: " << t.dims() << "\n";
os << "lod: " << t.lod() << "\n"; os << "dim: " << t.dims() << "\n";
os << "lod: " << t.lod() << "\n";
// only print first ten elements
int64_t size = t.numel() < 10 ? t.numel() : 10; // only print first ten elements
for (int64_t i = 0; i < size; ++i) { int64_t size = t.numel() < 10 ? t.numel() : 10;
os << t.data<float>()[i] << " "; for (int64_t i = 0; i < size; ++i) {
} os << t.data<float>()[i] << " ";
}
return os;
} return os;
}
std::string LoDToString(const LoD &lod) {
std::ostringstream stream; std::string LoDToString(const LoD &lod) {
stream << lod; std::ostringstream stream;
return stream.str(); stream << lod;
} return stream.str();
}
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
size_t elem_end) { LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
// PADDLE_ENFORCE_LT(level, in.size()); size_t elem_end) {
// PADDLE_ENFORCE_LT(elem_end, in[level].size()); // PADDLE_ENFORCE_LT(level, in.size());
// PADDLE_ENFORCE_LT(elem_end, in[level].size());
LoD res;
res.resize(in.size() - level); LoD res;
// copy the first level res.resize(in.size() - level);
res[0].assign(in[level].begin() + elem_begin, // copy the first level
in[level].begin() + elem_end + 1); res[0].assign(in[level].begin() + elem_begin,
for (size_t lvl = 1; lvl < res.size(); lvl++) { in[level].begin() + elem_end + 1);
const auto &in_level = in[level + lvl]; for (size_t lvl = 1; lvl < res.size(); lvl++) {
const auto &above_level = res[lvl - 1]; const auto &in_level = in[level + lvl];
auto &out_level = res[lvl]; const auto &above_level = res[lvl - 1];
out_level.assign(in_level.begin() + above_level.front(), auto &out_level = res[lvl];
in_level.begin() + above_level.back() + 1); out_level.assign(in_level.begin() + above_level.front(),
} in_level.begin() + above_level.back() + 1);
for (size_t lvl = 0; lvl < res.size(); lvl++) { }
// to make the first offset equals 0, all the elements minus the first for (size_t lvl = 0; lvl < res.size(); lvl++) {
// element // to make the first offset equals 0, all the elements minus the
size_t front = res[lvl].front(); // first
for (auto &ele : res[lvl]) { // element
ele -= front; size_t front = res[lvl].front();
} for (auto &ele : res[lvl]) {
} ele -= front;
return res; }
} }
return res;
LoD ToAbsOffset(const LoD &in) { }
// the lowest level stores relative offsets
if (in.empty() || in.size() == 1) LoD ToAbsOffset(const LoD &in) {
return in; // the lowest level stores relative offsets
LoD result = in; if (in.empty() || in.size() == 1)
for (auto level = static_cast<int>(in.size() - 2); level >= 0; level--) { return in;
for (size_t i = 0; i < in[level].size(); ++i) { LoD result = in;
size_t index = in[level][i]; for (auto level = static_cast<int>(in.size() - 2); level >= 0;
result[level][i] = result[level + 1][index]; level--) {
} for (size_t i = 0; i < in[level].size(); ++i) {
} size_t index = in[level][i];
return result; result[level][i] = result[level + 1][index];
} }
}
bool operator==(const LoD &a, const LoD &b) { return result;
if (a.size() != b.size()) { }
return false;
} bool operator==(const LoD &a, const LoD &b) {
if (a.size() != b.size()) {
for (size_t i = 0; i < a.size(); i++) { return false;
const auto &a_level = a[i]; }
const auto &b_level = b[i];
if (a_level.size() != b_level.size()) { for (size_t i = 0; i < a.size(); i++) {
return false; const auto &a_level = a[i];
} const auto &b_level = b[i];
for (size_t j = 0; j < a_level.size(); j++) { if (a_level.size() != b_level.size()) {
if (a_level[j] != b_level[j]) { return false;
return false; }
} for (size_t j = 0; j < a_level.size(); j++) {
} if (a_level[j] != b_level[j]) {
} return false;
return true; }
} }
}
bool CheckLoD(const LoD &in, int tensor_height) {
if (in.empty())
return true;
for (const auto &level : in) {
// check: there should be more than 2 offsets existing in each level.
if (level.size() < 2)
return false;
// check: the first offset(the begin offset) of each level should be 0.
if (level.front() != 0)
return false;
// check: all the offsets in a level should be ascending(no same items
// allows).
if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
if (a < b)
return true; return true;
return false; }
})) {
std::cout << "ascending error"; bool CheckLoD(const LoD &in, int tensor_height) {
return false; if (in.empty())
} return true;
} for (const auto &level : in) {
// check: the lowest level's last offset should equals `tensor_height` if // check: there should be more than 2 offsets existing in each
// tensor_height>0. // level.
if (tensor_height > 0 && (size_t)tensor_height != in.back().back()) if (level.size() < 2)
return false; return false;
// check: the first offset(the begin offset) of each level
// check: the higher level's last offset should equals the lower level's // should be 0.
// size-1. if (level.front() != 0)
// NOTE LoD store the levels from top to bottom, so the higher level goes return false;
// first. // check: all the offsets in a level should be ascending(no same
for (size_t level = 0; level < in.size() - 1; level++) { // items
if (in[level].back() != in[level + 1].size() - 1) // allows).
return false; if (!std::is_sorted(level.begin(), level.begin(),
} [](size_t a, size_t b) {
return true; if (a < b)
} return true;
return false;
bool CheckAbsLoD(const LoD &in, int tensor_height) { })) {
if (in.empty()) std::cout << "ascending error";
return true; return false;
for (const auto &level : in) { }
// check: all the offsets in a level should be ascending(no same items }
// allows). // check: the lowest level's last offset should equals
if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) { // `tensor_height` if
if (a < b) // tensor_height>0.
if (tensor_height > 0 && (size_t)tensor_height != in.back().back())
return false;
// check: the higher level's last offset should equals the lower
// level's
// size-1.
// NOTE LoD store the levels from top to bottom, so the higher level
// goes
// first.
for (size_t level = 0; level < in.size() - 1; level++) {
if (in[level].back() != in[level + 1].size() - 1)
return false;
}
return true; return true;
return false; }
})) {
return false; bool CheckAbsLoD(const LoD &in, int tensor_height) {
} if (in.empty())
return true;
// check: there should be more than 2 offsets existing in each level. for (const auto &level : in) {
if (level.size() < 2) // check: all the offsets in a level should be ascending(no same
return false; // items
// allows).
// check: the first offset of each level should be 0, and the last should be if (!std::is_sorted(level.begin(), level.begin(),
// the same(the height of underlying tensor). [](size_t a, size_t b) {
if (level.front() != 0) if (a < b)
return false; return true;
if (tensor_height < 0) { return false;
tensor_height = level.back(); })) {
} else if ((size_t)tensor_height != level.back()) { return false;
return false; }
}
} // check: there should be more than 2 offsets existing in each
return true; // level.
} if (level.size() < 2)
return false;
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
// check: the first offset of each level should be 0, and the
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx, // last should be
size_t end_idx, size_t start_level) { // the same(the height of underlying tensor).
LoD sub_lod; if (level.front() != 0)
return false;
for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) { if (tensor_height < 0) {
// PADDLE_ENFORCE_LE(start_idx, end_idx); tensor_height = level.back();
// PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size()); } else if ((size_t)tensor_height != level.back()) {
std::vector<size_t> level_lens; return false;
for (size_t i = start_idx; i < end_idx; ++i) { }
level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]); }
} return true;
sub_lod.emplace_back(level_lens); }
start_idx = lod[level_idx][start_idx];
end_idx = lod[level_idx][end_idx]; using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
}
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod,
return LoDAndOffset{sub_lod, {start_idx, end_idx}}; size_t start_idx,
} size_t end_idx,
size_t start_level) {
void AppendLoD(LoD *lod, const LoD &lod_length) { LoD sub_lod;
// PADDLE_ENFORCE(
// lod->empty() || lod->size() == lod_length.size(), for (size_t level_idx = start_level; level_idx < lod.size();
// "The lod_length should has the same size with the appended lod."); ++level_idx) {
if (lod->empty()) { // PADDLE_ENFORCE_LE(start_idx, end_idx);
for (size_t i = 0; i < lod_length.size(); ++i) { // PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
lod->emplace_back(1, 0); // size = 1, value = 0; std::vector<size_t> level_lens;
} for (size_t i = start_idx; i < end_idx; ++i) {
*lod = LoD(lod_length.size(), std::vector<size_t>({0})); level_lens.push_back(lod[level_idx][i + 1] -
} lod[level_idx][i]);
for (size_t i = 0; i < lod->size(); ++i) { }
auto &level = (*lod)[i]; sub_lod.emplace_back(level_lens);
for (size_t len : lod_length[i]) { start_idx = lod[level_idx][start_idx];
level.push_back(level.back() + len); end_idx = lod[level_idx][end_idx];
} }
}
} return LoDAndOffset{sub_lod, {start_idx, end_idx}};
}
void SerializeToStream(std::ostream &os, const LoDTensor &tensor) {
{ // the 1st field, uint32_t version for LoDTensor void AppendLoD(LoD *lod, const LoD &lod_length) {
constexpr uint32_t version = 0; // PADDLE_ENFORCE(
os.write(reinterpret_cast<const char *>(&version), sizeof(version)); // lod->empty() || lod->size() == lod_length.size(),
} // "The lod_length should has the same size with the appended
{ // lod.");
// the 2st field, LoD information if (lod->empty()) {
// uint64_t lod_level for (size_t i = 0; i < lod_length.size(); ++i) {
// uint64_t lod_level_1 size in byte. lod->emplace_back(1, 0); // size = 1, value = 0;
// int* lod_level_1 data }
// ... *lod = LoD(lod_length.size(), std::vector<size_t>({0}));
auto lod = tensor.lod(); }
uint64_t size = lod.size(); for (size_t i = 0; i < lod->size(); ++i) {
os.write(reinterpret_cast<const char *>(&size), sizeof(size)); auto &level = (*lod)[i];
for (size_t len : lod_length[i]) {
for (auto &each : lod) { level.push_back(level.back() + len);
size = each.size() * sizeof(framework::LoD::value_type::value_type); }
os.write(reinterpret_cast<const char *>(&size), sizeof(size)); }
os.write(reinterpret_cast<const char *>(each.data()), }
static_cast<std::streamsize>(size));
} void SerializeToStream(std::ostream &os, const LoDTensor &tensor) {
} { // the 1st field, uint32_t version for LoDTensor
// the 3st field, Tensor constexpr uint32_t version = 0;
TensorToStream(os, static_cast<Tensor>(tensor)); os.write(reinterpret_cast<const char *>(&version),
} sizeof(version));
}
void DeserializeFromStream(std::istream &is, LoDTensor *tensor) { {
{ // the 2st field, LoD information
// the 1st field, unit32_t version for LoDTensor // uint64_t lod_level
uint32_t version; // uint64_t lod_level_1 size in byte.
is.read(reinterpret_cast<char *>(&version), sizeof(version)); // int* lod_level_1 data
// PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported"); // ...
} auto lod = tensor.lod();
{ uint64_t size = lod.size();
// the 2st field, LoD information os.write(reinterpret_cast<const char *>(&size), sizeof(size));
uint64_t lod_level;
is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level)); for (auto &each : lod) {
auto &lod = *tensor->mutable_lod(); size = each.size() *
lod.resize(lod_level); sizeof(framework::LoD::value_type::value_type);
for (uint64_t i = 0; i < lod_level; ++i) { os.write(reinterpret_cast<const char *>(&size),
uint64_t size; sizeof(size));
is.read(reinterpret_cast<char *>(&size), sizeof(size)); os.write(reinterpret_cast<const char *>(each.data()),
std::vector<size_t> tmp(size / sizeof(size_t)); static_cast<std::streamsize>(size));
is.read(reinterpret_cast<char *>(tmp.data()), }
static_cast<std::streamsize>(size)); }
lod[i] = tmp; // the 3st field, Tensor
} TensorToStream(os, static_cast<Tensor>(tensor));
} }
// the 3st filed, Tensor
TensorFromStream(is, static_cast<Tensor *>(tensor)); void DeserializeFromStream(std::istream &is, LoDTensor *tensor) {
} {
// the 1st field, unit32_t version for LoDTensor
} // namespace framework uint32_t version;
is.read(reinterpret_cast<char *>(&version), sizeof(version));
// PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is
// supported");
}
{
// the 2st field, LoD information
uint64_t lod_level;
is.read(reinterpret_cast<char *>(&lod_level),
sizeof(lod_level));
auto &lod = *tensor->mutable_lod();
lod.resize(lod_level);
for (uint64_t i = 0; i < lod_level; ++i) {
uint64_t size;
is.read(reinterpret_cast<char *>(&size), sizeof(size));
std::vector<size_t> tmp(size / sizeof(size_t));
is.read(reinterpret_cast<char *>(tmp.data()),
static_cast<std::streamsize>(size));
lod[i] = tmp;
}
}
// the 3st filed, Tensor
TensorFromStream(is, static_cast<Tensor *>(tensor));
}
} // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -23,178 +23,190 @@ limitations under the License. */ ...@@ -23,178 +23,190 @@ limitations under the License. */
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
/* /*
* LoD is short for Level of Details. * LoD is short for Level of Details.
* *
* - in a level, each element indicates relative offset of the lower level * - in a level, each element indicates relative offset of the lower
* - the first element should be 0 and that indicates that this sequence start * level
* from 0 * - the first element should be 0 and that indicates that this sequence
* - each sequence's begin and end(no-inclusive) is level[id, id+1] * start
* * from 0
* For example: * - each sequence's begin and end(no-inclusive) is level[id, id+1]
* 3-level LoD stores *
* * For example:
* 0 2 3 * 3-level LoD stores
* 0 2 4 7 *
* 0 2 5 7 10 12 15 20 * 0 2 3
*/ * 0 2 4 7
using LoD = std::vector<std::vector<size_t>>; * 0 2 5 7 10 12 15 20
*/
std::ostream &operator<<(std::ostream &os, const LoD &lod); using LoD = std::vector<std::vector<size_t>>;
std::ostream &operator<<(std::ostream &os, const LoDTensor &t); std::ostream &operator<<(std::ostream &os, const LoD &lod);
std::string LoDToString(const LoD &lod); std::ostream &operator<<(std::ostream &os, const LoDTensor &t);
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin, std::string LoDToString(const LoD &lod);
size_t elem_end);
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
/* size_t elem_end);
* Transform an LoD from relative offsets to absolute offsets.
*/ /*
LoD ToAbsOffset(const LoD &in); * Transform an LoD from relative offsets to absolute offsets.
*/
bool operator==(const LoD &a, const LoD &b); LoD ToAbsOffset(const LoD &in);
/* bool operator==(const LoD &a, const LoD &b);
* Check whether this lod's format is valid.
* /*
* ATTENTION: * Check whether this lod's format is valid.
* - Empty lod is treated as valid. *
* * ATTENTION:
* It will check two things: * - Empty lod is treated as valid.
* *
* 1. all the offsets in a level should be ascending(no same items allows). * It will check two things:
* 2. there should be more than 2 offsets existing in each level. *
* 3. the higher level's last offset should equals the lower level's size-1. * 1. all the offsets in a level should be ascending(no same items
* 4. the first offset(the begin offset) of each level should be 0. * allows).
* 5. the lowest level's last offset should equals `tensor_height` if * 2. there should be more than 2 offsets existing in each level.
* tensor_height>0. * 3. the higher level's last offset should equals the lower level's
*/ * size-1.
* 4. the first offset(the begin offset) of each level should be 0.
bool CheckLoD(const LoD &in, int tensor_height = -1); * 5. the lowest level's last offset should equals `tensor_height` if
* tensor_height>0.
/* */
* Check whether this absolute lod's format is valid.
* bool CheckLoD(const LoD &in, int tensor_height = -1);
* ATTENTION:
* - Empty lod is treated as valid. /*
* * Check whether this absolute lod's format is valid.
* It will check two things: *
* 1. all the offsets in a level should be ascending(no same items allows) * ATTENTION:
* 2. there should be more than 2 offsets existing in each level. * - Empty lod is treated as valid.
* 3. the first offset of each level should be 0, and the last should be the *
* same(the height of underlying tensor) or `tensor_height` if * It will check two things:
* tensor_height>0. * 1. all the offsets in a level should be ascending(no same items
*/ * allows)
bool CheckAbsLoD(const LoD &in, int tensor_height = -1); * 2. there should be more than 2 offsets existing in each level.
* 3. the first offset of each level should be 0, and the last should
/* * be the
* LoDTensor (Level of details Tensor) * same(the height of underlying tensor) or `tensor_height` if
* see https://en.wikipedia.org/wiki/Level_of_details for reference. * tensor_height>0.
*/ */
class LoDTensor : public Tensor { bool CheckAbsLoD(const LoD &in, int tensor_height = -1);
public:
LoDTensor() : Tensor() {} /*
* LoDTensor (Level of details Tensor)
explicit LoDTensor(const LoD &lod) : lod_(lod) {} * see https://en.wikipedia.org/wiki/Level_of_details for reference.
*/
void set_lod(const LoD &lod) { lod_ = lod; } class LoDTensor : public Tensor {
public:
const LoD &lod() const { return lod_; } LoDTensor() : Tensor() {}
LoD *mutable_lod() { return &lod_; } explicit LoDTensor(const LoD &lod) : lod_(lod) {}
/* void set_lod(const LoD &lod) { lod_ = lod; }
* Get the start offset and end offset of an element from LoD.
*/ const LoD &lod() const { return lod_; }
std::pair<size_t, size_t> lod_element(size_t level, size_t elem) const {
// PADDLE_ENFORCE_LT(level, NumLevels()); LoD *mutable_lod() { return &lod_; }
// PADDLE_ENFORCE_LT(elem, NumElements(level));
return std::make_pair((lod_)[level][elem], (lod_)[level][elem + 1]); /*
} * Get the start offset and end offset of an element from LoD.
*/
/* std::pair<size_t, size_t> lod_element(size_t level,
* Number of LoDTensor's levels, each level has units of data, for example, size_t elem) const {
* in the sentence's view, article, paragraph, sentence are 3 levels. // PADDLE_ENFORCE_LT(level, NumLevels());
*/ // PADDLE_ENFORCE_LT(elem, NumElements(level));
size_t NumLevels() const { return lod_.size(); } return std::make_pair((lod_)[level][elem],
(lod_)[level][elem + 1]);
/* }
* Number of elements in a level.
*/ /*
size_t NumElements(size_t level = 0) const { * Number of LoDTensor's levels, each level has units of data, for
// PADDLE_ENFORCE_LT(level, NumLevels()); * example,
// the last offset is the end of last element * in the sentence's view, article, paragraph, sentence are 3
return (lod_)[level].size() - 1; * levels.
} */
size_t NumLevels() const { return lod_.size(); }
private:
LoD lod_; /*
}; * Number of elements in a level.
*/
/* size_t NumElements(size_t level = 0) const {
* Expand the `source` to fit the LoD of `lod`. For example, a `source` // PADDLE_ENFORCE_LT(level, NumLevels());
* LoDTensor is // the last offset is the end of last element
* - LoD: [0, 2] return (lod_)[level].size() - 1;
* - tensor: [a0, a1] }
* a `lod` is
* - LoD: [0 3 5] private:
* returns a new LoDTensor LoD lod_;
* - [a0 a0 a0 a1 a1] };
*/
template <typename T> /*
LoDTensor LodExpand(const LoDTensor &source, const LoD &lod, size_t level) { * Expand the `source` to fit the LoD of `lod`. For example, a `source`
LoD abs_lod = ToAbsOffset(lod); * LoDTensor is
const auto &lod_level = lod[level]; * - LoD: [0, 2]
size_t num_instances = source.dims()[0]; * - tensor: [a0, a1]
* a `lod` is
// new tensor * - LoD: [0 3 5]
LoDTensor tensor; * returns a new LoDTensor
tensor.set_lod(lod); * - [a0 a0 a0 a1 a1]
auto dims = source.dims(); */
dims[0] = lod_level.back(); template <typename T>
tensor.Resize(dims); LoDTensor LodExpand(const LoDTensor &source, const LoD &lod,
tensor.mutable_data<T>(); size_t level) {
LoD abs_lod = ToAbsOffset(lod);
// PADDLE_ENFORCE_EQ(num_instances, lod_level.size() - 1); const auto &lod_level = lod[level];
for (size_t ins = 0; ins < num_instances; ins++) { size_t num_instances = source.dims()[0];
for (size_t elem = lod_level[ins]; elem < lod_level[ins + 1]; elem++) {
auto slice = tensor.Slice(elem, elem + 1); // new tensor
TensorCopy(source.Slice(ins, ins + 1), &slice); LoDTensor tensor;
} tensor.set_lod(lod);
} auto dims = source.dims();
return tensor; dims[0] = lod_level.back();
} tensor.Resize(dims);
tensor.mutable_data<T>();
// Get the absolute offset of a lod[start_level][start_idx:end_idx] and
// relative length of details for every levels(i.e., [start_level: ]). // PADDLE_ENFORCE_EQ(num_instances, lod_level.size() - 1);
// for (size_t ins = 0; ins < num_instances; ins++) {
// For example, for (size_t elem = lod_level[ins]; elem < lod_level[ins + 1];
// lod = [[0, 3, 4, 8], [0, 9, 10, 11, 13, 17, 19, 22, 24]] elem++) {
// start_level = 0 auto slice = tensor.Slice(elem, elem + 1);
// start_idx = 1 TensorCopy(source.Slice(ins, ins + 1), &slice);
// end_idx = 3 }
// }
// Returns: return tensor;
// LoD = [[1, 4], [2, 4, 2, 3, 2]] }
// pair<size_t, size_t> = {11, 24}
std::pair<LoD, std::pair<size_t, size_t>> // Get the absolute offset of a lod[start_level][start_idx:end_idx] and
GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx, size_t end_idx, // relative length of details for every levels(i.e., [start_level: ]).
size_t start_level); //
// For example,
void AppendLoD(LoD *lod, const LoD &lod_length); // lod = [[0, 3, 4, 8], [0, 9, 10, 11, 13, 17, 19, 22, 24]]
// start_level = 0
/* // start_idx = 1
* Serialize/Desiralize LoDTensor to std::ostream // end_idx = 3
* You can pass ofstream or ostringstream to serilize to file //
* or to a in memory string. GPU tensor will be copied to CPU. // Returns:
*/ // LoD = [[1, 4], [2, 4, 2, 3, 2]]
void SerializeToStream(std::ostream &os, const LoDTensor &tensor); // pair<size_t, size_t> = {11, 24}
std::pair<LoD, std::pair<size_t, size_t>>
void DeserializeFromStream(std::istream &is, LoDTensor *tensor); GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
size_t end_idx, size_t start_level);
} // namespace framework
void AppendLoD(LoD *lod, const LoD &lod_length);
/*
* Serialize/Desiralize LoDTensor to std::ostream
* You can pass ofstream or ostringstream to serilize to file
* or to a in memory string. GPU tensor will be copied to CPU.
*/
void SerializeToStream(std::ostream &os, const LoDTensor &tensor);
void DeserializeFromStream(std::istream &is, LoDTensor *tensor);
} // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -5,55 +5,58 @@ ...@@ -5,55 +5,58 @@
#include "op_desc.h" #include "op_desc.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
OpDesc::OpDesc(const proto::OpDesc &desc) : desc_(desc) { OpDesc::OpDesc(const proto::OpDesc &desc) : desc_(desc) {
for (int i = 0; i < desc_.inputs_size(); ++i) { for (int i = 0; i < desc_.inputs_size(); ++i) {
const proto::OpDesc::Var &var = desc_.inputs(i); const proto::OpDesc::Var &var = desc_.inputs(i);
std::vector<std::string> &args = inputs_[var.parameter()]; std::vector<std::string> &args = inputs_[var.parameter()];
int arg_size = var.arguments_size(); int arg_size = var.arguments_size();
for (int j = 0; j < arg_size; ++j) { for (int j = 0; j < arg_size; ++j) {
args.push_back(var.arguments(j)); args.push_back(var.arguments(j));
} }
} }
for (int i = 0; i < desc_.outputs_size(); ++i) { for (int i = 0; i < desc_.outputs_size(); ++i) {
const proto::OpDesc::Var &var = desc_.outputs(i); const proto::OpDesc::Var &var = desc_.outputs(i);
std::vector<std::string> &args = outputs_[var.parameter()]; std::vector<std::string> &args = outputs_[var.parameter()];
int arg_size = var.arguments_size(); int arg_size = var.arguments_size();
for (int j = 0; j < arg_size; ++j) { for (int j = 0; j < arg_size; ++j) {
args.push_back(var.arguments(j)); args.push_back(var.arguments(j));
} }
} }
for (const proto::OpDesc::Attr &attr : desc_.attrs()) { for (const proto::OpDesc::Attr &attr : desc_.attrs()) {
std::string attr_name = attr.name(); std::string attr_name = attr.name();
if (attr.type() != proto::AttrType::BLOCK) { if (attr.type() != proto::AttrType::BLOCK) {
attrs_[attr_name] = Attribute::GetAttrValue(attr); attrs_[attr_name] = Attribute::GetAttrValue(attr);
// if (attr.type() == proto::AttrType::INT){ // if (attr.type() == proto::AttrType::INT){
// std::cout << " attrName " << attr_name << " " << // std::cout << " attrName " << attr_name << " " <<
// attrs_[attr_name].Get<int>() << std::endl; // attrs_[attr_name].Get<int>() << std::endl;
// } // }
} }
} }
} }
const std::vector<std::string> &OpDesc::Input(const std::string &name) const { const std::vector<std::string> &
return inputs_.find(name)->second; OpDesc::Input(const std::string &name) const {
} return inputs_.find(name)->second;
}
const std::vector<std::string> &OpDesc::Output(const std::string &name) const {
return outputs_.find(name)->second; const std::vector<std::string> &
} OpDesc::Output(const std::string &name) const {
return outputs_.find(name)->second;
Attribute OpDesc::GetAttr(const std::string &name) const { }
auto it = attrs_.find(name);
return it->second; Attribute OpDesc::GetAttr(const std::string &name) const {
} auto it = attrs_.find(name);
return it->second;
const std::unordered_map<std::string, Attribute> &OpDesc::GetAttrMap() const { }
return attrs_;
} const std::unordered_map<std::string, Attribute> &
OpDesc::GetAttrMap() const {
} // namespace framework return attrs_;
}
} // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -23,29 +23,31 @@ SOFTWARE. ...@@ -23,29 +23,31 @@ SOFTWARE.
#include "paddle_mobile_object.h" #include "paddle_mobile_object.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
class OpDesc : PaddleMobileObject { class OpDesc : PaddleMobileObject {
public: public:
OpDesc(const proto::OpDesc &desc); OpDesc(const proto::OpDesc &desc);
const std::vector<std::string> &Input(const std::string &name) const; const std::vector<std::string> &
const std::vector<std::string> &Output(const std::string &name) const; Input(const std::string &name) const;
Attribute GetAttr(const std::string &name) const; const std::vector<std::string> &
Output(const std::string &name) const;
Attribute GetAttr(const std::string &name) const;
const VariableNameMap &GetInputs() { return inputs_; } const VariableNameMap &GetInputs() { return inputs_; }
const VariableNameMap &GetOutputs() { return outputs_; } const VariableNameMap &GetOutputs() { return outputs_; }
const AttributeMap &GetAttrMap() const; const AttributeMap &GetAttrMap() const;
const std::string &Type() { return desc_.type(); }; const std::string &Type() { return desc_.type(); };
private: private:
proto::OpDesc desc_; proto::OpDesc desc_;
VariableNameMap inputs_; VariableNameMap inputs_;
VariableNameMap outputs_; VariableNameMap outputs_;
AttributeMap attrs_; AttributeMap attrs_;
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -22,70 +22,74 @@ SOFTWARE. ...@@ -22,70 +22,74 @@ SOFTWARE.
#include "framework.pb.h" #include "framework.pb.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
template <typename Dtype> struct OpInfo { template <typename Dtype> struct OpInfo {
OpCreator<Dtype> creator_; OpCreator<Dtype> creator_;
const OpCreator<Dtype> &Creator() const { const OpCreator<Dtype> &Creator() const {
// PADDLE_ENFORCE_NOT_NULL(creator_, // PADDLE_ENFORCE_NOT_NULL(creator_,
// "Operator Creator has not been registered"); // "Operator Creator has not been
return creator_; // registered");
} return creator_;
}; }
};
template <typename Dtype> class OpInfoMap;
template <typename Dtype> class OpInfoMap;
template <typename Dtype> static OpInfoMap<Dtype> *g_op_info_map = nullptr;
template <typename Dtype>
template <typename Dtype> class OpInfoMap { static OpInfoMap<Dtype> *g_op_info_map = nullptr;
public:
static OpInfoMap &Instance() { template <typename Dtype> class OpInfoMap {
if (g_op_info_map<Dtype> == nullptr) { public:
g_op_info_map<Dtype> = new OpInfoMap(); static OpInfoMap &Instance() {
} if (g_op_info_map<Dtype> == nullptr) {
return *g_op_info_map<Dtype>; g_op_info_map<Dtype> = new OpInfoMap();
}; }
return *g_op_info_map<Dtype>;
bool Has(const std::string &op_type) const { };
return map_.find(op_type) != map_.end();
} bool Has(const std::string &op_type) const {
return map_.find(op_type) != map_.end();
void Insert(const std::string &type, const OpInfo<Dtype> &info) { }
// PADDLE_ENFORCE(!Has(type), "Operator %s has been registered", type);
map_.insert({type, info}); void Insert(const std::string &type, const OpInfo<Dtype> &info) {
} // PADDLE_ENFORCE(!Has(type), "Operator %s has been
// registered", type);
const OpInfo<Dtype> &Get(const std::string &type) const { map_.insert({type, info});
auto op_info_ptr = GetNullable(type); }
// PADDLE_ENFORCE_NOT_NULL(op_info_ptr, "Operator %s has not been
// registered", const OpInfo<Dtype> &Get(const std::string &type) const {
// type); auto op_info_ptr = GetNullable(type);
return *op_info_ptr; // PADDLE_ENFORCE_NOT_NULL(op_info_ptr, "Operator %s has not
} // been
// registered",
const OpInfo<Dtype> *GetNullable(const std::string &type) const { // type);
auto it = map_.find(type); return *op_info_ptr;
if (it == map_.end()) { }
return nullptr;
} else { const OpInfo<Dtype> *GetNullable(const std::string &type) const {
return &it->second; auto it = map_.find(type);
} if (it == map_.end()) {
} return nullptr;
} else {
const std::unordered_map<std::string, OpInfo<Dtype>> &map() const { return &it->second;
return map_; }
} }
std::unordered_map<std::string, OpInfo<Dtype>> *mutable_map() { const std::unordered_map<std::string, OpInfo<Dtype>> &map() const {
return &map_; return map_;
} }
private: std::unordered_map<std::string, OpInfo<Dtype>> *mutable_map() {
OpInfoMap() = default; return &map_;
std::unordered_map<std::string, OpInfo<Dtype>> map_; }
// DISABLE_COPY_AND_ASSIGN(OpInfoMap); private:
}; OpInfoMap() = default;
std::unordered_map<std::string, OpInfo<Dtype>> map_;
} // namespace framework
// DISABLE_COPY_AND_ASSIGN(OpInfoMap);
};
} // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -22,43 +22,51 @@ SOFTWARE. ...@@ -22,43 +22,51 @@ SOFTWARE.
#include "framework.pb.h" #include "framework.pb.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
struct OpKernelType { struct OpKernelType {
struct Hash { struct Hash {
size_t operator()(const OpKernelType &key) const { size_t operator()(const OpKernelType &key) const {
int data_type = static_cast<int>(key.data_type_) << LEFT_SHIFT; int data_type = static_cast<int>(key.data_type_)
int data_layout = static_cast<int>(key.data_layout_) << (LEFT_SHIFT * 2); << LEFT_SHIFT;
int data_layout = static_cast<int>(key.data_layout_)
<< (LEFT_SHIFT * 2);
std::hash<int> hasher; std::hash<int> hasher;
return hasher(data_type + data_layout); return hasher(data_type + data_layout);
} }
}; };
// place, data_type, library_type kinds less than 2^8 // place, data_type, library_type kinds less than 2^8
constexpr static int LEFT_SHIFT = 8; constexpr static int LEFT_SHIFT = 8;
proto::VarType::Type data_type_; proto::VarType::Type data_type_;
DataLayout data_layout_; DataLayout data_layout_;
OpKernelType(proto::VarType::Type data_type, OpKernelType(proto::VarType::Type data_type,
DataLayout data_layout = DataLayout::kAnyLayout) DataLayout data_layout = DataLayout::kAnyLayout)
: data_type_(data_type), data_layout_(data_layout) {} : data_type_(data_type), data_layout_(data_layout) {}
bool operator==(const OpKernelType &o) const { bool operator==(const OpKernelType &o) const {
return data_type_ == o.data_type_ && data_layout_ == o.data_layout_; return data_type_ == o.data_type_ &&
} data_layout_ == o.data_layout_;
}
bool operator!=(const OpKernelType &o) const { return !(*this == o); } bool operator!=(const OpKernelType &o) const {
}; return !(*this == o);
}
};
inline bool NeedTransformLayout(const DataLayout &l, const DataLayout &r) { inline bool NeedTransformLayout(const DataLayout &l,
return l != DataLayout::kAnyLayout && r != DataLayout::kAnyLayout && l != r; const DataLayout &r) {
} return l != DataLayout::kAnyLayout && r != DataLayout::kAnyLayout &&
l != r;
}
inline bool TransFromNeeded(const OpKernelType &l, const OpKernelType &r) { inline bool TransFromNeeded(const OpKernelType &l,
return (l.data_type_ != r.data_type_) || const OpKernelType &r) {
NeedTransformLayout(l.data_layout_, r.data_layout_); return (l.data_type_ != r.data_type_) ||
} NeedTransformLayout(l.data_layout_, r.data_layout_);
}
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -19,8 +19,8 @@ SOFTWARE. ...@@ -19,8 +19,8 @@ SOFTWARE.
#pragma once #pragma once
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
// this class not only make proto but also init attribute checkers. // this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {}; class OpProtoAndCheckerMaker {};
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -20,26 +20,23 @@ SOFTWARE. ...@@ -20,26 +20,23 @@ SOFTWARE.
#include "op_info.h" #include "op_info.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
template <typename Dtype> template <typename Dtype>
OperatorBase<Dtype>::OperatorBase(const std::string &type, OperatorBase<Dtype>::OperatorBase(const std::string &type,
const VariableNameMap &inputs, const VariableNameMap &inputs,
const VariableNameMap &outputs, const VariableNameMap &outputs,
const AttributeMap &attrs, const AttributeMap &attrs,
std::shared_ptr<Scope> scope) std::shared_ptr<Scope> scope)
: type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs), : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs),
scope_(scope) { scope_(scope) {
CheckAllInputOutputSet(); CheckAllInputOutputSet();
} }
template <typename Dtype>
void OperatorBase<Dtype>::CheckAllInputOutputSet() const {}
template <typename Dtype> void OperatorBase<Dtype>::Run() { RunImpl(); } template class OperatorBase<CPU>;
template class OperatorWithKernel<CPU>;
template <typename Dtype> } // namespace framework
void OperatorBase<Dtype>::CheckAllInputOutputSet() const {}
template class OperatorBase<CPU>;
template class OperatorWithKernel<CPU>;
} // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -18,8 +18,6 @@ SOFTWARE. ...@@ -18,8 +18,6 @@ SOFTWARE.
#pragma once #pragma once
#include <map>
#include "attribute.h" #include "attribute.h"
#include "block_desc.h" #include "block_desc.h"
#include "common/type_define.h" #include "common/type_define.h"
...@@ -31,62 +29,62 @@ SOFTWARE. ...@@ -31,62 +29,62 @@ SOFTWARE.
#include "scope.h" #include "scope.h"
#include "tensor.h" #include "tensor.h"
#include "variable.h" #include "variable.h"
#include <map>
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
template <typename Dtype> class OperatorBase : PaddleMobileObject {
public:
OperatorBase(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs,
std::shared_ptr<Scope> scope);
virtual ~OperatorBase() {}
virtual void Run();
const VariableNameMap &Inputs() const { return inputs_; }
const VariableNameMap &Outputs() const { return outputs_; }
const std::string &Type() const { return type_; }
const AttributeMap &Attrs() const { return attrs_; }
protected:
std::shared_ptr<Scope> scope_;
std::string type_;
VariableNameMap inputs_;
VariableNameMap outputs_;
AttributeMap attrs_;
private: template <typename Dtype> class OperatorBase : PaddleMobileObject {
void CheckAllInputOutputSet() const; public:
virtual void RunImpl() const = 0; OperatorBase(const std::string &type, const VariableNameMap &inputs,
}; const VariableNameMap &outputs,
const AttributeMap &attrs,
std::shared_ptr<Scope> scope);
virtual ~OperatorBase() {}
virtual void Run() const = 0;
template <typename Dtype> const VariableNameMap &Inputs() const { return inputs_; }
class OperatorWithKernel : public OperatorBase<Dtype> { const VariableNameMap &Outputs() const { return outputs_; }
public: const std::string &Type() const { return type_; }
OperatorWithKernel(const std::string &type, const VariableNameMap &inputs, const AttributeMap &Attrs() const { return attrs_; }
const VariableNameMap &outputs, const AttributeMap &attrs, void ClearVariables() const {
std::shared_ptr<Scope> scope) if (this->scope_) {
: OperatorBase<Dtype>(type, inputs, outputs, attrs, scope) {} this->scope_->EraseVars(this->inputs_.at("Filter"));
virtual void InferShape() const = 0; this->scope_->EraseVars(this->inputs_.at("Input"));
}
}
void ClearVariables() const { protected:
if (this->scope_) { std::shared_ptr<Scope> scope_;
this->scope_->EraseVars(this->inputs_.at("Filter")); std::string type_;
this->scope_->EraseVars(this->inputs_.at("Input")); VariableNameMap inputs_;
} VariableNameMap outputs_;
} AttributeMap attrs_;
protected: private:
virtual void RunImpl() const = 0; void CheckAllInputOutputSet() const;
};
private: template <typename Dtype>
}; class OperatorWithKernel : public OperatorBase<Dtype> {
public:
OperatorWithKernel(const std::string &type,
const VariableNameMap &inputs,
const VariableNameMap &outputs,
const AttributeMap &attrs,
std::shared_ptr<Scope> scope)
: OperatorBase<Dtype>(type, inputs, outputs, attrs, scope) {}
virtual void InferShape() const = 0;
virtual void Run() const = 0;
};
template <typename Dtype, typename P> class OpKernelBase : PaddleMobileObject { template <typename Dtype, typename P>
public: class OpKernelBase : PaddleMobileObject {
virtual void Compute(const P &para) const = 0; public:
virtual void Compute(const P &para) const = 0;
virtual ~OpKernelBase() = default; virtual ~OpKernelBase() = default;
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -23,14 +23,14 @@ SOFTWARE. ...@@ -23,14 +23,14 @@ SOFTWARE.
namespace paddle_mobile { namespace paddle_mobile {
class PaddleMobileObject { class PaddleMobileObject {
public: public:
virtual inline const std::string &ToString() { virtual inline const std::string &ToString() {
char address[128] = {0}; char address[128] = {0};
sprintf(address, "%p", this); sprintf(address, "%p", this);
return std::string(address); return std::string(address);
} }
private: private:
}; };
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -17,5 +17,5 @@ SOFTWARE. ...@@ -17,5 +17,5 @@ SOFTWARE.
==============================================================================*/ ==============================================================================*/
namespace paddle_mobile { namespace paddle_mobile {
namespace framework {} namespace framework {}
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -24,17 +24,17 @@ SOFTWARE. ...@@ -24,17 +24,17 @@ SOFTWARE.
#include "scope.h" #include "scope.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
template <typename Dtype, Precision P = Precision::FP32> template <typename Dtype, Precision P = Precision::FP32>
class Program : PaddleMobileObject { class Program : PaddleMobileObject {
public: public:
std::shared_ptr<ProgramDesc> originProgram; std::shared_ptr<ProgramDesc> originProgram;
std::shared_ptr<ProgramDesc> optimizeProgram; std::shared_ptr<ProgramDesc> optimizeProgram;
std::shared_ptr<Scope> scope; std::shared_ptr<Scope> scope;
private: private:
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -5,18 +5,18 @@ ...@@ -5,18 +5,18 @@
#include "program_desc.h" #include "program_desc.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
ProgramDesc::ProgramDesc(const proto::ProgramDesc &desc) : desc_(desc) { ProgramDesc::ProgramDesc(const proto::ProgramDesc &desc) : desc_(desc) {
for (auto &block_desc : *desc_.mutable_blocks()) { for (auto &block_desc : *desc_.mutable_blocks()) {
// new framework::BlockDesc(block_desc) // new framework::BlockDesc(block_desc)
blocks_.emplace_back(std::make_shared<BlockDesc>(block_desc)); blocks_.emplace_back(std::make_shared<BlockDesc>(block_desc));
} }
} }
std::shared_ptr<BlockDesc> ProgramDesc::Block(size_t idx) { std::shared_ptr<BlockDesc> ProgramDesc::Block(size_t idx) {
return blocks_[idx]; return blocks_[idx];
} }
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -25,18 +25,20 @@ SOFTWARE. ...@@ -25,18 +25,20 @@ SOFTWARE.
#include "paddle_mobile_object.h" #include "paddle_mobile_object.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
class ProgramDesc : PaddleMobileObject { class ProgramDesc : PaddleMobileObject {
public: public:
ProgramDesc(const proto::ProgramDesc &desc); ProgramDesc(const proto::ProgramDesc &desc);
std::shared_ptr<BlockDesc> Block(size_t idx); std::shared_ptr<BlockDesc> Block(size_t idx);
const std::vector<std::shared_ptr<BlockDesc>> &Blocks() { return blocks_; }; const std::vector<std::shared_ptr<BlockDesc>> &Blocks() {
return blocks_;
};
private: private:
std::vector<std::shared_ptr<BlockDesc>> blocks_; std::vector<std::shared_ptr<BlockDesc>> blocks_;
proto::ProgramDesc desc_; proto::ProgramDesc desc_;
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -4,113 +4,116 @@ ...@@ -4,113 +4,116 @@
#include <vector> #include <vector>
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
Scope &Scope::NewScope() const { Scope &Scope::NewScope() const {
std::unique_lock<std::mutex> lock(mutex_); std::unique_lock<std::mutex> lock(mutex_);
kids_.push_back(new Scope(this)); kids_.push_back(new Scope(this));
return *kids_.back(); return *kids_.back();
} }
Variable *Scope::Var(const std::string &name) { Variable *Scope::Var(const std::string &name) {
auto *pvar = FindVarLocally(name); auto *pvar = FindVarLocally(name);
if (pvar != nullptr) { if (pvar != nullptr) {
return pvar; return pvar;
}; };
pvar = new Variable; pvar = new Variable;
vars_[name] = pvar; vars_[name] = pvar;
pvar->name_ = &(vars_.find(name)->first); pvar->name_ = &(vars_.find(name)->first);
return pvar; return pvar;
} }
// Variable* Scope::Var(std::string* name) { // Variable* Scope::Var(std::string* name) {
// auto var_name = string::Sprintf("%p.%d", this, vars_.size()); // auto var_name = string::Sprintf("%p.%d", this,
// if (name != nullptr) { // vars_.size());
// *name = var_name; // if (name != nullptr) {
// } // *name = var_name;
// return Var(var_name); // }
// } // return Var(var_name);
// }
Variable *Scope::FindVar(const std::string &name) const { Variable *Scope::FindVar(const std::string &name) const {
auto *pvar = FindVarLocally(name); auto *pvar = FindVarLocally(name);
if (pvar != nullptr) { if (pvar != nullptr) {
return pvar; return pvar;
} }
return (parent_ == nullptr) ? nullptr : parent_->FindVar(name); return (parent_ == nullptr) ? nullptr : parent_->FindVar(name);
} }
const Scope *Scope::FindScope(const Variable *var) const { const Scope *Scope::FindScope(const Variable *var) const {
for (auto &name_var : vars_) { for (auto &name_var : vars_) {
if (name_var.second == var) { if (name_var.second == var) {
return this; return this;
} }
} }
return (parent_ == nullptr) ? nullptr : parent_->FindScope(var); return (parent_ == nullptr) ? nullptr : parent_->FindScope(var);
} }
void Scope::DropKids() { void Scope::DropKids() {
for (Scope *s : kids_) { for (Scope *s : kids_) {
delete s; delete s;
} }
kids_.clear(); kids_.clear();
} }
std::vector<std::string> Scope::LocalVarNames() const { std::vector<std::string> Scope::LocalVarNames() const {
std::vector<std::string> known_vars; std::vector<std::string> known_vars;
known_vars.reserve(vars_.size()); known_vars.reserve(vars_.size());
for (auto &name_var : vars_) { for (auto &name_var : vars_) {
known_vars.emplace_back(name_var.first); known_vars.emplace_back(name_var.first);
} }
return known_vars; return known_vars;
} }
void Scope::DeleteScope(Scope *scope) const { void Scope::DeleteScope(Scope *scope) const {
std::unique_lock<std::mutex> lock(mutex_); std::unique_lock<std::mutex> lock(mutex_);
auto it = std::find(kids_.begin(), kids_.end(), scope); auto it = std::find(kids_.begin(), kids_.end(), scope);
kids_.erase(it); kids_.erase(it);
delete scope; delete scope;
// deferent // deferent
} }
void Scope::EraseVars(const std::vector<std::string> &var_names) { void Scope::EraseVars(const std::vector<std::string> &var_names) {
std::set<std::string> var_set(var_names.begin(), var_names.end()); std::set<std::string> var_set(var_names.begin(), var_names.end());
for (auto it = vars_.begin(); it != vars_.end();) { for (auto it = vars_.begin(); it != vars_.end();) {
if (var_set.find(it->first) != var_set.end()) { if (var_set.find(it->first) != var_set.end()) {
delete it->second; delete it->second;
it = vars_.erase(it); it = vars_.erase(it);
} else { } else {
++it; ++it;
} }
} }
} }
void Scope::Rename(const std::string &origin_name, void Scope::Rename(const std::string &origin_name,
const std::string &new_name) const { const std::string &new_name) const {
auto origin_it = vars_.find(origin_name); auto origin_it = vars_.find(origin_name);
if (origin_it == vars_.end()) { if (origin_it == vars_.end()) {
return; return;
} }
auto new_it = vars_.find(new_name); auto new_it = vars_.find(new_name);
if (new_it != vars_.end()) { if (new_it != vars_.end()) {
return; return;
} }
vars_[new_name] = origin_it->second; vars_[new_name] = origin_it->second;
vars_.erase(origin_it); vars_.erase(origin_it);
} }
// //
// std::string Scope::Rename(const std::string& origin_name) const { // std::string Scope::Rename(const std::string& origin_name)
// auto var_name = string::Sprintf("%p.%d", this, vars_.size()); // const {
// Rename(origin_name, var_name); // auto var_name = string::Sprintf("%p.%d", this,
// return var_name; // vars_.size());
// } // Rename(origin_name, var_name);
// return var_name;
// }
Variable *Scope::FindVarLocally(const std::string &name) const { Variable *Scope::FindVarLocally(const std::string &name) const {
auto it = vars_.find(name); auto it = vars_.find(name);
if (it != vars_.end()) { if (it != vars_.end()) {
return it->second; return it->second;
} }
return nullptr; return nullptr;
} }
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -24,57 +24,58 @@ SOFTWARE. ...@@ -24,57 +24,58 @@ SOFTWARE.
#include <unordered_map> //std::unordered_map #include <unordered_map> //std::unordered_map
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
class Scope { class Scope {
public: public:
Scope() {} Scope() {}
~Scope() {} ~Scope() {}
Scope &NewScope() const; Scope &NewScope() const;
/// Create a variable with given name if it doesn't exist. /// Create a variable with given name if it doesn't exist.
Variable *Var(const std::string &name); Variable *Var(const std::string &name);
/// Create a variable with a scope-unique name. /// Create a variable with a scope-unique name.
Variable *Var(std::string *name = nullptr); Variable *Var(std::string *name = nullptr);
void EraseVars(const std::vector<std::string> &var_names); void EraseVars(const std::vector<std::string> &var_names);
/// Find a variable in the scope or any of its ancestors. Returns /// Find a variable in the scope or any of its ancestors. Returns
/// nullptr if cannot find. /// nullptr if cannot find.
Variable *FindVar(const std::string &name) const; Variable *FindVar(const std::string &name) const;
const Scope *parent() const { return parent_; } const Scope *parent() const { return parent_; }
/// Find the scope or an ancestor scope that contains the given variable. /// Find the scope or an ancestor scope that contains the given
const Scope *FindScope(const Variable *var) const; /// variable.
const Scope *FindScope(const Variable *var) const;
void DeleteScope(Scope *scope) const; void DeleteScope(Scope *scope) const;
/// Drop all kids scopes belonged to this scope. /// Drop all kids scopes belonged to this scope.
void DropKids(); void DropKids();
// enumerate all the variables current contains. // enumerate all the variables current contains.
std::vector<std::string> LocalVarNames() const; std::vector<std::string> LocalVarNames() const;
// Rename variable to a new name // Rename variable to a new name
void Rename(const std::string &origin_name, void Rename(const std::string &origin_name,
const std::string &new_name) const; const std::string &new_name) const;
// Rename variable to a new name and return the new name // Rename variable to a new name and return the new name
std::string Rename(const std::string &origin_name) const; std::string Rename(const std::string &origin_name) const;
Variable *FindVarLocally(const std::string &name) const; Variable *FindVarLocally(const std::string &name) const;
private: private:
// Call Scope::NewScope for a sub-scope. // Call Scope::NewScope for a sub-scope.
explicit Scope(Scope const *parent) : parent_(parent) {} explicit Scope(Scope const *parent) : parent_(parent) {}
mutable std::unordered_map<std::string, Variable *> vars_; mutable std::unordered_map<std::string, Variable *> vars_;
mutable std::list<Scope *> kids_; mutable std::list<Scope *> kids_;
Scope const *parent_{nullptr}; Scope const *parent_{nullptr};
mutable std::mutex mutex_; mutable std::mutex mutex_;
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -24,57 +24,59 @@ SOFTWARE. ...@@ -24,57 +24,59 @@ SOFTWARE.
#include "tensor.h" #include "tensor.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
class SelectedRows { class SelectedRows {
public: public:
SelectedRows(const std::vector<int64_t> &rows, const int64_t &height) SelectedRows(const std::vector<int64_t> &rows,
: rows_(rows), height_(height) { const int64_t &height)
value_.reset(new Tensor()); : rows_(rows), height_(height) {
} value_.reset(new Tensor());
}
SelectedRows() { SelectedRows() {
height_ = 0; height_ = 0;
value_.reset(new Tensor()); value_.reset(new Tensor());
} }
const Tensor &value() const { return *value_; } const Tensor &value() const { return *value_; }
Tensor *mutable_value() { return value_.get(); } Tensor *mutable_value() { return value_.get(); }
int64_t height() const { return height_; } int64_t height() const { return height_; }
void set_height(int64_t height) { height_ = height; } void set_height(int64_t height) { height_ = height; }
const std::vector<int64_t> &rows() const { return rows_; } const std::vector<int64_t> &rows() const { return rows_; }
std::vector<int64_t> *mutable_rows() { return &rows_; } std::vector<int64_t> *mutable_rows() { return &rows_; }
void set_rows(const std::vector<int64_t> &rows) { rows_ = rows; } void set_rows(const std::vector<int64_t> &rows) { rows_ = rows; }
/** /**
* get the index of id in rows * get the index of id in rows
*/ */
int64_t index(int64_t id) const { int64_t index(int64_t id) const {
auto it = std::find(rows_.begin(), rows_.end(), id); auto it = std::find(rows_.begin(), rows_.end(), id);
// PADDLE_ENFORCE(it != rows_.end(), "id should be in rows"); // PADDLE_ENFORCE(it != rows_.end(), "id should be in rows");
return static_cast<int64_t>(std::distance(rows_.begin(), it)); return static_cast<int64_t>(std::distance(rows_.begin(), it));
} }
DDim GetCompleteDims() const { DDim GetCompleteDims() const {
std::vector<int64_t> dims = vectorize(value_->dims()); std::vector<int64_t> dims = vectorize(value_->dims());
dims[0] = height_; dims[0] = height_;
return make_ddim(dims); return make_ddim(dims);
} }
private: private:
// Notice: rows can be duplicate. We can have {0, 4, 7, 0, 5, 7, 9} here. // Notice: rows can be duplicate. We can have {0, 4, 7, 0, 5, 7, 9}
// SelectedRows are simply concated when adding together. Until a // here.
// SelectedRows add a Tensor, will the duplicate rows be handled. // SelectedRows are simply concated when adding together. Until a
std::vector<int64_t> rows_; // SelectedRows add a Tensor, will the duplicate rows be handled.
std::unique_ptr<Tensor> value_{nullptr}; std::vector<int64_t> rows_;
int64_t height_; std::unique_ptr<Tensor> value_{nullptr};
}; int64_t height_;
};
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -25,287 +25,316 @@ limitations under the License. */ ...@@ -25,287 +25,316 @@ limitations under the License. */
#include "memory/t_malloc.h" #include "memory/t_malloc.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
template <typename... T> struct SizeOfTypeFunctor; template <typename... T> struct SizeOfTypeFunctor;
template <typename T> struct SizeOfTypeFunctor<T> { template <typename T> struct SizeOfTypeFunctor<T> {
size_t operator()(std::type_index type) const { size_t operator()(std::type_index type) const {
if (typeid(T).hash_code() == type.hash_code()) { if (typeid(T).hash_code() == type.hash_code()) {
return sizeof(T); return sizeof(T);
} else { } else {
return 0UL; return 0UL;
} }
} }
}; };
template <> struct SizeOfTypeFunctor<> { template <> struct SizeOfTypeFunctor<> {
size_t operator()(std::type_index type) const { return 0UL; } size_t operator()(std::type_index type) const { return 0UL; }
}; };
template <typename HEAD, typename... TAIL> template <typename HEAD, typename... TAIL>
struct SizeOfTypeFunctor<HEAD, TAIL...> { struct SizeOfTypeFunctor<HEAD, TAIL...> {
size_t operator()(std::type_index type) const { size_t operator()(std::type_index type) const {
SizeOfTypeFunctor<HEAD> head; SizeOfTypeFunctor<HEAD> head;
size_t head_size = head(type); size_t head_size = head(type);
if (head_size != 0) { if (head_size != 0) {
return head_size; return head_size;
} }
SizeOfTypeFunctor<TAIL...> tail; SizeOfTypeFunctor<TAIL...> tail;
return tail(type); return tail(type);
} }
}; };
static inline size_t SizeOfType(std::type_index type) { static inline size_t SizeOfType(std::type_index type) {
SizeOfTypeFunctor<int, float, double, int16_t, int64_t, bool, size_t> functor; SizeOfTypeFunctor<int, float, double, int16_t, int64_t, bool,
size_t size = functor(type); size_t>
// PADDLE_ENFORCE(size != 0UL, "Cannot get size of type %s", type.name()); functor;
return size; size_t size = functor(type);
} // PADDLE_ENFORCE(size != 0UL, "Cannot get size of type %s",
// type.name());
class LoDTensor; return size;
}
class Tensor {
public: class LoDTensor;
Tensor() : offset_(0) {}
class Tensor {
/*! Return a pointer to mutable memory block. */ public:
template <typename T> inline T *data() { Tensor() : offset_(0) {}
check_memory_size();
// PADDLE_ENFORCE(std::is_same<T, void>::value || /*! Return a pointer to mutable memory block. */
// holder_->type().hash_code() == typeid(T).hash_code(), template <typename T> inline T *data() {
// "Tensor holds the wrong type, it holds %s", check_memory_size();
// this->holder_->type().name()); // PADDLE_ENFORCE(std::is_same<T, void>::value ||
return reinterpret_cast<T *>(reinterpret_cast<uintptr_t>(holder_->ptr()) + // holder_->type().hash_code() ==
offset_); // typeid(T).hash_code(),
} // "Tensor holds the wrong type, it holds %s",
// this->holder_->type().name());
/*! Return a pointer to constant memory block. */ return reinterpret_cast<T *>(
template <typename T> inline const T *data() const { reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
check_memory_size(); }
// PADDLE_ENFORCE(std::is_same<T, void>::value ||
// holder_->type().hash_code() == typeid(T).hash_code(), /*! Return a pointer to constant memory block. */
// "Tensor holds the wrong type, it holds %s", template <typename T> inline const T *data() const {
// this->holder_->type().name()); check_memory_size();
// PADDLE_ENFORCE(std::is_same<T, void>::value ||
return reinterpret_cast<const T *>( // holder_->type().hash_code() ==
reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_); // typeid(T).hash_code(),
} // "Tensor holds the wrong type, it holds %s",
// this->holder_->type().name());
inline bool IsInitialized() const { return holder_ != nullptr; }
return reinterpret_cast<const T *>(
/** reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
* @brief Return a pointer to mutable memory block. }
* @note If not exist, then allocation.
*/ inline bool IsInitialized() const { return holder_ != nullptr; }
template <typename T> inline T *mutable_data() {
static_assert(std::is_pod<T>::value, "T must be POD"); /**
return reinterpret_cast<T *>(mutable_data(typeid(T))); * @brief Return a pointer to mutable memory block.
} * @note If not exist, then allocation.
*/
inline void *mutable_data(std::type_index type) { template <typename T> inline T *mutable_data() {
if (holder_ != nullptr) { static_assert(std::is_pod<T>::value, "T must be POD");
holder_->set_type(type); return reinterpret_cast<T *>(mutable_data(typeid(T)));
} }
// PADDLE_ENFORCE_GE(numel(), 0,
// "When calling this method, the Tensor's numel must be inline void *mutable_data(std::type_index type) {
// " "equal or larger than zero. " "Please check if (holder_ != nullptr) {
// Tensor::Resize has been called first."); holder_->set_type(type);
int64_t size = numel() * SizeOfType(type); }
/* some versions of boost::variant don't have operator!= */ // PADDLE_ENFORCE_GE(numel(), 0,
if (holder_ == nullptr || holder_->size() < size + offset_) { // "When calling this method, the Tensor's
holder_.reset(new PlaceholderImpl(size, type)); // numel must be
// " "equal or larger than zero. " "Please
offset_ = 0; // check
} // Tensor::Resize has been called first.");
return reinterpret_cast<void *>( int64_t size = numel() * SizeOfType(type);
reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_); /* some versions of boost::variant don't have operator!= */
} if (holder_ == nullptr || holder_->size() < size + offset_) {
holder_.reset(new PlaceholderImpl(size, type));
inline void *mutable_data() {
// PADDLE_ENFORCE(this->holder_ != nullptr, offset_ = 0;
// "Cannot invoke mutable data if current hold nothing."); }
return mutable_data(holder_->type()); return reinterpret_cast<void *>(
} reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
}
/**
* @brief Return a pointer to mutable memory block. inline void *mutable_data() {
* // PADDLE_ENFORCE(this->holder_ != nullptr,
* @param[in] dims The dimensions of the memory block. // "Cannot invoke mutable data if current hold
* @param[in] place The place of the memory block. // nothing.");
* return mutable_data(holder_->type());
* @note If not exist, then allocation. }
*/
template <typename T> inline T *mutable_data(DDim dims) { /**
static_assert(std::is_pod<T>::value, "T must be POD"); * @brief Return a pointer to mutable memory block.
Resize(dims); *
return mutable_data<T>(); * @param[in] dims The dimensions of the memory block.
} * @param[in] place The place of the memory block.
*
/*! Return the dimensions of the memory block. */ * @note If not exist, then allocation.
inline const DDim &dims() const { return dims_; } */
template <typename T> inline T *mutable_data(DDim dims) {
/*! Return the numel of the memory block. */ static_assert(std::is_pod<T>::value, "T must be POD");
inline int64_t numel() const { return product(dims_); } Resize(dims);
return mutable_data<T>();
/*! Resize the dimensions of the memory block. */ }
inline Tensor &Resize(const DDim &dims) {
dims_ = dims; /*! Return the dimensions of the memory block. */
return *this; inline const DDim &dims() const { return dims_; }
}
/*! Return the numel of the memory block. */
/*! The internal of two tensors share the same memory block. */ inline int64_t numel() const { return product(dims_); }
inline Tensor &ShareDataWith(const Tensor &src) {
src.check_memory_size(); /*! Resize the dimensions of the memory block. */
*this = src; inline Tensor &Resize(const DDim &dims) {
return *this; dims_ = dims;
} return *this;
}
/**
* @brief Return a sub-tensor of the given tensor. /*! The internal of two tensors share the same memory block. */
* inline Tensor &ShareDataWith(const Tensor &src) {
* @param[in] begin_idx The index of the start row(inclusive) to slice. src.check_memory_size();
* The index number begins from 0. *this = src;
* @param[in] end_idx The index of the end row(exclusive) to slice. return *this;
* The index number begins from 0. }
*/
inline Tensor Slice(int begin_idx, int end_idx) const { /**
check_memory_size(); * @brief Return a sub-tensor of the given tensor.
// PADDLE_ENFORCE_GE(begin_idx, 0, *
// "The start row index must be greater than 0."); * @param[in] begin_idx The index of the start row(inclusive) to
// PADDLE_ENFORCE_LE(end_idx, dims_[0], "The end row index is out of * slice.
// bound."); PADDLE_ENFORCE_LT( * The index number begins from 0.
// begin_idx, end_idx, * @param[in] end_idx The index of the end row(exclusive) to
// "The start row index must be lesser than the end row index."); * slice.
* The index number begins from 0.
if (dims_[0] == 1) { */
return *this; inline Tensor Slice(int begin_idx, int end_idx) const {
} else { check_memory_size();
size_t base = numel() / dims_[0]; // PADDLE_ENFORCE_GE(begin_idx, 0,
Tensor dst; // "The start row index must be greater than
dst.holder_ = holder_; // 0.");
dst.set_layout(layout_); // PADDLE_ENFORCE_LE(end_idx, dims_[0], "The end row index is
DDim dst_dims = dims_; // out of
dst_dims[0] = end_idx - begin_idx; // bound."); PADDLE_ENFORCE_LT(
dst.Resize(dst_dims); // begin_idx, end_idx,
dst.offset_ = offset_ + begin_idx * base * SizeOfType(type()); // "The start row index must be lesser than the end row
return dst; // index.");
}
} if (dims_[0] == 1) {
return *this;
std::type_index type() const { } else {
// PADDLE_ENFORCE_NOT_NULL( size_t base = numel() / dims_[0];
// holder_, "Tensor not initialized yet when Tensor dst;
// Tensor::type() is called."); dst.holder_ = holder_;
return holder_->type(); dst.set_layout(layout_);
} DDim dst_dims = dims_;
dst_dims[0] = end_idx - begin_idx;
// memory size returns the holding memory size in byte. dst.Resize(dst_dims);
size_t memory_size() const { dst.offset_ =
return holder_ == nullptr ? 0UL : holder_->size() - offset_; offset_ + begin_idx * base * SizeOfType(type());
} return dst;
}
inline void check_memory_size() const { }
// PADDLE_ENFORCE_NOT_NULL(
// holder_, "Tensor holds no memory. Call Tensor::mutable_data std::type_index type() const {
// first."); // PADDLE_ENFORCE_NOT_NULL(
// PADDLE_ENFORCE_LE( // holder_, "Tensor not initialized yet
// numel() * SizeOfType(type()), memory_size(), // when
// "Tensor's dims_ is out of bound. Call Tensor::mutable_data " // Tensor::type() is called.");
// "first to re-allocate memory.\n" return holder_->type();
// "or maybe the required data-type mismatches the data already }
// stored.");
} // memory size returns the holding memory size in byte.
size_t memory_size() const {
inline DataLayout layout() const { return layout_; } return holder_ == nullptr ? 0UL : holder_->size() - offset_;
}
inline void set_layout(const DataLayout layout) { layout_ = layout; }
inline void check_memory_size() const {
private: // PADDLE_ENFORCE_NOT_NULL(
/** // holder_, "Tensor holds no memory. Call
* @note Placeholder hides type T, so it doesn't appear as a template // Tensor::mutable_data
* parameter of Variable. // first.");
*/ // PADDLE_ENFORCE_LE(
struct Placeholder { // numel() * SizeOfType(type()), memory_size(),
virtual ~Placeholder() = default; // "Tensor's dims_ is out of bound. Call
// Tensor::mutable_data "
virtual void *ptr() const = 0; // "first to re-allocate memory.\n"
// "or maybe the required data-type mismatches the data
virtual size_t size() const = 0; // already
// stored.");
virtual std::type_index type() const = 0; }
virtual void set_type(std::type_index type) = 0; inline DataLayout layout() const { return layout_; }
};
inline void set_layout(const DataLayout layout) {
struct PlaceholderImpl : public Placeholder { layout_ = layout;
PlaceholderImpl(size_t size, std::type_index type) }
: ptr_(static_cast<uint8_t *>(memory::Alloc(size)),
memory::PODDeleter<uint8_t>()), private:
size_(size), type_(type) { /**
// PADDLE_ENFORCE_NOT_NULL(ptr_, "Insufficient %s * @note Placeholder hides type T, so it doesn't appear as a
// memory to allocation.", * template
// (is_cpu_place(place_) ? * parameter of Variable.
// "CPU" : "GPU")); */
} struct Placeholder {
virtual ~Placeholder() = default;
virtual size_t size() const { return size_; }
virtual void *ptr() const = 0;
virtual void *ptr() const { return static_cast<void *>(ptr_.get()); }
virtual size_t size() const = 0;
virtual std::type_index type() const { return type_; }
virtual std::type_index type() const = 0;
virtual void set_type(std::type_index type) { type_ = type; }
virtual void set_type(std::type_index type) = 0;
/*! the pointer of memory block. */ };
std::unique_ptr<uint8_t, memory::PODDeleter<uint8_t>> ptr_;
struct PlaceholderImpl : public Placeholder {
/*! the size of memory block. */ PlaceholderImpl(size_t size, std::type_index type)
size_t size_; : ptr_(static_cast<uint8_t *>(memory::Alloc(size)),
memory::PODDeleter<uint8_t>()),
/* the current type of memory */ size_(size), type_(type) {
std::type_index type_; // PADDLE_ENFORCE_NOT_NULL(ptr_,
}; // "Insufficient %s
// memory to allocation.",
/*! holds the memory block if allocated. */ // (is_cpu_place(place_)
std::shared_ptr<Placeholder> holder_; // ?
// "CPU" :
/** // "GPU"));
* @brief points to elements dimensions. }
*
* @note dims_ do not indicate the memory block size. virtual size_t size() const { return size_; }
*/
virtual void *ptr() const {
DDim dims_; return static_cast<void *>(ptr_.get());
}
/**
* @brief the layout of memory block, default is NHWC. virtual std::type_index type() const { return type_; }
*
* @note the memory allocation order, describe how weight/data is stored virtual void set_type(std::type_index type) { type_ = type; }
* For example, in 4-D Tensor(rank=4), there are three commonly
* used layout. They are /*! the pointer of memory block. */
* NCHW, NHWC, CHWN. std::unique_ptr<uint8_t, memory::PODDeleter<uint8_t>> ptr_;
* N,C,H,W for respectively the batch size, the number of
* feature maps, the height, the width. /*! the size of memory block. */
*/ size_t size_;
DataLayout layout_ = DataLayout::kNHWC; /* the current type of memory */
std::type_index type_;
/** };
* @brief A PlaceHolder may be shared by more than one tensor.
* /*! holds the memory block if allocated. */
* @note Some of them may be slices of the others. So the offset_ std::shared_ptr<Placeholder> holder_;
* is introduced here to indicate the byte offset between
* PlaceHolder::ptr_ and where the tensor data really begins. /**
*/ * @brief points to elements dimensions.
size_t offset_; *
}; * @note dims_ do not indicate the memory block size.
*/
inline Tensor ReshapeToMatrix(const Tensor &src, int num_col_dims) {
Tensor res; DDim dims_;
res.ShareDataWith(src);
res.Resize(flatten_to_2d(src.dims(), num_col_dims)); /**
return res; * @brief the layout of memory block, default is NHWC.
} *
* @note the memory allocation order, describe how weight/data is
} // namespace framework * stored
* For example, in 4-D Tensor(rank=4), there are three
* commonly
* used layout. They are
* NCHW, NHWC, CHWN.
* N,C,H,W for respectively the batch size, the number of
* feature maps, the height, the width.
*/
DataLayout layout_ = DataLayout::kNHWC;
/**
* @brief A PlaceHolder may be shared by more than one tensor.
*
* @note Some of them may be slices of the others. So the offset_
* is introduced here to indicate the byte offset between
* PlaceHolder::ptr_ and where the tensor data really
* begins.
*/
size_t offset_;
};
inline Tensor ReshapeToMatrix(const Tensor &src, int num_col_dims) {
Tensor res;
res.ShareDataWith(src);
res.Resize(flatten_to_2d(src.dims(), num_col_dims));
return res;
}
} // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -18,183 +18,189 @@ ...@@ -18,183 +18,189 @@
#include <vector> #include <vector>
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
void TensorCopy(const Tensor &src, Tensor *dst) { void TensorCopy(const Tensor &src, Tensor *dst) {
// VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to // VLOG(3) << "TensorCopy " << src.dims() << " from " <<
// " // src.place() << " to
// << dst_place; // "
src.check_memory_size(); // << dst_place;
src.check_memory_size();
dst->Resize(src.dims());
dst->set_layout(src.layout()); dst->Resize(src.dims());
auto src_ptr = src.data<void>(); dst->set_layout(src.layout());
auto src_ptr = src.data<void>();
auto dst_ptr = dst->mutable_data(src.type());
auto dst_ptr = dst->mutable_data(src.type());
auto size = src.numel() * SizeOfType(src.type());
auto size = src.numel() * SizeOfType(src.type());
memory::Copy(dst_ptr, src_ptr, size);
} memory::Copy(dst_ptr, src_ptr, size);
}
void TensorCopySync(const Tensor &src, Tensor *dst) {
// VLOG(3) << "TensorCopySync " << src.dims() << " from " << src.place() void TensorCopySync(const Tensor &src, Tensor *dst) {
// << " to " << dst_place; // VLOG(3) << "TensorCopySync " << src.dims() << " from " <<
src.check_memory_size(); // src.place()
dst->Resize(src.dims()); // << " to " << dst_place;
dst->set_layout(src.layout()); src.check_memory_size();
auto src_ptr = src.data<void>(); dst->Resize(src.dims());
auto dst_ptr = dst->mutable_data(src.type()); dst->set_layout(src.layout());
auto size = src.numel() * SizeOfType(src.type()); auto src_ptr = src.data<void>();
memory::Copy(dst_ptr, src_ptr, size); auto dst_ptr = dst->mutable_data(src.type());
} auto size = src.numel() * SizeOfType(src.type());
memory::Copy(dst_ptr, src_ptr, size);
template <typename Predicate> struct AnyDTypeVisitor { }
Predicate predicate_;
const Tensor &tensor_; template <typename Predicate> struct AnyDTypeVisitor {
Tensor *out_; Predicate predicate_;
const Tensor &tensor_;
AnyDTypeVisitor(Predicate predicate, const Tensor &tensor, Tensor *out) Tensor *out_;
: predicate_(predicate), tensor_(tensor), out_(out) {}
AnyDTypeVisitor(Predicate predicate, const Tensor &tensor,
template <typename T> void operator()() const { Tensor *out)
// auto t = EigenVector<T>::Flatten(tensor_); : predicate_(predicate), tensor_(tensor), out_(out) {}
// auto o = EigenScalar<bool>::From(*out_);
// return any of predicate_(t) is true. template <typename T> void operator()() const {
// o.device(*ctx_.eigen_device()) = predicate_(t).any(); // auto t = EigenVector<T>::Flatten(tensor_);
} // auto o = EigenScalar<bool>::From(*out_);
}; // return any of predicate_(t) is true.
// o.device(*ctx_.eigen_device()) = predicate_(t).any();
template <typename Predicate> }
inline void AnyImpl(Predicate predicate, const Tensor &tensor, };
framework::Tensor *out) {
VisitDataType(ToDataType(tensor.type()), template <typename Predicate>
AnyDTypeVisitor<Predicate>(predicate, tensor, out)); inline void AnyImpl(Predicate predicate, const Tensor &tensor,
} framework::Tensor *out) {
VisitDataType(ToDataType(tensor.type()),
template <typename Predicate> struct AnyVisitor { AnyDTypeVisitor<Predicate>(predicate, tensor, out));
const framework::Tensor &tensor_; }
Predicate predicate_;
template <typename Predicate> struct AnyVisitor {
AnyVisitor(const framework::Tensor &tensor, Predicate predicate) const framework::Tensor &tensor_;
: tensor_(tensor), predicate_(std::move(predicate)) {} Predicate predicate_;
bool operator()(void) const { AnyVisitor(const framework::Tensor &tensor, Predicate predicate)
framework::Tensor out; : tensor_(tensor), predicate_(std::move(predicate)) {}
out.Resize({1});
out.mutable_data<bool>(); bool operator()(void) const {
AnyImpl(predicate_, tensor_, &out); framework::Tensor out;
return this->GetResult(out); out.Resize({1});
} out.mutable_data<bool>();
AnyImpl(predicate_, tensor_, &out);
bool GetResult(const framework::Tensor &out) const { return this->GetResult(out);
return *out.data<bool>(); }
}
}; bool GetResult(const framework::Tensor &out) const {
return *out.data<bool>();
template <typename Predicate> }
inline bool Any(const framework::Tensor &tensor, Predicate predicate) { };
AnyVisitor<Predicate> visitor(tensor, predicate);
// return platform::VisitPlace(visitor); template <typename Predicate>
return visitor(); inline bool Any(const framework::Tensor &tensor, Predicate predicate) {
} AnyVisitor<Predicate> visitor(tensor, predicate);
// return platform::VisitPlace(visitor);
struct ContainsNANPredicate { return visitor();
template <typename T> }
auto operator()(const T &eigen_vec) const
-> decltype(std::declval<T>().isnan()) { struct ContainsNANPredicate {
// Cast eigen_vector to vector of bool. true if is inf. template <typename T>
return eigen_vec.isnan(); auto operator()(const T &eigen_vec) const
} -> decltype(std::declval<T>().isnan()) {
}; // Cast eigen_vector to vector of bool. true if is inf.
return eigen_vec.isnan();
bool TensorContainsNAN(const framework::Tensor &tensor) { }
ContainsNANPredicate predicate; };
return Any(tensor, predicate);
} bool TensorContainsNAN(const framework::Tensor &tensor) {
ContainsNANPredicate predicate;
struct ContainsInfPredicate { return Any(tensor, predicate);
template <typename T> }
auto operator()(const T &eigen_vec) const
-> decltype(std::declval<T>().isinf()) { struct ContainsInfPredicate {
// Cast eigen_vector to vector of bool. true if is inf. template <typename T>
return eigen_vec.isinf(); auto operator()(const T &eigen_vec) const
} -> decltype(std::declval<T>().isinf()) {
}; // Cast eigen_vector to vector of bool. true if is inf.
return eigen_vec.isinf();
bool TensorContainsInf(const framework::Tensor &tensor) { }
ContainsInfPredicate predicate; };
return Any(tensor, predicate);
} bool TensorContainsInf(const framework::Tensor &tensor) {
ContainsInfPredicate predicate;
void TensorToStream(std::ostream &os, const Tensor &tensor) { return Any(tensor, predicate);
{ // the 1st field, uint32_t version }
constexpr uint32_t version = 0;
os.write(reinterpret_cast<const char *>(&version), sizeof(version)); void TensorToStream(std::ostream &os, const Tensor &tensor) {
} { // the 1st field, uint32_t version
{ // the 2nd field, tensor description constexpr uint32_t version = 0;
// int32_t size os.write(reinterpret_cast<const char *>(&version),
// void* protobuf message sizeof(version));
proto::VarType::TensorDesc desc; }
desc.set_data_type(framework::ToDataType(tensor.type())); { // the 2nd field, tensor description
auto dims = framework::vectorize(tensor.dims()); // int32_t size
auto *pb_dims = desc.mutable_dims(); // void* protobuf message
pb_dims->Resize(static_cast<int>(dims.size()), 0); proto::VarType::TensorDesc desc;
std::copy(dims.begin(), dims.end(), pb_dims->begin()); desc.set_data_type(framework::ToDataType(tensor.type()));
int32_t size = desc.ByteSize(); auto dims = framework::vectorize(tensor.dims());
os.write(reinterpret_cast<const char *>(&size), sizeof(size)); auto *pb_dims = desc.mutable_dims();
auto out = desc.SerializeAsString(); pb_dims->Resize(static_cast<int>(dims.size()), 0);
os.write(out.data(), size); std::copy(dims.begin(), dims.end(), pb_dims->begin());
} int32_t size = desc.ByteSize();
{ // the 3rd field, tensor data os.write(reinterpret_cast<const char *>(&size), sizeof(size));
uint64_t size = tensor.memory_size(); auto out = desc.SerializeAsString();
auto *data_ptr = tensor.data<void>(); os.write(out.data(), size);
// PADDLE_ENFORCE(size < std::numeric_limits<std::streamsize>::max(), }
// "Index overflow when writing tensor"); { // the 3rd field, tensor data
uint64_t size = tensor.memory_size();
os.write(static_cast<const char *>(data_ptr), auto *data_ptr = tensor.data<void>();
static_cast<std::streamsize>(size)); // PADDLE_ENFORCE(size <
} // std::numeric_limits<std::streamsize>::max(),
} // "Index overflow when writing tensor");
struct DeserializedDataFunctor { os.write(static_cast<const char *>(data_ptr),
DeserializedDataFunctor(void **buf, Tensor *tensor) static_cast<std::streamsize>(size));
: buf_(buf), tensor_(tensor) {} }
}
template <typename T> void operator()() {
*buf_ = tensor_->mutable_data<T>(); struct DeserializedDataFunctor {
} DeserializedDataFunctor(void **buf, Tensor *tensor)
: buf_(buf), tensor_(tensor) {}
void **buf_;
Tensor *tensor_; template <typename T> void operator()() {
}; *buf_ = tensor_->mutable_data<T>();
}
void TensorFromStream(std::istream &is, framework::Tensor *tensor) {
uint32_t version; void **buf_;
is.read(reinterpret_cast<char *>(&version), sizeof(version)); Tensor *tensor_;
// PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported"); };
proto::VarType::TensorDesc desc;
{ // int32_t size void TensorFromStream(std::istream &is, framework::Tensor *tensor) {
// proto buffer uint32_t version;
int32_t size; is.read(reinterpret_cast<char *>(&version), sizeof(version));
is.read(reinterpret_cast<char *>(&size), sizeof(size)); // PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
std::unique_ptr<char[]> buf(new char[size]); proto::VarType::TensorDesc desc;
is.read(reinterpret_cast<char *>(buf.get()), size); { // int32_t size
// PADDLE_ENFORCE(desc.ParseFromArray(buf.get(), size), // proto buffer
// "Cannot parse tensor desc"); int32_t size;
} is.read(reinterpret_cast<char *>(&size), sizeof(size));
{ // read tensor std::unique_ptr<char[]> buf(new char[size]);
std::vector<int64_t> dims; is.read(reinterpret_cast<char *>(buf.get()), size);
dims.reserve(static_cast<size_t>(desc.dims().size())); // PADDLE_ENFORCE(desc.ParseFromArray(buf.get(), size),
std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims)); // "Cannot parse tensor desc");
tensor->Resize(framework::make_ddim(dims)); }
void *buf; { // read tensor
std::vector<int64_t> dims;
framework::VisitDataType(desc.data_type(), dims.reserve(static_cast<size_t>(desc.dims().size()));
DeserializedDataFunctor(&buf, tensor)); std::copy(desc.dims().begin(), desc.dims().end(),
is.read(static_cast<char *>(buf), tensor->memory_size()); std::back_inserter(dims));
} tensor->Resize(framework::make_ddim(dims));
} void *buf;
} // namespace framework framework::VisitDataType(desc.data_type(),
DeserializedDataFunctor(&buf, tensor));
is.read(static_cast<char *>(buf), tensor->memory_size());
}
}
} // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -20,47 +20,47 @@ limitations under the License. */ ...@@ -20,47 +20,47 @@ limitations under the License. */
#include <vector> #include <vector>
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
void TensorCopy(const Tensor &src, Tensor *dst); void TensorCopy(const Tensor &src, Tensor *dst);
void TensorCopySync(const Tensor &src, Tensor *dst); void TensorCopySync(const Tensor &src, Tensor *dst);
template <typename T> template <typename T>
void TensorFromVector(const std::vector<T> &src, Tensor *dst); void TensorFromVector(const std::vector<T> &src, Tensor *dst);
template <typename T> template <typename T>
void TesnorToVector(const Tensor &src, std::vector<T> *dst); void TesnorToVector(const Tensor &src, std::vector<T> *dst);
bool TensorContainsNAN(const framework::Tensor &tensor); bool TensorContainsNAN(const framework::Tensor &tensor);
bool TensorContainsInf(const framework::Tensor &tensor); bool TensorContainsInf(const framework::Tensor &tensor);
void TensorToStream(std::ostream &os, const Tensor &tensor); void TensorToStream(std::ostream &os, const Tensor &tensor);
void TensorFromStream(std::istream &is, Tensor *tensor); void TensorFromStream(std::istream &is, Tensor *tensor);
// //
// The implementation of template functions. // The implementation of template functions.
// //
template <typename T> template <typename T>
void TensorFromVector(const std::vector<T> &src, Tensor *dst) { void TensorFromVector(const std::vector<T> &src, Tensor *dst) {
auto src_ptr = static_cast<const void *>(src.data()); auto src_ptr = static_cast<const void *>(src.data());
dst->Resize({static_cast<int64_t>(src.size())}); dst->Resize({static_cast<int64_t>(src.size())});
auto dst_ptr = static_cast<void *>(dst->mutable_data<T>()); auto dst_ptr = static_cast<void *>(dst->mutable_data<T>());
auto size = src.size() * sizeof(T); auto size = src.size() * sizeof(T);
memory::Copy(dst_ptr, src_ptr, size); memory::Copy(dst_ptr, src_ptr, size);
} }
template <typename T> template <typename T>
void TensorToVector(const Tensor &src, std::vector<T> *dst) { void TensorToVector(const Tensor &src, std::vector<T> *dst) {
auto src_ptr = static_cast<const void *>(src.data<T>()); auto src_ptr = static_cast<const void *>(src.data<T>());
auto size = src.numel() * sizeof(T); auto size = src.numel() * sizeof(T);
dst->resize(src.numel()); dst->resize(src.numel());
auto dst_ptr = static_cast<void *>(dst->data()); auto dst_ptr = static_cast<void *>(dst->data());
memory::Copy(dst_ptr, src_ptr, size); memory::Copy(dst_ptr, src_ptr, size);
} }
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -20,9 +20,9 @@ SOFTWARE. ...@@ -20,9 +20,9 @@ SOFTWARE.
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
VarDesc::VarDesc(const proto::VarDesc &desc) : desc_(desc) {} VarDesc::VarDesc(const proto::VarDesc &desc) : desc_(desc) {}
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -22,67 +22,68 @@ SOFTWARE. ...@@ -22,67 +22,68 @@ SOFTWARE.
#include "paddle_mobile_object.h" #include "paddle_mobile_object.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
class VarDesc { class VarDesc {
public: public:
VarDesc(const proto::VarDesc &desc); VarDesc(const proto::VarDesc &desc);
std::string Name() const { return desc_.name(); } std::string Name() const { return desc_.name(); }
proto::VarType::Type GetType() const { return desc_.type().type(); } proto::VarType::Type GetType() const { return desc_.type().type(); }
bool Persistable() const { return desc_.persistable(); } bool Persistable() const { return desc_.persistable(); }
const proto::VarType::ChannelDesc &channel_desc() const { const proto::VarType::ChannelDesc &channel_desc() const {
switch (desc_.type().type()) { switch (desc_.type().type()) {
case proto::VarType::CHANNEL: case proto::VarType::CHANNEL:
return desc_.type().channel(); return desc_.type().channel();
default: default:
break; break;
} }
} }
const proto::VarType::TensorDesc &tensor_desc() const { const proto::VarType::TensorDesc &tensor_desc() const {
switch (desc_.type().type()) { switch (desc_.type().type()) {
case proto::VarType::SELECTED_ROWS: case proto::VarType::SELECTED_ROWS:
return desc_.type().selected_rows(); return desc_.type().selected_rows();
case proto::VarType::LOD_TENSOR: case proto::VarType::LOD_TENSOR:
return desc_.type().lod_tensor().tensor(); return desc_.type().lod_tensor().tensor();
case proto::VarType::LOD_TENSOR_ARRAY: case proto::VarType::LOD_TENSOR_ARRAY:
return desc_.type().tensor_array().tensor(); return desc_.type().tensor_array().tensor();
default: default:
break; break;
} }
} }
proto::VarType::Type GetDataType() const { proto::VarType::Type GetDataType() const {
switch (desc_.type().type()) { switch (desc_.type().type()) {
case proto::VarType::CHANNEL: case proto::VarType::CHANNEL:
return channel_desc().data_type(); return channel_desc().data_type();
break; break;
default: default:
return tensor_desc().data_type(); return tensor_desc().data_type();
} }
} }
template <typename T> template <typename T>
std::vector<T> RepeatedToVector( std::vector<T> RepeatedToVector(
const google::protobuf::RepeatedField<T> &repeated_field) const { const google::protobuf::RepeatedField<T> &repeated_field)
std::vector<T> ret; const {
ret.reserve(repeated_field.size()); std::vector<T> ret;
std::copy(repeated_field.begin(), repeated_field.end(), ret.reserve(repeated_field.size());
std::back_inserter(ret)); std::copy(repeated_field.begin(), repeated_field.end(),
return ret; std::back_inserter(ret));
} return ret;
}
std::vector<int64_t> GetShape() const { std::vector<int64_t> GetShape() const {
return this->RepeatedToVector(tensor_desc().dims()); return this->RepeatedToVector(tensor_desc().dims());
} }
private: private:
proto::VarDesc desc_; proto::VarDesc desc_;
}; };
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -23,16 +23,17 @@ SOFTWARE. ...@@ -23,16 +23,17 @@ SOFTWARE.
#include "variable.h" #include "variable.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
inline proto::VarType::Type ToVarType(std::type_index type) { inline proto::VarType::Type ToVarType(std::type_index type) {
if (type.hash_code() == typeid(LoDTensor).hash_code()) { if (type.hash_code() == typeid(LoDTensor).hash_code()) {
return proto::VarType_Type_LOD_TENSOR; return proto::VarType_Type_LOD_TENSOR;
} else if (type.hash_code() == typeid(SelectedRows).hash_code()) { } else if (type.hash_code() == typeid(SelectedRows).hash_code()) {
return proto::VarType_Type_SELECTED_ROWS; return proto::VarType_Type_SELECTED_ROWS;
} else { } else {
// PADDLE_THROW("ToVarType:Unsupported type %s", type.name()); // PADDLE_THROW("ToVarType:Unsupported type %s",
} // type.name());
} }
}
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -26,72 +26,71 @@ SOFTWARE. ...@@ -26,72 +26,71 @@ SOFTWARE.
#include <typeinfo> #include <typeinfo>
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
class Variable : public PaddleMobileObject { class Variable : public PaddleMobileObject {
public: public:
Variable() {} template <typename T> const T *Get() const {
~Variable() {} return static_cast<const T *>(holder_->Ptr());
}
template <typename T> const T *Get() const {
return static_cast<const T *>(holder_->Ptr()); bool IsInitialized() const { return holder_ != nullptr; }
}
const std::string *Name() { return name_; }
bool IsInitialized() const { return holder_ != nullptr; }
template <typename T> T *GetMutable() {
const std::string *Name() { return name_; } if (!IsType<T>()) {
if (*Name() == "pixel") {
template <typename T> T *GetMutable() { // std::cout << " reset " << *Name() <<
if (!IsType<T>()) { // std::endl;
if (*Name() == "pixel") { }
// std::cout << " reset " << *Name() << std::endl; holder_.reset(new PlaceholderImp<T>(new T()));
} }
holder_.reset(new PlaceholderImp<T>(new T())); return static_cast<T *>(holder_->Ptr());
} }
return static_cast<T *>(holder_->Ptr());
} template <typename T> bool IsType() const {
if (holder_) {
template <typename T> bool IsType() const { // printf("not null \n");
if (holder_) { printf(" holder type : %s, this type %s \n",
// printf("not null \n"); holder_->Type().name(), typeid(T).name());
printf(" holder type : %s, this type %s \n", holder_->Type().name(), }
typeid(T).name());
} // std::cout << " " << holder_->Type() << " " <<
// typeid(T) <<
// std::cout << " " << holder_->Type() << " " << typeid(T) << // std::endl;
// std::endl; return holder_ != nullptr && holder_->Type() == typeid(T);
return holder_ != nullptr && holder_->Type() == typeid(T); }
}
void Clear() { holder_.reset(); }
void Clear() { holder_.reset(); }
std::type_index Type() const { return holder_->Type(); }
std::type_index Type() const { return holder_->Type(); }
void SetName(const std::string *name) { name_ = name; }
void SetName(const std::string *name) { name_ = name; }
private:
private: struct Placeholder {
struct Placeholder { Placeholder() = default;
Placeholder() = default; virtual ~Placeholder() = default;
virtual ~Placeholder() = default;
virtual const std::type_info &Type() const = 0;
virtual const std::type_info &Type() const = 0; virtual void *Ptr() const = 0;
virtual void *Ptr() const = 0; };
};
template <typename T> struct PlaceholderImp : public Placeholder {
template <typename T> struct PlaceholderImp : public Placeholder { explicit PlaceholderImp(T *ptr) : ptr_(ptr), type_(typeid(T)) {}
explicit PlaceholderImp(T *ptr) : ptr_(ptr), type_(typeid(T)) {}
virtual const std::type_info &Type() const { return type_; }
virtual const std::type_info &Type() const { return type_; } virtual void *Ptr() const override {
virtual void *Ptr() const override { return static_cast<void *>(ptr_.get());
return static_cast<void *>(ptr_.get()); }
}
std::unique_ptr<T> ptr_;
std::unique_ptr<T> ptr_; const std::type_info &type_;
const std::type_info &type_; };
};
std::unique_ptr<Placeholder> holder_;
std::unique_ptr<Placeholder> holder_; friend class Scope;
friend class Scope; const std::string *name_;
const std::string *name_; };
}; } // namespace framework
} // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -29,359 +29,405 @@ SOFTWARE. ...@@ -29,359 +29,405 @@ SOFTWARE.
namespace paddle_mobile { namespace paddle_mobile {
void ReadBinaryFile(const std::string &filename, std::string *contents) { void ReadBinaryFile(const std::string &filename, std::string *contents) {
std::ifstream fin(filename, std::ios::in | std::ios::binary); std::ifstream fin(filename, std::ios::in | std::ios::binary);
fin.seekg(0, std::ios::end); fin.seekg(0, std::ios::end);
contents->clear(); contents->clear();
contents->resize(fin.tellg()); contents->resize(fin.tellg());
fin.seekg(0, std::ios::beg); fin.seekg(0, std::ios::beg);
fin.read(&(contents->at(0)), contents->size()); fin.read(&(contents->at(0)), contents->size());
fin.close(); fin.close();
}
template <typename Dtype, Precision P>
void Loader<Dtype, P>::LoadVar(framework::LoDTensor *tensor,
const std::string &file_path) {
LOG(kLOG_DEBUG) << " to load " << file_path;
// Log(kLOG_DEBUG) << "123";
std::ifstream is(file_path);
std::streampos pos = is.tellg(); // save current position
is.seekg(0, std::ios::end);
LOG(kLOG_DEBUG) << " file length = " << is.tellg();
is.seekg(pos); // restore saved position
// 1. version
uint32_t version;
is.read(reinterpret_cast<char *>(&version), sizeof(version));
LOG(kLOG_INFO) << " version: " << version;
// 2 Lod information
uint64_t lod_level;
is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
LOG(kLOG_DEBUG) << " load level: " << lod_level;
LOG(kLOG_DEBUG) << " lod info: ";
auto &lod = *tensor->mutable_lod();
lod.resize(lod_level);
for (uint64_t i = 0; i < lod_level; ++i) {
uint64_t size;
is.read(reinterpret_cast<char *>(&size), sizeof(size));
std::vector<size_t> tmp(size / sizeof(size_t));
is.read(reinterpret_cast<char *>(tmp.data()),
static_cast<std::streamsize>(size));
for (int j = 0; j < tmp.size(); ++j) {
LOG(kLOG_DEBUG1) << " lod - " << tmp[j];
} }
lod[i] = tmp;
}
// 3. tensor version
uint32_t tensor_version;
is.read(reinterpret_cast<char *>(&tensor_version), sizeof(tensor_version));
// std::cout << " tensor_version: " << tensor_version << std::endl;
// 4. tensor desc
int32_t size;
is.read(reinterpret_cast<char *>(&size), sizeof(size));
// std::cout << " tensor desc size: " << size << std::endl;
std::unique_ptr<char[]> buf(new char[size]);
is.read(reinterpret_cast<char *>(buf.get()), size);
framework::proto::VarType::TensorDesc desc;
desc.ParseFromArray(buf.get(), size);
// std::cout << " desc dims size " << desc.dims().size() << std::endl;
int memory_size = 1;
for (int l = 0; l < desc.dims().size(); ++l) {
// std::cout << " dim " << l << " value: " << desc.dims()[l] <<
// std::endl;
memory_size *= desc.dims()[l];
}
std::vector<int64_t> dims;
dims.reserve(static_cast<size_t>(desc.dims().size()));
std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
tensor->Resize(framework::make_ddim(dims));
void *memory;
int type_size = 0;
// std::cout << " desc pre type: ";
switch (desc.data_type()) {
case framework::proto::VarType::FP16:
// std::cout << "FP16" << std::endl;
type_size = 2;
break;
case framework::proto::VarType::FP32:
type_size = 4;
memory = tensor->mutable_data<float>();
// std::cout << "FP32" << std::endl;
break;
case framework::proto::VarType::FP64:
type_size = 8;
// std::cout << "FP64" << std::endl;
break;
case framework::proto::VarType::INT32:
type_size = 4;
// std::cout << "INT32" << std::endl;
break;
case framework::proto::VarType::INT64:
type_size = 8;
// std::cout << "INT64" << std::endl;
break;
case framework::proto::VarType::BOOL:
type_size = 1;
// std::cout << "BOOL" << std::endl;
break;
default:
break;
// std::cout << " not support" << std::endl;
}
// std::cout << " malloc size: " << memory_size * type_size << std::endl;
is.read(static_cast<char *>(memory), memory_size * type_size);
// std::cout << " memory: " << memory << std::endl;
is.close();
};
template <typename Dtype, Precision P>
const framework::Program<Dtype, P>
Loader<Dtype, P>::Load(const std::string &dirname) {
std::string model_filename = dirname + "/__model__";
std::string program_desc_str;
ReadBinaryFile(model_filename, &program_desc_str);
framework::proto::ProgramDesc program_desc_proto;
program_desc_proto.ParseFromString(program_desc_str);
std::shared_ptr<framework::ProgramDesc> originProgramDesc =
std::make_shared<framework::ProgramDesc>(program_desc_proto);
framework::Program<Dtype, P> program;
program.originProgram = originProgramDesc;
std::shared_ptr<framework::Scope> scope =
std::make_shared<framework::Scope>();
program.scope = scope;
auto block = originProgramDesc->Block(0);
for (auto block : originProgramDesc->Blocks()) {
// std::cout << "for block" << std::endl;
for (int i = 0; i < block->Vars().size(); ++i) {
std::shared_ptr<framework::VarDesc> var_desc = block->Vars()[i];
auto var = scope->Var(var_desc->Name());
if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) {
if (var_desc->Persistable() &&
var_desc->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
var_desc->GetType() != framework::proto::VarType::FETCH_LIST) {
framework::LoDTensor *tensor =
var->GetMutable<framework::LoDTensor>();
// to load
LoadVar(tensor, dirname + "/" + var_desc->Name());
}
} else {
// std::cout << "非 lod" << std::endl;
}
}
}
#ifdef PADDLE_MOBILE_DEBUG template <typename Dtype, Precision P>
for (int i = 0; i < program_desc_proto.blocks().size(); ++i) { void Loader<Dtype, P>::LoadVar(framework::LoDTensor *tensor,
framework::proto::BlockDesc block = program_desc_proto.blocks()[i]; const std::string &file_path) {
// std::cout << "block: " << block.idx() << std::endl;
for (int j = 0; j < block.ops().size(); ++j) {
framework::proto::OpDesc op = block.ops()[j];
// std::cout << " op: " << op.type() << std::endl;
for (int m = 0; m < op.inputs_size(); ++m) {
const framework::proto::OpDesc::Var &var = op.inputs(m);
// std::cout << " input parameter: " << var.parameter() <<
// std::endl;
for (int n = 0; n < var.arguments().size(); ++n) {
// std::cout << " argument - " << var.arguments()[n] <<
// std::endl;
}
}
for (int y = 0; y < op.outputs_size(); ++y) {
const framework::proto::OpDesc::Var &var = op.outputs(y);
// std::cout << " output parameter: " << var.parameter() <<
// std::endl;
for (int z = 0; z < var.arguments().size(); ++z) {
// std::cout << " argument - " << var.arguments()[z] <<
// std::endl;
}
}
for (int x = 0; x < op.attrs().size(); ++x) {
const framework::proto::OpDesc_Attr attr = op.attrs()[x];
// std::cout << " attr name: " << attr.name() << std::endl;
// std::cout << " attr type: " << attr.type() << std::endl;
switch (attr.type()) {
case framework::proto::AttrType::BOOLEAN:
// std::cout << " boolen: " << attr.b() << std::endl;
break;
case framework::proto::AttrType::INT:
// std::cout << " int: " << attr.i() << std::endl;
break;
case framework::proto::AttrType::FLOAT:
// std::cout << " float: " << attr.f() << std::endl;
case framework::proto::AttrType::STRING:
// std::cout << " string: " << attr.s() << std::endl;
case framework::proto::AttrType::BOOLEANS:
// std::vector<bool>
// bools(attr.bools_size());
for (int y = 0; y < attr.bools_size(); ++y) {
// std::cout << " bool - " << attr.bools(y) <<
// std::endl;
}
case framework::proto::AttrType::LONG:
// std::cout << " long: " << attr.l() << std::endl;
case framework::proto::AttrType::FLOATS:
for (int y = 0; y < attr.floats_size(); ++y) {
// std::cout << " float - " << y << ": " <<
// attr.floats(y)
// << std::endl;
}
case framework::proto::AttrType::INTS:
for (int y = 0; y < attr.ints_size(); ++y) {
// std::cout << " int - " << y << ": " <<
// attr.ints(y)
// << std::endl;
}
case framework::proto::AttrType::STRINGS:
for (int y = 0; y < attr.strings_size(); ++y) {
// std::cout << " string - " << y << ": " <<
// attr.strings(y)
// << std::endl;
}
}
}
}
for (int k = 0; k < block.vars().size(); ++k) { LOG(kLOG_DEBUG) << " to load " << file_path;
framework::proto::VarDesc var = block.vars()[k]; // Log(kLOG_DEBUG) << "123";
if (var.type().type() == framework::proto::VarType::LOD_TENSOR) {
// std::cout << " var name: " << var.name() << std::endl;
const framework::proto::VarType::TensorDesc &tensor_desc =
var.type().lod_tensor().tensor();
// std::cout << " in var tensor desc dims size "
// << tensor_desc.dims().size() << std::endl;
int memory_size = 1;
for (int l = 0; l < tensor_desc.dims().size(); ++l) {
// std::cout << " var tensor desc dim " << l
// << " value: " << tensor_desc.dims()[l] <<
// std::endl;
}
}
if (var.persistable() &&
var.type().type() != framework::proto::VarType::FEED_MINIBATCH &&
var.type().type() != framework::proto::VarType::FETCH_LIST) {
// std::cout << " to load " << var.name() << std::endl;
std::string file_path = dirname + "/" + var.name();
std::ifstream is(file_path); std::ifstream is(file_path);
std::streampos pos = is.tellg(); // save current position std::streampos pos = is.tellg(); // save current position
is.seekg(0, std::ios::end); is.seekg(0, std::ios::end);
// std::cout << " file length = " << is.tellg() << std::endl; LOG(kLOG_DEBUG) << " file length = " << is.tellg();
is.seekg(pos); // restore saved position is.seekg(pos); // restore saved position
// 1. version // 1. version
uint32_t version; uint32_t version;
is.read(reinterpret_cast<char *>(&version), sizeof(version)); is.read(reinterpret_cast<char *>(&version), sizeof(version));
// std::cout << " version: " << version << std::endl; LOG(kLOG_INFO) << " version: " << version;
// 2 Lod information // 2 Lod information
uint64_t lod_level; uint64_t lod_level;
is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level)); is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
// std::cout << " load level: " << lod_level << std::endl; LOG(kLOG_DEBUG) << " load level: " << lod_level;
// std::cout << " lod info: " << std::endl; LOG(kLOG_DEBUG) << " lod info: ";
auto &lod = *tensor->mutable_lod();
lod.resize(lod_level);
for (uint64_t i = 0; i < lod_level; ++i) { for (uint64_t i = 0; i < lod_level; ++i) {
uint64_t size; uint64_t size;
is.read(reinterpret_cast<char *>(&size), sizeof(size)); is.read(reinterpret_cast<char *>(&size), sizeof(size));
std::vector<size_t> tmp(size / sizeof(size_t)); std::vector<size_t> tmp(size / sizeof(size_t));
is.read(reinterpret_cast<char *>(tmp.data()), is.read(reinterpret_cast<char *>(tmp.data()),
static_cast<std::streamsize>(size)); static_cast<std::streamsize>(size));
for (int j = 0; j < tmp.size(); ++j) { for (int j = 0; j < tmp.size(); ++j) {
// std::cout << " lod - " << tmp[j] << std::endl; LOG(kLOG_DEBUG1) << " lod - " << tmp[j];
} }
lod[i] = tmp;
} }
// 3. tensor version
uint32_t tensor_version; uint32_t tensor_version;
is.read(reinterpret_cast<char *>(&version), sizeof(version)); is.read(reinterpret_cast<char *>(&tensor_version),
// std::cout << " tensor_version: " << tensor_version << sizeof(tensor_version));
// std::endl; // std::cout << " tensor_version: " << tensor_version << std::endl;
// 4. tensor desc
int32_t size; int32_t size;
is.read(reinterpret_cast<char *>(&size), sizeof(size)); is.read(reinterpret_cast<char *>(&size), sizeof(size));
// std::cout << " tensor desc size: " << size << std::endl; // std::cout << " tensor desc size: " << size << std::endl;
std::unique_ptr<char[]> buf(new char[size]); std::unique_ptr<char[]> buf(new char[size]);
is.read(reinterpret_cast<char *>(buf.get()), size); is.read(reinterpret_cast<char *>(buf.get()), size);
framework::proto::VarType::TensorDesc desc; framework::proto::VarType::TensorDesc desc;
desc.ParseFromArray(buf.get(), size); desc.ParseFromArray(buf.get(), size);
// std::cout << " desc dims size " << desc.dims().size() << // std::cout << " desc dims size " << desc.dims().size() <<
// std::endl; // std::endl;
int memory_size = 1; int memory_size = 1;
for (int l = 0; l < desc.dims().size(); ++l) { for (int l = 0; l < desc.dims().size(); ++l) {
// std::cout << " dim " << l << " value: " << // std::cout << " dim " << l << " value: " << desc.dims()[l]
// desc.dims()[l] // <<
// << std::endl; // std::endl;
memory_size *= desc.dims()[l]; memory_size *= desc.dims()[l];
} }
std::vector<int64_t> dims;
dims.reserve(static_cast<size_t>(desc.dims().size()));
std::copy(desc.dims().begin(), desc.dims().end(),
std::back_inserter(dims));
tensor->Resize(framework::make_ddim(dims));
void *memory;
int type_size = 0; int type_size = 0;
// std::cout << " desc pre type: "; // std::cout << " desc pre type: ";
switch (desc.data_type()) { switch (desc.data_type()) {
case framework::proto::VarType::FP16: case framework::proto::VarType::FP16:
// std::cout << "FP16" << std::endl; // std::cout << "FP16" << std::endl;
type_size = 2; type_size = 2;
break; break;
case framework::proto::VarType::FP32: case framework::proto::VarType::FP32:
type_size = 4; type_size = 4;
// std::cout << "FP32" << std::endl; memory = tensor->mutable_data<float>();
break; // std::cout << "FP32" << std::endl;
break;
case framework::proto::VarType::FP64: case framework::proto::VarType::FP64:
type_size = 8; type_size = 8;
// std::cout << "FP64" << std::endl; // std::cout << "FP64" << std::endl;
break; break;
case framework::proto::VarType::INT32: case framework::proto::VarType::INT32:
type_size = 4; type_size = 4;
// std::cout << "INT32" << std::endl; // std::cout << "INT32" << std::endl;
break; break;
case framework::proto::VarType::INT64: case framework::proto::VarType::INT64:
type_size = 8; type_size = 8;
// std::cout << "INT64" << std::endl; // std::cout << "INT64" << std::endl;
break; break;
case framework::proto::VarType::BOOL: case framework::proto::VarType::BOOL:
type_size = 1; type_size = 1;
// std::cout << "BOOL" << std::endl; // std::cout << "BOOL" << std::endl;
break; break;
default: default:
break; break;
// std::cout << " not support" << std::endl; // std::cout << " not support" << std::endl;
} }
// std::cout << " malloc size: " << memory_size * type_size // std::cout << " malloc size: " << memory_size * type_size <<
// << std::endl; // std::endl;
void *memory = malloc(memory_size * type_size);
is.read(static_cast<char *>(memory), memory_size * type_size); is.read(static_cast<char *>(memory), memory_size * type_size);
// std::cout << " memory: " << memory << std::endl; // std::cout << " memory: " << memory << std::endl;
is.close(); is.close();
} else { };
// std::cout << " *not load "
// << " var : " << var.name() << std::endl; template <typename Dtype, Precision P>
} const framework::Program<Dtype, P>
} Loader<Dtype, P>::Load(const std::string &dirname) {
} std::string model_filename = dirname + "/__model__";
std::string program_desc_str;
ReadBinaryFile(model_filename, &program_desc_str);
framework::proto::ProgramDesc program_desc_proto;
program_desc_proto.ParseFromString(program_desc_str);
std::shared_ptr<framework::ProgramDesc> originProgramDesc =
std::make_shared<framework::ProgramDesc>(program_desc_proto);
framework::Program<Dtype, P> program;
program.originProgram = originProgramDesc;
std::shared_ptr<framework::Scope> scope =
std::make_shared<framework::Scope>();
program.scope = scope;
auto block = originProgramDesc->Block(0);
for (auto block : originProgramDesc->Blocks()) {
// std::cout << "for block" << std::endl;
for (int i = 0; i < block->Vars().size(); ++i) {
std::shared_ptr<framework::VarDesc> var_desc = block->Vars()[i];
auto var = scope->Var(var_desc->Name());
if (var_desc->GetType() ==
framework::proto::VarType::LOD_TENSOR) {
if (var_desc->Persistable() &&
var_desc->GetType() !=
framework::proto::VarType::FEED_MINIBATCH &&
var_desc->GetType() !=
framework::proto::VarType::FETCH_LIST) {
framework::LoDTensor *tensor =
var->GetMutable<framework::LoDTensor>();
// to load
LoadVar(tensor, dirname + "/" + var_desc->Name());
}
} else {
// std::cout << "非 lod" << std::endl;
}
}
}
#ifdef PADDLE_MOBILE_DEBUG
for (int i = 0; i < program_desc_proto.blocks().size(); ++i) {
framework::proto::BlockDesc block = program_desc_proto.blocks()[i];
// std::cout << "block: " << block.idx() << std::endl;
for (int j = 0; j < block.ops().size(); ++j) {
framework::proto::OpDesc op = block.ops()[j];
// std::cout << " op: " << op.type() << std::endl;
for (int m = 0; m < op.inputs_size(); ++m) {
const framework::proto::OpDesc::Var &var = op.inputs(m);
// std::cout << " input parameter: " <<
// var.parameter() <<
// std::endl;
for (int n = 0; n < var.arguments().size(); ++n) {
// std::cout << " argument - " <<
// var.arguments()[n] <<
// std::endl;
}
}
for (int y = 0; y < op.outputs_size(); ++y) {
const framework::proto::OpDesc::Var &var = op.outputs(y);
// std::cout << " output parameter: " <<
// var.parameter() <<
// std::endl;
for (int z = 0; z < var.arguments().size(); ++z) {
// std::cout << " argument - " <<
// var.arguments()[z] <<
// std::endl;
}
}
for (int x = 0; x < op.attrs().size(); ++x) {
const framework::proto::OpDesc_Attr attr = op.attrs()[x];
// std::cout << " attr name: " << attr.name() <<
// std::endl;
// std::cout << " attr type: " << attr.type() <<
// std::endl;
switch (attr.type()) {
case framework::proto::AttrType::BOOLEAN:
// std::cout << " boolen: " << attr.b() <<
// std::endl;
break;
case framework::proto::AttrType::INT:
// std::cout << " int: " << attr.i() <<
// std::endl;
break;
case framework::proto::AttrType::FLOAT:
// std::cout << " float: " << attr.f() <<
// std::endl;
case framework::proto::AttrType::STRING:
// std::cout << " string: " << attr.s() <<
// std::endl;
case framework::proto::AttrType::BOOLEANS:
// std::vector<bool>
// bools(attr.bools_size());
for (int y = 0; y < attr.bools_size(); ++y) {
// std::cout << " bool - " <<
// attr.bools(y) <<
// std::endl;
}
case framework::proto::AttrType::LONG:
// std::cout << " long: " << attr.l() <<
// std::endl;
case framework::proto::AttrType::FLOATS:
for (int y = 0; y < attr.floats_size(); ++y) {
// std::cout << " float - " << y <<
// ": " <<
// attr.floats(y)
// << std::endl;
}
case framework::proto::AttrType::INTS:
for (int y = 0; y < attr.ints_size(); ++y) {
// std::cout << " int - " << y << ":
// " <<
// attr.ints(y)
// << std::endl;
}
case framework::proto::AttrType::STRINGS:
for (int y = 0; y < attr.strings_size(); ++y) {
// std::cout << " string - " << y <<
// ": " <<
// attr.strings(y)
// << std::endl;
}
}
}
}
for (int k = 0; k < block.vars().size(); ++k) {
framework::proto::VarDesc var = block.vars()[k];
if (var.type().type() ==
framework::proto::VarType::LOD_TENSOR) {
// std::cout << " var name: " << var.name() <<
// std::endl;
const framework::proto::VarType::TensorDesc &tensor_desc =
var.type().lod_tensor().tensor();
// std::cout << " in var tensor desc dims size "
// << tensor_desc.dims().size() <<
// std::endl;
int memory_size = 1;
for (int l = 0; l < tensor_desc.dims().size(); ++l) {
// std::cout << " var tensor desc dim " << l
// << " value: " <<
// tensor_desc.dims()[l] <<
// std::endl;
}
}
if (var.persistable() &&
var.type().type() !=
framework::proto::VarType::FEED_MINIBATCH &&
var.type().type() !=
framework::proto::VarType::FETCH_LIST) {
// std::cout << " to load " << var.name() <<
// std::endl;
std::string file_path = dirname + "/" + var.name();
std::ifstream is(file_path);
std::streampos pos =
is.tellg(); // save current position
is.seekg(0, std::ios::end);
// std::cout << " file length = " << is.tellg() <<
// std::endl;
is.seekg(pos); // restore saved position
// 1. version
uint32_t version;
is.read(reinterpret_cast<char *>(&version),
sizeof(version));
// std::cout << " version: " << version <<
// std::endl;
// 2 Lod information
uint64_t lod_level;
is.read(reinterpret_cast<char *>(&lod_level),
sizeof(lod_level));
// std::cout << " load level: " << lod_level <<
// std::endl;
// std::cout << " lod info: " << std::endl;
for (uint64_t i = 0; i < lod_level; ++i) {
uint64_t size;
is.read(reinterpret_cast<char *>(&size), sizeof(size));
std::vector<size_t> tmp(size / sizeof(size_t));
is.read(reinterpret_cast<char *>(tmp.data()),
static_cast<std::streamsize>(size));
for (int j = 0; j < tmp.size(); ++j) {
// std::cout << " lod - " << tmp[j] <<
// std::endl;
}
}
uint32_t tensor_version;
is.read(reinterpret_cast<char *>(&version),
sizeof(version));
// std::cout << " tensor_version: " <<
// tensor_version <<
// std::endl;
int32_t size;
is.read(reinterpret_cast<char *>(&size), sizeof(size));
// std::cout << " tensor desc size: " << size <<
// std::endl;
std::unique_ptr<char[]> buf(new char[size]);
is.read(reinterpret_cast<char *>(buf.get()), size);
framework::proto::VarType::TensorDesc desc;
desc.ParseFromArray(buf.get(), size);
// std::cout << " desc dims size " <<
// desc.dims().size() <<
// std::endl;
int memory_size = 1;
for (int l = 0; l < desc.dims().size(); ++l) {
// std::cout << " dim " << l << " value: "
// <<
// desc.dims()[l]
// << std::endl;
memory_size *= desc.dims()[l];
}
int type_size = 0;
// std::cout << " desc pre type: ";
switch (desc.data_type()) {
case framework::proto::VarType::FP16:
// std::cout << "FP16" << std::endl;
type_size = 2;
break;
case framework::proto::VarType::FP32:
type_size = 4;
// std::cout << "FP32" << std::endl;
break;
case framework::proto::VarType::FP64:
type_size = 8;
// std::cout << "FP64" << std::endl;
break;
case framework::proto::VarType::INT32:
type_size = 4;
// std::cout << "INT32" << std::endl;
break;
case framework::proto::VarType::INT64:
type_size = 8;
// std::cout << "INT64" << std::endl;
break;
case framework::proto::VarType::BOOL:
type_size = 1;
// std::cout << "BOOL" << std::endl;
break;
default:
break;
// std::cout << " not support" <<
// std::endl;
}
// std::cout << " malloc size: " << memory_size *
// type_size
// << std::endl;
void *memory = malloc(memory_size * type_size);
is.read(static_cast<char *>(memory),
memory_size * type_size);
// std::cout << " memory: " << memory <<
// std::endl;
is.close();
} else {
// std::cout << " *not load "
// << " var : " << var.name() << std::endl;
}
}
}
#endif #endif
return program; return program;
} }
template class Loader<CPU, Precision::FP32>; template class Loader<CPU, Precision::FP32>;
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -27,13 +27,14 @@ SOFTWARE. ...@@ -27,13 +27,14 @@ SOFTWARE.
namespace paddle_mobile { namespace paddle_mobile {
template <typename Dtype, Precision P = Precision::FP32> template <typename Dtype, Precision P = Precision::FP32>
class Loader : PaddleMobileObject { class Loader : PaddleMobileObject {
public: public:
const framework::Program<Dtype, P> Load(const std::string &dirname); const framework::Program<Dtype, P> Load(const std::string &dirname);
private: private:
void LoadVar(framework::LoDTensor *tensor, const std::string &file_path); void LoadVar(framework::LoDTensor *tensor,
}; const std::string &file_path);
};
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -22,30 +22,30 @@ SOFTWARE. ...@@ -22,30 +22,30 @@ SOFTWARE.
#include <cstring> #include <cstring>
namespace paddle_mobile { namespace paddle_mobile {
namespace memory { namespace memory {
const int MALLOC_ALIGN = 16; const int MALLOC_ALIGN = 16;
void Copy(void *dst, const void *src, size_t num) { void Copy(void *dst, const void *src, size_t num) {
std::memcpy(dst, src, num); std::memcpy(dst, src, num);
}; };
void *Alloc(size_t size) { void *Alloc(size_t size) {
size_t offset = sizeof(void *) + MALLOC_ALIGN - 1; size_t offset = sizeof(void *) + MALLOC_ALIGN - 1;
char *p = static_cast<char *>(malloc(offset + size)); char *p = static_cast<char *>(malloc(offset + size));
if (!p) { if (!p) {
return nullptr; return nullptr;
} }
void *r = reinterpret_cast<void *>(reinterpret_cast<size_t>(p + offset) & void *r = reinterpret_cast<void *>(
(~(MALLOC_ALIGN - 1))); reinterpret_cast<size_t>(p + offset) & (~(MALLOC_ALIGN - 1)));
static_cast<void **>(r)[-1] = p; static_cast<void **>(r)[-1] = p;
return r; return r;
} }
void Free(void *ptr) { void Free(void *ptr) {
if (ptr) { if (ptr) {
free(static_cast<void **>(ptr)[-1]); free(static_cast<void **>(ptr)[-1]);
} }
} }
} // namespace memory } // namespace memory
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -21,44 +21,44 @@ SOFTWARE. ...@@ -21,44 +21,44 @@ SOFTWARE.
#include <type_traits> #include <type_traits>
namespace paddle_mobile { namespace paddle_mobile {
namespace memory { namespace memory {
void Copy(void *dst, const void *src, size_t num); void Copy(void *dst, const void *src, size_t num);
void *Alloc(size_t size); void *Alloc(size_t size);
void Free(void *ptr); void Free(void *ptr);
/** /**
* \brief Free memory block in one place. * \brief Free memory block in one place.
* *
* \note In some cases, custom deleter is used to * \note In some cases, custom deleter is used to
* deallocate the memory automatically for * deallocate the memory automatically for
* std::unique_ptr<T> in tensor.h. * std::unique_ptr<T> in tensor.h.
* static_cast * static_cast
*/ */
template <typename T> class PODDeleter { template <typename T> class PODDeleter {
static_assert(std::is_pod<T>::value, "T must be POD"); static_assert(std::is_pod<T>::value, "T must be POD");
public: public:
explicit PODDeleter(){}; explicit PODDeleter(){};
void operator()(T *ptr) { Free(static_cast<void *>(ptr)); } void operator()(T *ptr) { Free(static_cast<void *>(ptr)); }
}; };
/** /**
* \brief Free memory block in one place does not meet POD * \brief Free memory block in one place does not meet POD
* *
* \note In some cases, custom deleter is used to * \note In some cases, custom deleter is used to
* deallocate the memory automatically for * deallocate the memory automatically for
* std::unique_ptr<T> in tensor.h. * std::unique_ptr<T> in tensor.h.
* reinterpret_cast * reinterpret_cast
*/ */
template <typename T> class PlainDeleter { template <typename T> class PlainDeleter {
public: public:
explicit PlainDeleter(){}; explicit PlainDeleter(){};
void operator()(T *ptr) { Free(reinterpret_cast<void *>(ptr)); } void operator()(T *ptr) { Free(reinterpret_cast<void *>(ptr)); }
}; };
} // namespace memory } // namespace memory
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -22,55 +22,55 @@ SOFTWARE. ...@@ -22,55 +22,55 @@ SOFTWARE.
#include "framework/operator.h" #include "framework/operator.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
int ConvOutputSize(int input_size, int filter_size, int dilation, int padding, int ConvOutputSize(int input_size, int filter_size, int dilation,
int stride) { int padding, int stride) {
const int dkernel = dilation * (filter_size - 1) + 1; const int dkernel = dilation * (filter_size - 1) + 1;
int output_size = (input_size + 2 * padding - dkernel) / stride + 1; int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
return output_size; return output_size;
} }
template <typename Dtype, typename T> template <typename Dtype, typename T>
void ConvOp<Dtype, T>::InferShape() const { void ConvOp<Dtype, T>::InferShape() const {
// std::cout << " begin get dims: " << std::endl; // std::cout << " begin get dims: " << std::endl;
auto in_dims = param_.Input()->dims(); auto in_dims = param_.Input()->dims();
// std::cout << " end get in dims: " << std::endl; // std::cout << " end get in dims: " << std::endl;
// std::cout << " in_dims: " << in_dims << std::endl; // std::cout << " in_dims: " << in_dims << std::endl;
// std::cout << " begin get Filter " << std::endl; // std::cout << " begin get Filter " << std::endl;
auto filter_dims = param_.Filter()->dims(); auto filter_dims = param_.Filter()->dims();
// std::cout << " end get Filter " << std::endl; // std::cout << " end get Filter " << std::endl;
// std::cout << " begin get Attrs " << std::endl; // std::cout << " begin get Attrs " << std::endl;
const std::vector<int> &strides = param_.Strides(); const std::vector<int> &strides = param_.Strides();
// std::cout << " end get Attrs " << strides[0] << std::endl; // std::cout << " end get Attrs " << strides[0] << std::endl;
std::vector<int> paddings = param_.Paddings(); std::vector<int> paddings = param_.Paddings();
int groups = param_.Groups(); int groups = param_.Groups();
std::vector<int> dilations = param_.Dilations(); std::vector<int> dilations = param_.Dilations();
std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]}); std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
for (size_t i = 0; i < strides.size(); ++i) { for (size_t i = 0; i < strides.size(); ++i) {
output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2], output_shape.push_back(
dilations[i], paddings[i], ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
strides[i])); dilations[i], paddings[i], strides[i]));
} }
framework::DDim ddim = framework::make_ddim(output_shape); framework::DDim ddim = framework::make_ddim(output_shape);
param_.Output()->Resize(ddim); param_.Output()->Resize(ddim);
} }
template class ConvOp<CPU, float>; template class ConvOp<CPU, float>;
} // namespace operators } // namespace operators
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -22,32 +22,33 @@ SOFTWARE. ...@@ -22,32 +22,33 @@ SOFTWARE.
#include "operators/kernel/conv_kernel.h" #include "operators/kernel/conv_kernel.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
using namespace framework; using namespace framework;
template <typename DeviceType, typename T> template <typename DeviceType, typename T>
class ConvOp : public framework::OperatorWithKernel<DeviceType> { class ConvOp : public framework::OperatorWithKernel<DeviceType> {
public: public:
ConvOp(const std::string &type, const VariableNameMap &inputs, ConvOp(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const framework::AttributeMap &attrs, const VariableNameMap &outputs,
std::shared_ptr<framework::Scope> scope) const framework::AttributeMap &attrs,
: framework::OperatorWithKernel<DeviceType>(type, inputs, outputs, attrs, std::shared_ptr<framework::Scope> scope)
scope), : framework::OperatorWithKernel<DeviceType>(
param_(inputs, outputs, attrs, *scope) {} type, inputs, outputs, attrs, scope),
param_(inputs, outputs, attrs, *scope) {}
using framework::OperatorWithKernel<DeviceType>::OperatorWithKernel;
void InferShape() const override; using framework::OperatorWithKernel<DeviceType>::OperatorWithKernel;
void InferShape() const override;
protected:
void RunImpl() const { void Run() const {
operators::ConvKernel<DeviceType, T, ConvParam> kernel; operators::ConvKernel<DeviceType, T, ConvParam> kernel;
kernel.Compute(param_); kernel.Compute(param_);
this->ClearVariables(); this->ClearVariables();
} }
ConvParam param_; private:
}; ConvParam param_;
};
} // operators
} // operators
} // paddle_mobile } // paddle_mobile
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include "elementwise_add_op.h"
namespace paddle_mobile {
namespace operators {
template <typename Dtype, typename T>
void ElementwiseAddOp<Dtype, T>::InferShape() const {
auto x_dim = param_.InputX()->dims();
param_.Out()->Resize(x_dim);
}
template class ElementwiseAddOp<CPU, float>;
}
}
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include "framework/operator.h"
#include "kernel/elementwise_add_kernel.h"
#include "op_param.h"
namespace paddle_mobile {
namespace operators {
using namespace framework;
template <typename DeviceType, typename T>
class ElementwiseAddOp
: public framework::OperatorWithKernel<DeviceType> {
public:
ElementwiseAddOp(const std::string &type,
const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<DeviceType>(
type, inputs, outputs, attrs, scope),
param_(inputs, outputs, attrs, *scope) {}
void Run() const {
operators::ElementwiseAddKernel<DeviceType, T,
ElementwiseAddParam>
kernel;
kernel.Compute(param_);
}
using framework::OperatorWithKernel<DeviceType>::OperatorWithKernel;
void InferShape() const override;
protected:
ElementwiseAddParam param_;
};
}
}
...@@ -19,135 +19,146 @@ SOFTWARE. ...@@ -19,135 +19,146 @@ SOFTWARE.
#include "operators/kernel/conv_kernel.h" #include "operators/kernel/conv_kernel.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
bool IsExpand(const std::vector<int64_t> &filter_dim, bool IsExpand(const std::vector<int64_t> &filter_dim,
const std::vector<int> &strides, const std::vector<int> &paddings, const std::vector<int> &strides,
const std::vector<int> &dilations) { const std::vector<int> &paddings,
bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true; const std::vector<int> &dilations) {
for (size_t j = 0; j < strides.size(); ++j) { bool filter_1 = true, strides_1 = true, padding_0 = true,
filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1); dilation_1 = true;
strides_1 = strides_1 && (strides[j] == 1); for (size_t j = 0; j < strides.size(); ++j) {
padding_0 = padding_0 && (paddings[j] == 0); filter_1 =
dilation_1 = dilation_1 && (dilations[j] == 1); filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
} strides_1 = strides_1 && (strides[j] == 1);
return !(filter_1 && strides_1 && padding_0 && dilation_1); padding_0 = padding_0 && (paddings[j] == 0);
} dilation_1 = dilation_1 && (dilations[j] == 1);
}
template <> return !(filter_1 && strides_1 && padding_0 && dilation_1);
void ConvKernel<CPU, float, ConvParam>::Compute(const ConvParam &param) const { }
const Tensor *input = param.Input();
template <>
LOG(kLOG_DEBUG) << param; void ConvKernel<CPU, float, ConvParam>::Compute(
const ConvParam &param) const {
// The filter will be reshaped in the calculations, LOG(kLOG_DEBUG) << param;
// so here use an assignment operation,
// that avoids modifying the variable in the Scope. const Tensor *input = param.Input();
Tensor filter = *param.Filter();
// The filter will be reshaped in the calculations,
Tensor *output = param.Output(); // so here use an assignment operation,
// output->mutable_data<T>(context.GetPlace()); // that avoids modifying the variable in the Scope.
Tensor filter = *param.Filter();
int groups = param.Groups();
std::vector<int> strides = param.Strides(); Tensor *output = param.Output();
std::vector<int> paddings = param.Paddings(); // output->mutable_data<T>(context.GetPlace());
std::vector<int> dilations = param.Dilations();
int groups = param.Groups();
DLOG << " compute end get Attrs " << strides[0]; std::vector<int> strides = param.Strides();
std::vector<int> paddings = param.Paddings();
const int batch_size = static_cast<int>(input->dims()[0]); std::vector<int> dilations = param.Dilations();
// filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w} DLOG << " compute end get Attrs " << strides[0];
std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
// output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w} const int batch_size = static_cast<int>(input->dims()[0]);
std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
// filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h,
// use col_shape in the im2col calculation // k_w}
// col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d, std::vector<int64_t> filter_shape_vec(
// o_h, o_w} framework::vectorize(filter.dims()));
size_t data_dim = filter_shape_vec.size() - 2; // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h,
std::vector<int64_t> col_shape_vec(1 + 2 * data_dim); // o_w}
col_shape_vec[0] = input->dims()[1] / groups; std::vector<int64_t> output_shape_vec(
for (size_t j = 0; j < data_dim; ++j) { framework::vectorize(output->dims()));
col_shape_vec[j + 1] = filter_shape_vec[j + 2];
col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2]; // use col_shape in the im2col calculation
} // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h,
framework::DDim col_shape(framework::make_ddim(col_shape_vec)); // k_w, o_d,
// o_h, o_w}
// use col_matrix_shape in the gemm calculation size_t data_dim = filter_shape_vec.size() - 2;
// size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d * std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
// o_h * o_w) col_shape_vec[0] = input->dims()[1] / groups;
framework::DDim col_matrix_shape = for (size_t j = 0; j < data_dim; ++j) {
framework::flatten_to_2d(col_shape, data_dim + 1); col_shape_vec[j + 1] = filter_shape_vec[j + 2];
col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations); }
Tensor col; framework::DDim col_shape(framework::make_ddim(col_shape_vec));
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape // use col_matrix_shape in the gemm calculation
// to call the matrix multiplication interface. // size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w,
Tensor col_matrix; // o_d *
if (is_expand) { // o_h * o_w)
col.mutable_data<float>(col_shape); framework::DDim col_matrix_shape =
col_matrix.ShareDataWith(col); framework::flatten_to_2d(col_shape, data_dim + 1);
col_matrix.Resize(col_matrix_shape);
} bool is_expand =
IsExpand(filter_shape_vec, strides, paddings, dilations);
framework::DDim input_shape = framework::slice_ddim( Tensor col;
input->dims(), 1, static_cast<int>(input->dims().size())); // col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
framework::DDim filter_matrix_shape = {filter.dims()[0], // to call the matrix multiplication interface.
filter.numel() / filter.dims()[0]}; Tensor col_matrix;
filter.Resize(filter_matrix_shape); if (is_expand) {
col.mutable_data<float>(col_shape);
DLOG << " input dim " << input->dims(); col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
DLOG << " output dim " << output->dims(); }
framework::DDim output_matrix_shape = { framework::DDim input_shape = framework::slice_ddim(
output->dims()[1], input->dims(), 1, static_cast<int>(input->dims().size()));
output->numel() / (output->dims()[0] * output->dims()[1])};
framework::DDim filter_matrix_shape = {
// convolution operator: im2col(or vol2col) + gemm filter.dims()[0], filter.numel() / filter.dims()[0]};
int in_step = static_cast<int>(input->dims()[1]) / groups; filter.Resize(filter_matrix_shape);
int out_step = static_cast<int>(output->dims()[1]) / groups;
framework::DDim output_matrix_shape = {
math::Vol2ColFunctor<CPU, float> vol2col; output->dims()[1],
math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col; output->numel() / (output->dims()[0] * output->dims()[1])};
// auto& dev_ctx = context.template // convolution operator: im2col(or vol2col) + gemm
// device_context<DeviceContext>(); int in_step = static_cast<int>(input->dims()[1]) / groups;
for (int i = 0; i < batch_size; i++) { int out_step = static_cast<int>(output->dims()[1]) / groups;
Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape); math::Vol2ColFunctor<CPU, float> vol2col;
math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;
for (int g = 0; g < groups; g++) {
Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); // auto& dev_ctx = context.template
// device_context<DeviceContext>();
if (!is_expand) { for (int i = 0; i < batch_size; i++) {
col.ShareDataWith(in_slice); Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
col_matrix.ShareDataWith(col); Tensor out_batch =
col_matrix.Resize(col_matrix_shape); output->Slice(i, i + 1).Resize(output_matrix_shape);
} else if (data_dim == 2U) {
// im2col for (int g = 0; g < groups; g++) {
im2col(in_slice, dilations, strides, Tensor in_slice =
std::vector<int>{paddings[0], paddings[1], paddings[0], in_batch.Slice(g * in_step, (g + 1) * in_step);
paddings[1]},
&col); if (!is_expand) {
} else if (data_dim == 3U) { col.ShareDataWith(in_slice);
// vol2col col_matrix.ShareDataWith(col);
vol2col(in_slice, dilations, strides, paddings, &col); col_matrix.Resize(col_matrix_shape);
} } else if (data_dim == 2U) {
// im2col
// gemm im2col(in_slice, dilations, strides,
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); std::vector<int>{paddings[0], paddings[1],
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); paddings[0], paddings[1]},
math::matmul<float>(filter_slice, false, col_matrix, false, float(1.0), &col);
&out_slice, float(0.0)); } else if (data_dim == 3U) {
} // vol2col
} vol2col(in_slice, dilations, strides, paddings, &col);
} }
template class ConvKernel<CPU, float, ConvParam>; // gemm
Tensor out_slice =
} // namespace operators out_batch.Slice(g * out_step, (g + 1) * out_step);
Tensor filter_slice =
filter.Slice(g * out_step, (g + 1) * out_step);
math::matmul<float>(filter_slice, false, col_matrix, false,
float(1.0), &out_slice, float(0.0));
}
}
}
template class ConvKernel<CPU, float, ConvParam>;
} // namespace operators
} // namespace paddle_mobile } // namespace paddle_mobile
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "operators/kernel/elementwise_add_kernel.h"
namespace paddle_mobile {
namespace operators {
template <typename T> struct AddFunctor {
inline T operator()(T a, T b) const { return a + b; }
};
template <>
void ElementwiseAddKernel<CPU, float, ElementwiseAddParam>::Compute(
const ElementwiseAddParam &param) const {
const Tensor *input_x = param.InputX();
const Tensor *input_y = param.InputY();
Tensor *Out = param.Out();
Out->mutable_data<float>();
const int axis = param.Axis();
ElementwiseComputeEx<AddFunctor<float>, float>(
input_x, input_y, axis, AddFunctor<float>(), Out);
}
template class ElementwiseAddKernel<CPU, float, ElementwiseAddParam>;
} // namespace operators
} // namespace paddle
...@@ -25,14 +25,15 @@ SOFTWARE. ...@@ -25,14 +25,15 @@ SOFTWARE.
#pragma once; #pragma once;
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
using namespace framework; using namespace framework;
template <typename DeviceType, typename T, typename P> template <typename DeviceType, typename T, typename P>
class ConvKernel : public framework::OpKernelBase<DeviceType, ConvParam> { class ConvKernel
public: : public framework::OpKernelBase<DeviceType, ConvParam> {
void Compute(const ConvParam &param) const; public:
}; void Compute(const ConvParam &param) const;
} };
}
} }
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#pragma once;
#include "framework/operator.h"
#include "operators/math/elementwise_op_function.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
using namespace framework;
template <typename DeviceType, typename T, typename P>
class ElementwiseAddKernel
: public framework::OpKernelBase<DeviceType, ElementwiseAddParam> {
public:
void Compute(const ElementwiseAddParam &param) const;
};
}
}
...@@ -19,11 +19,12 @@ SOFTWARE. ...@@ -19,11 +19,12 @@ SOFTWARE.
#include "operators/kernel/conv_kernel.h" #include "operators/kernel/conv_kernel.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
// template<> // template<>
// void ConvKernel<FPGA, float>::Compute(const ConvParam &param) const {} // void ConvKernel<FPGA, float>::Compute(const ConvParam &param) const
// // {}
// template class ConvKernel<FPGA, float>; //
} // template class ConvKernel<FPGA, float>;
}
} }
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "transform.h"
#define UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)
namespace paddle_mobile {
namespace operators {
/*
* Out = X ⊙ Y
* If Y's shape does not match X' shape, they will be reshaped.
* For example:
* 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
* pre=2, n=3*4, post=5
* x.shape(2, 12, 5) * y.shape(1, 12, 1).broadcast(2, 12, 5)
* 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
* pre=2*3, n=4*5, post=1
* x.shape(6, 20, 1) * y.shape(1, 20, 1).broadcast(6, 20, 1)
*/
inline void get_mid_dims(const framework::DDim &x_dims,
const framework::DDim &y_dims, const int axis,
int *pre, int *n, int *post) {
*pre = 1;
*n = 1;
*post = 1;
// compute pre
for (int i = 0; i < axis; ++i) {
(*pre) *= x_dims[i];
}
for (int i = 0; i < y_dims.size(); ++i) {
assert(x_dims[i + axis] == y_dims[i]);
/// "Broadcast dimension mismatch.");
(*n) *= y_dims[i];
}
for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
(*post) *= x_dims[i];
}
}
/// remove dims tail 1. (4,20,1,1) -> (4,20)
inline void trim_trailing_singular_dims(framework::DDim *dims) {
// Remove trailing dimensions of size 1 for y
auto actual_dims_size = dims->size();
for (; actual_dims_size != 0; --actual_dims_size) {
if ((*dims)[actual_dims_size - 1] != 1)
break;
}
if (actual_dims_size != dims->size()) {
auto actual_dims = framework::vectorize(*dims);
actual_dims.resize(actual_dims_size);
*dims = framework::make_ddim(actual_dims);
}
}
template <typename T> class RowwiseTransformIterator {
public:
RowwiseTransformIterator(const T *ptr, int n)
: ptr_(ptr), i_(0), n_(n) {}
RowwiseTransformIterator<T> &operator++() {
++i_;
if (UNLIKELY(i_ == n_)) {
i_ = 0;
}
return *this;
}
bool operator==(const RowwiseTransformIterator<T> &rhs) const {
return (ptr_ + i_) == &(*rhs);
}
bool operator!=(const RowwiseTransformIterator<T> &rhs) const {
return (ptr_ + i_) != &(*rhs);
}
const T &operator*() { return ptr_[i_]; }
private:
const T *ptr_;
int i_;
int64_t n_;
};
/// (4,20,2)+(20,): (20,) just as (20,1), when move 2 strides in last
/// dimension
/// in (4,20,2) is 2 ,
/// (20,1) move 1 stride , to fill(add) 2 element with the same number.
template <typename T> class MidWiseTransformIterator {
public:
MidWiseTransformIterator(const T *ptr, int n, int post)
: ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}
MidWiseTransformIterator<T> &operator++() {
++j_;
if (UNLIKELY(j_ == post_)) {
++i_;
j_ = 0;
if (UNLIKELY(i_ == n_)) {
i_ = 0;
}
}
return *this;
}
bool operator==(const MidWiseTransformIterator<T> &rhs) const {
return (ptr_ + i_) == &(*rhs);
}
bool operator!=(const MidWiseTransformIterator<T> &rhs) const {
return (ptr_ + i_) != &(*rhs);
}
const T &operator*() { return ptr_[i_]; }
private:
const T *ptr_;
int64_t i_;
int64_t j_;
int64_t n_;
int64_t post_;
};
template <typename Functor, typename T, typename OutType = T>
class TransformFunctor {
public:
TransformFunctor(const framework::Tensor *x,
const framework::Tensor *y, framework::Tensor *z,
Functor func)
: x_(x->data<T>()), y_(y->data<T>()),
z_(z->mutable_data<OutType>()), nx_(x->numel()), func_(func) {
}
inline void Run() const {
math::Transform trans;
// 同时执行func(x_, y_)传入z_。
trans(x_, x_ + nx_, y_, z_, func_);
}
inline void RunRowWise(int n, int pre) const {
math::Transform trans;
trans(x_, x_ + nx_, RowwiseTransformIterator<T>(y_, n), z_,
func_);
}
inline void RunMidWise(int n, int pre, int post) const {
math::Transform trans;
trans(x_, x_ + nx_, MidWiseTransformIterator<T>(y_, n, post),
z_, func_);
}
private:
const T *x_;
const T *y_;
OutType *z_;
int64_t nx_;
Functor func_;
};
template <typename Functor, typename T, typename OutType = T>
void ElementwiseComputeEx(const framework::Tensor *x,
const framework::Tensor *y, int axis,
Functor func, framework::Tensor *z) {
TransformFunctor<Functor, T, OutType> functor(x, y, z, func);
auto x_dims = x->dims();
auto y_dims = y->dims();
// PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
// "Rank of first input must >= rank of second
// input.");
if (x_dims == y_dims) {
functor.Run();
return;
}
/// axis = -1 represent the last dimension.
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
// PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
// "Axis should be in range [0, x_dims)");
trim_trailing_singular_dims(&y_dims);
axis = (y_dims.size() == 0) ? x_dims.size() : axis;
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);
if (post == 1) {
functor.RunRowWise(n, pre);
return;
} else {
functor.RunMidWise(n, pre, post);
return;
}
}
} // namespace operators
} // namespace paddle
...@@ -16,275 +16,349 @@ limitations under the License. */ ...@@ -16,275 +16,349 @@ limitations under the License. */
#include "common/types.h" #include "common/types.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
namespace math { namespace math {
/* /*
* im = [input_channels, input_height, input_width] * im = [input_channels, input_height, input_width]
* col = * col =
* [input_channels, filter_height, filter_width, output_height, output_width] * [input_channels, filter_height, filter_width, output_height,
*/ * output_width]
template <class T> class Im2ColFunctor<ColFormat::kCFO, CPU, T> { */
public: template <class T> class Im2ColFunctor<ColFormat::kCFO, CPU, T> {
void operator()(const framework::Tensor &im, const std::vector<int> &dilation, public:
const std::vector<int> &stride, void operator()(const framework::Tensor &im,
const std::vector<int> &padding, framework::Tensor *col) { const std::vector<int> &dilation,
// PADDLE_ENFORCE(im.dims().size() == 3); const std::vector<int> &stride,
// PADDLE_ENFORCE(col->dims().size() == 5); const std::vector<int> &padding,
framework::Tensor *col) {
// PADDLE_ENFORCE(im.dims().size() == 3);
// PADDLE_ENFORCE(col->dims().size() == 5);
int im_channels = im.dims()[0]; int im_channels = im.dims()[0];
int im_height = im.dims()[1]; int im_height = im.dims()[1];
int im_width = im.dims()[2]; int im_width = im.dims()[2];
int filter_height = col->dims()[1]; int filter_height = col->dims()[1];
int filter_width = col->dims()[2]; int filter_width = col->dims()[2];
int col_height = col->dims()[3]; int col_height = col->dims()[3];
int col_width = col->dims()[4]; int col_width = col->dims()[4];
// PADDLE_ENFORCE_EQ((im_height + padding[0] + padding[2] - // PADDLE_ENFORCE_EQ((im_height + padding[0] + padding[2]
// ((dilation[0] * (filter_height - 1) + 1))) / // -
// stride[0] + // ((dilation[0] * (filter_height - 1)
// 1, // + 1))) /
// col_height, // stride[0] +
// "Output_height and padding(padding_up, padding_down) // 1,
// are " "inconsistent."); // col_height,
// PADDLE_ENFORCE_EQ((im_width + padding[1] + padding[3] - // "Output_height and
// ((dilation[1] * (filter_width - 1) + 1))) / // padding(padding_up, padding_down)
// stride[1] + // are " "inconsistent.");
// 1, // PADDLE_ENFORCE_EQ((im_width + padding[1] + padding[3]
// col_width, // -
// "Output_height and padding(padding_up, padding_down) // ((dilation[1] * (filter_width - 1)
// are " "inconsistent."); // + 1))) /
// stride[1] +
// 1,
// col_width,
// "Output_height and
// padding(padding_up, padding_down)
// are " "inconsistent.");
int channels_col = im_channels * filter_height * filter_width; int channels_col =
im_channels * filter_height * filter_width;
const T *im_data = im.data<T>(); const T *im_data = im.data<T>();
T *col_data = col->data<T>(); T *col_data = col->data<T>();
for (int c = 0; c < channels_col; ++c) { for (int c = 0; c < channels_col; ++c) {
int w_offset = c % filter_width; int w_offset = c % filter_width;
int h_offset = (c / filter_width) % filter_height; int h_offset = (c / filter_width) % filter_height;
int c_im = c / (filter_width * filter_height); int c_im = c / (filter_width * filter_height);
for (int h = 0; h < col_height; ++h) { for (int h = 0; h < col_height; ++h) {
int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0]; int im_row_idx = h * stride[0] - padding[0] +
for (int w = 0; w < col_width; ++w) { h_offset * dilation[0];
int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1]; for (int w = 0; w < col_width; ++w) {
int col_idx = (c * col_height + h) * col_width + w; int im_col_idx = w * stride[1] - padding[1] +
int im_idx = (im_row_idx + c_im * im_height) * im_width + im_col_idx; w_offset * dilation[1];
int col_idx =
(c * col_height + h) * col_width + w;
int im_idx =
(im_row_idx + c_im * im_height) * im_width +
im_col_idx;
col_data[col_idx] = (im_row_idx < 0 || im_row_idx >= im_height || col_data[col_idx] =
im_col_idx < 0 || im_col_idx >= im_width) (im_row_idx < 0 ||
? static_cast<T>(0) im_row_idx >= im_height ||
: im_data[im_idx]; im_col_idx < 0 || im_col_idx >= im_width)
} ? static_cast<T>(0)
} : im_data[im_idx];
} }
} }
}; }
}
};
/* /*
* im = [input_channels, input_height, input_width] * im = [input_channels, input_height, input_width]
* col = * col =
* [input_channels, filter_height, filter_width, output_height, output_width] * [input_channels, filter_height, filter_width, output_height,
*/ * output_width]
template <class T> class Col2ImFunctor<ColFormat::kCFO, CPU, T> { */
public: template <class T> class Col2ImFunctor<ColFormat::kCFO, CPU, T> {
void operator()(const framework::Tensor &col, public:
const std::vector<int> &dilation, void operator()(const framework::Tensor &col,
const std::vector<int> &stride, const std::vector<int> &dilation,
const std::vector<int> &padding, framework::Tensor *im) { const std::vector<int> &stride,
// PADDLE_ENFORCE(im->dims().size() == 3); const std::vector<int> &padding,
// PADDLE_ENFORCE(col.dims().size() == 5); framework::Tensor *im) {
int im_channels = im->dims()[0]; // PADDLE_ENFORCE(im->dims().size() == 3);
int im_height = im->dims()[1]; // PADDLE_ENFORCE(col.dims().size() == 5);
int im_width = im->dims()[2]; int im_channels = im->dims()[0];
int filter_height = col.dims()[1]; int im_height = im->dims()[1];
int filter_width = col.dims()[2]; int im_width = im->dims()[2];
int col_height = col.dims()[3]; int filter_height = col.dims()[1];
int col_width = col.dims()[4]; int filter_width = col.dims()[2];
int col_height = col.dims()[3];
int col_width = col.dims()[4];
// PADDLE_ENFORCE_EQ((im_height + padding[0] + padding[2] - // PADDLE_ENFORCE_EQ((im_height + padding[0] + padding[2]
// ((dilation[0] * (filter_height - 1) + 1))) / // -
// stride[0] + // ((dilation[0] * (filter_height - 1)
// 1, // + 1))) /
// col_height, // stride[0] +
// "Output_height and padding(padding_up, padding_down) // 1,
// are " "inconsistent."); // col_height,
// PADDLE_ENFORCE_EQ((im_width + padding[1] + padding[3] - // "Output_height and
// ((dilation[1] * (filter_width - 1) + 1))) / // padding(padding_up, padding_down)
// stride[1] + // are " "inconsistent.");
// 1, // PADDLE_ENFORCE_EQ((im_width + padding[1] + padding[3]
// col_width, // -
// "Output_height and padding(padding_up, padding_down) // ((dilation[1] * (filter_width - 1)
// are " "inconsistent."); // + 1))) /
// stride[1] +
// 1,
// col_width,
// "Output_height and
// padding(padding_up, padding_down)
// are " "inconsistent.");
int channels_col = im_channels * filter_height * filter_width; int channels_col =
im_channels * filter_height * filter_width;
T *im_data = im->data<T>(); T *im_data = im->data<T>();
const T *col_data = col.data<T>(); const T *col_data = col.data<T>();
for (int c = 0; c < channels_col; ++c) { for (int c = 0; c < channels_col; ++c) {
int w_offset = c % filter_width; int w_offset = c % filter_width;
int h_offset = (c / filter_width) % filter_height; int h_offset = (c / filter_width) % filter_height;
int c_im = c / (filter_width * filter_height); int c_im = c / (filter_width * filter_height);
for (int h = 0; h < col_height; ++h) { for (int h = 0; h < col_height; ++h) {
int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0]; int im_row_idx = h * stride[0] - padding[0] +
for (int w = 0; w < col_width; ++w) { h_offset * dilation[0];
int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1]; for (int w = 0; w < col_width; ++w) {
if ((im_row_idx) >= 0 && (im_row_idx) < im_height && int im_col_idx = w * stride[1] - padding[1] +
(im_col_idx) >= 0 && (im_col_idx) < im_width) { w_offset * dilation[1];
im_data[(im_row_idx + c_im * im_height) * im_width + im_col_idx] += if ((im_row_idx) >= 0 &&
col_data[(c * col_height + h) * col_width + w]; (im_row_idx) < im_height &&
} (im_col_idx) >= 0 &&
} (im_col_idx) < im_width) {
} im_data[(im_row_idx + c_im * im_height) *
} im_width +
} im_col_idx] +=
}; col_data[(c * col_height + h) *
col_width +
w];
}
}
}
}
}
};
template class Im2ColFunctor<ColFormat::kCFO, CPU, float>; template class Im2ColFunctor<ColFormat::kCFO, CPU, float>;
template class Im2ColFunctor<ColFormat::kCFO, CPU, double>; template class Im2ColFunctor<ColFormat::kCFO, CPU, double>;
template class Col2ImFunctor<ColFormat::kCFO, CPU, float>; template class Col2ImFunctor<ColFormat::kCFO, CPU, float>;
template class Col2ImFunctor<ColFormat::kCFO, CPU, double>; template class Col2ImFunctor<ColFormat::kCFO, CPU, double>;
/* /*
* im = [input_channels, input_height, input_width] * im = [input_channels, input_height, input_width]
* col = * col =
* [output_height, output_width, input_channels, filter_height, filter_width] * [output_height, output_width, input_channels, filter_height,
*/ * filter_width]
template <class T> class Im2ColFunctor<ColFormat::kOCF, CPU, T> { */
public: template <class T> class Im2ColFunctor<ColFormat::kOCF, CPU, T> {
void operator()(const framework::Tensor &im, const std::vector<int> &dilation, public:
const std::vector<int> &stride, void operator()(const framework::Tensor &im,
const std::vector<int> &padding, framework::Tensor *col) { const std::vector<int> &dilation,
// PADDLE_ENFORCE(im.dims().size() == 3); const std::vector<int> &stride,
// PADDLE_ENFORCE(col->dims().size() == 5); const std::vector<int> &padding,
int im_channels = im.dims()[0]; framework::Tensor *col) {
int im_height = im.dims()[1]; // PADDLE_ENFORCE(im.dims().size() == 3);
int im_width = im.dims()[2]; // PADDLE_ENFORCE(col->dims().size() == 5);
int filter_height = col->dims()[3]; int im_channels = im.dims()[0];
int filter_width = col->dims()[4]; int im_height = im.dims()[1];
int col_height = col->dims()[0]; int im_width = im.dims()[2];
int col_width = col->dims()[1]; int filter_height = col->dims()[3];
int filter_width = col->dims()[4];
int col_height = col->dims()[0];
int col_width = col->dims()[1];
// PADDLE_ENFORCE_EQ( // PADDLE_ENFORCE_EQ(
// (im_height + padding[0] + padding[2] - filter_height) / stride[0] // (im_height + padding[0] + padding[2] -
// + 1, col_height, "Output_height and padding(padding_up, // filter_height) / stride[0]
// padding_down) are " "inconsistent."); // + 1, col_height, "Output_height and
// PADDLE_ENFORCE_EQ( // padding(padding_up,
// (im_width + padding[1] + padding[3] - filter_width) / stride[1] + // padding_down) are " "inconsistent.");
// 1, col_width, "col_width and padding(padding_left, padding_right) // PADDLE_ENFORCE_EQ(
// are " "inconsistent."); // (im_width + padding[1] + padding[3] -
// filter_width) / stride[1] +
// 1, col_width, "col_width and padding(padding_left,
// padding_right)
// are " "inconsistent.");
const T *im_data = im.data<T>(); const T *im_data = im.data<T>();
T *col_data = col->data<T>(); T *col_data = col->data<T>();
for (int col_row_idx = 0; col_row_idx < col_height; ++col_row_idx) { for (int col_row_idx = 0; col_row_idx < col_height;
for (int col_col_idx = 0; col_col_idx < col_width; ++col_col_idx) { ++col_row_idx) {
for (int channel = 0; channel < im_channels; ++channel) { for (int col_col_idx = 0; col_col_idx < col_width;
for (int filter_row_idx = 0; filter_row_idx < filter_height; ++col_col_idx) {
++filter_row_idx) { for (int channel = 0; channel < im_channels;
int im_row_offset = ++channel) {
col_row_idx * stride[0] + filter_row_idx - padding[0]; for (int filter_row_idx = 0;
for (int filter_col_idx = 0; filter_col_idx < filter_width; filter_row_idx < filter_height;
++filter_col_idx) { ++filter_row_idx) {
int im_col_offset = int im_row_offset =
col_col_idx * stride[1] + filter_col_idx - padding[1]; col_row_idx * stride[0] +
filter_row_idx - padding[0];
for (int filter_col_idx = 0;
filter_col_idx < filter_width;
++filter_col_idx) {
int im_col_offset =
col_col_idx * stride[1] +
filter_col_idx - padding[1];
int col_offset = int col_offset =
((((col_row_idx)*col_width + col_col_idx) * im_channels + ((((col_row_idx)*col_width +
channel) * col_col_idx) *
filter_height + im_channels +
filter_row_idx) * channel) *
filter_width + filter_height +
filter_col_idx; filter_row_idx) *
filter_width +
filter_col_idx;
int im_offset = (channel * im_height + im_row_offset) * im_width + int im_offset = (channel * im_height +
im_col_offset; im_row_offset) *
col_data[col_offset] = im_width +
(im_row_offset < 0 || im_row_offset >= im_height || im_col_offset;
im_col_offset < 0 || im_col_offset >= im_width) col_data[col_offset] =
? static_cast<T>(0) (im_row_offset < 0 ||
: im_data[im_offset]; im_row_offset >= im_height ||
} im_col_offset < 0 ||
} im_col_offset >= im_width)
} ? static_cast<T>(0)
} : im_data[im_offset];
} }
} }
}; }
}
}
}
};
/* /*
* im = [input_channels, input_height, input_width] * im = [input_channels, input_height, input_width]
* col = * col =
* [output_height, output_width, input_channels, filter_height, filter_width] * [output_height, output_width, input_channels, filter_height,
*/ * filter_width]
template <class T> class Col2ImFunctor<ColFormat::kOCF, CPU, T> { */
public: template <class T> class Col2ImFunctor<ColFormat::kOCF, CPU, T> {
void operator()(const framework::Tensor &col, public:
const std::vector<int> &dilation, void operator()(const framework::Tensor &col,
const std::vector<int> &stride, const std::vector<int> &dilation,
const std::vector<int> &padding, framework::Tensor *im) { const std::vector<int> &stride,
// PADDLE_ENFORCE(im->dims().size() == 3); const std::vector<int> &padding,
// PADDLE_ENFORCE(col.dims().size() == 5); framework::Tensor *im) {
int im_channels = im->dims()[0]; // PADDLE_ENFORCE(im->dims().size() == 3);
int im_height = im->dims()[1]; // PADDLE_ENFORCE(col.dims().size() == 5);
int im_width = im->dims()[2]; int im_channels = im->dims()[0];
int filter_height = col.dims()[3]; int im_height = im->dims()[1];
int filter_width = col.dims()[4]; int im_width = im->dims()[2];
int col_height = col.dims()[0]; int filter_height = col.dims()[3];
int col_width = col.dims()[1]; int filter_width = col.dims()[4];
int col_height = col.dims()[0];
int col_width = col.dims()[1];
// PADDLE_ENFORCE_EQ( // PADDLE_ENFORCE_EQ(
// (im_height + padding[0] + padding[2] - filter_height) / stride[0] // (im_height + padding[0] + padding[2] -
// + 1, col_height, "Output_height and padding(padding_up, // filter_height) / stride[0]
// padding_down) are " "inconsistent."); // + 1, col_height, "Output_height and
// PADDLE_ENFORCE_EQ( // padding(padding_up,
// (im_width + padding[1] + padding[3] - filter_width) / stride[1] + // padding_down) are " "inconsistent.");
// 1, col_width, "col_width and padding(padding_left, padding_right) // PADDLE_ENFORCE_EQ(
// are " "inconsistent."); // (im_width + padding[1] + padding[3] -
// filter_width) / stride[1] +
// 1, col_width, "col_width and padding(padding_left,
// padding_right)
// are " "inconsistent.");
T *im_data = im->data<T>(); T *im_data = im->data<T>();
const T *col_data = col.data<T>(); const T *col_data = col.data<T>();
for (int col_row_idx = 0; col_row_idx < col_height; ++col_row_idx) { for (int col_row_idx = 0; col_row_idx < col_height;
for (int col_col_idx = 0; col_col_idx < col_width; ++col_col_idx) { ++col_row_idx) {
for (int channel = 0; channel < im_channels; ++channel) { for (int col_col_idx = 0; col_col_idx < col_width;
for (int filter_row_idx = 0; filter_row_idx < filter_height; ++col_col_idx) {
++filter_row_idx) { for (int channel = 0; channel < im_channels;
int im_row_offset = ++channel) {
col_row_idx * stride[0] + filter_row_idx - padding[0]; for (int filter_row_idx = 0;
for (int filter_col_idx = 0; filter_col_idx < filter_width; filter_row_idx < filter_height;
++filter_col_idx) { ++filter_row_idx) {
int im_col_offset = int im_row_offset =
col_col_idx * stride[1] + filter_col_idx - padding[1]; col_row_idx * stride[0] +
filter_row_idx - padding[0];
for (int filter_col_idx = 0;
filter_col_idx < filter_width;
++filter_col_idx) {
int im_col_offset =
col_col_idx * stride[1] +
filter_col_idx - padding[1];
int col_offset = int col_offset =
(((col_row_idx * col_width + col_col_idx) * im_channels + (((col_row_idx * col_width +
channel) * col_col_idx) *
filter_height + im_channels +
filter_row_idx) * channel) *
filter_width + filter_height +
filter_col_idx; filter_row_idx) *
filter_width +
filter_col_idx;
if (im_row_offset >= 0 && im_row_offset < im_height && if (im_row_offset >= 0 &&
im_col_offset >= 0 && im_col_offset < im_width) { im_row_offset < im_height &&
int im_offset = im_col_offset >= 0 &&
(channel * im_height + im_row_offset) * im_width + im_col_offset < im_width) {
im_col_offset; int im_offset =
im_data[im_offset] += col_data[col_offset]; (channel * im_height +
} im_row_offset) *
} im_width +
} im_col_offset;
} im_data[im_offset] +=
} col_data[col_offset];
} }
} }
}; }
}
}
}
}
};
template class Im2ColFunctor<ColFormat::kOCF, CPU, float>; template class Im2ColFunctor<ColFormat::kOCF, CPU, float>;
template class Im2ColFunctor<ColFormat::kOCF, CPU, double>; template class Im2ColFunctor<ColFormat::kOCF, CPU, double>;
template class Col2ImFunctor<ColFormat::kOCF, CPU, float>; template class Col2ImFunctor<ColFormat::kOCF, CPU, float>;
template class Col2ImFunctor<ColFormat::kOCF, CPU, double>; template class Col2ImFunctor<ColFormat::kOCF, CPU, double>;
} // namespace math } // namespace math
} // namespace operators } // namespace operators
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -17,83 +17,96 @@ limitations under the License. */ ...@@ -17,83 +17,96 @@ limitations under the License. */
#include "framework/tensor.h" #include "framework/tensor.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
namespace math { namespace math {
/* The storage format of the coldata in the Im2ColFunctor and Col2ImFunctor. */ /* The storage format of the coldata in the Im2ColFunctor and
enum class ColFormat { kCFO = 0, kOCF = 1 }; * Col2ImFunctor. */
enum class ColFormat { kCFO = 0, kOCF = 1 };
/* /*
* \brief Converts the image data of three dimensions(CHW) into a colData of * \brief Converts the image data of three dimensions(CHW) into a
* five dimensions in the Im2ColFunctor calculation, * colData of
* And in the Col2ImFunctor calculation, it is reversed. * five dimensions in the Im2ColFunctor calculation,
* * And in the Col2ImFunctor calculation, it is reversed.
* \param imData Image data. *
* \param imShape The shape of imData, * \param imData Image data.
* [input_channels, input_height, input_width]. * \param imShape The shape of imData,
* \param colData Column data. * [input_channels, input_height, input_width].
* \param colShape The shape of colData. * \param colData Column data.
* * \param colShape The shape of colData.
* \param dilations dilation data. *
* \param 2-dimension [dilation_height, dilation_width]. * \param dilations dilation data.
* * \param 2-dimension [dilation_height, dilation_width].
* \param strides stride data. *
* \param 2-dimension [stride_height, stride_width]. * \param strides stride data.
* * \param 2-dimension [stride_height, stride_width].
* \param paddings padding data. *
* \param 4-dimension [up_pad, left_pad, down_pad, right_pad]. * \param paddings padding data.
* * \param 4-dimension [up_pad, left_pad, down_pad, right_pad].
* If the template argument Format is kCFO, the shape of colData is: *
* [input_channels, filter_height, filter_width, output_height, output_width] * If the template argument Format is kCFO, the shape of colData is:
* So, it is easy to reshape into a convolution matrix for convolution * [input_channels, filter_height, filter_width, output_height,
* calculation based on matrix multiplication. * output_width]
* The shape of convolution matrix is [height, width], where the height is equal * So, it is easy to reshape into a convolution matrix for
* input_channels * filter_height * filter_width, and the width is equal * convolution
* output_height * output_width. * calculation based on matrix multiplication.
* * The shape of convolution matrix is [height, width], where the
* Reshape: * height is equal
* shape of colData shape of convolution matrix * input_channels * filter_height * filter_width, and the width is
* [input_channels, * equal
* filter_height, * output_height * output_width.
* filter_width, ======> [height, width] *
* output_height, * Reshape:
* output_width] * shape of colData shape of convolution matrix
* * [input_channels,
* If the template argument Format is kOCF, the shape of colData is: * filter_height,
* [output_height, output_width, input_channels, filter_height, filter_width] * filter_width, ======> [height, width]
* So, it is easy to reshape into a sequence matrix for rnn calculation. * output_height,
* The shape of sequence matrix is [seq_length, step_size], where the seq_length * output_width]
* is equal output_height * output_width, and the step_size is equal *
* input_channels * filter_height * filter_width. * If the template argument Format is kOCF, the shape of colData is:
* * [output_height, output_width, input_channels, filter_height,
* Reshape: * filter_width]
* shape of colData shape of sequence matrix * So, it is easy to reshape into a sequence matrix for rnn
* [output_height, * calculation.
* output_width, * The shape of sequence matrix is [seq_length, step_size], where
* input_channels, ======> [seqLength, stepSize] * the seq_length
* filter_height, * is equal output_height * output_width, and the step_size is equal
* filter_width] * input_channels * filter_height * filter_width.
* *
* \note The caller needs to ensure that imShape.inputChannels is equal to * Reshape:
* colShape.inputChannels. * shape of colData shape of sequence matrix
*/ * [output_height,
template <ColFormat Format, typename DeviceType, typename T> * output_width,
class Im2ColFunctor { * input_channels, ======> [seqLength, stepSize]
public: * filter_height,
void operator()(const framework::Tensor &im, const std::vector<int> &dilation, * filter_width]
const std::vector<int> &stride, *
const std::vector<int> &padding, framework::Tensor *col); * \note The caller needs to ensure that imShape.inputChannels is
}; * equal to
* colShape.inputChannels.
*/
template <ColFormat Format, typename DeviceType, typename T>
class Im2ColFunctor {
public:
void operator()(const framework::Tensor &im,
const std::vector<int> &dilation,
const std::vector<int> &stride,
const std::vector<int> &padding,
framework::Tensor *col);
};
template <ColFormat Format, typename DeviceType, typename T> template <ColFormat Format, typename DeviceType, typename T>
class Col2ImFunctor { class Col2ImFunctor {
public: public:
void operator()(const framework::Tensor &col, void operator()(const framework::Tensor &col,
const std::vector<int> &dilation, const std::vector<int> &dilation,
const std::vector<int> &stride, const std::vector<int> &stride,
const std::vector<int> &padding, framework::Tensor *im); const std::vector<int> &padding,
}; framework::Tensor *im);
};
} // namespace math } // namespace math
} // namespace operators } // namespace operators
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -15,106 +15,125 @@ limitations under the License. */ ...@@ -15,106 +15,125 @@ limitations under the License. */
#include "math_function.h" #include "math_function.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
namespace math { namespace math {
template <> template <>
void gemm<float>(const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, void gemm<float>(const CBLAS_TRANSPOSE transA,
const int M, const int N, const int K, const float alpha, const CBLAS_TRANSPOSE transB, const int M,
const float *A, const float *B, const float beta, float *C) { const int N, const int K, const float alpha,
int lda = (transA == CblasNoTrans) ? K : M; const float *A, const float *B, const float beta,
int ldb = (transB == CblasNoTrans) ? N : K; float *C) {
int ldc = N; int lda = (transA == CblasNoTrans) ? K : M;
cblas_sgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb, int ldb = (transB == CblasNoTrans) ? N : K;
beta, C, ldc); int ldc = N;
} cblas_sgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A,
lda, B, ldb, beta, C, ldc);
template <> }
void gemm<double>(const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB,
const int M, const int N, const int K, const double alpha, template <>
const double *A, const double *B, const double beta, void gemm<double>(const CBLAS_TRANSPOSE transA,
double *C) { const CBLAS_TRANSPOSE transB, const int M,
int lda = (transA == CblasNoTrans) ? K : M; const int N, const int K, const double alpha,
int ldb = (transB == CblasNoTrans) ? N : K; const double *A, const double *B,
int ldc = N; const double beta, double *C) {
cblas_dgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb, int lda = (transA == CblasNoTrans) ? K : M;
beta, C, ldc); int ldb = (transB == CblasNoTrans) ? N : K;
} int ldc = N;
cblas_dgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A,
template <> lda, B, ldb, beta, C, ldc);
void gemm<float>(const bool transA, const bool transB, const int M, const int N, }
const int K, const float alpha, const float *A, const int lda,
const float *B, const int ldb, const float beta, float *C, template <>
const int ldc) { void gemm<float>(const bool transA, const bool transB, const int M,
cblas_sgemm(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans, const int N, const int K, const float alpha,
transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A, const float *A, const int lda, const float *B,
lda, B, ldb, beta, C, ldc); const int ldb, const float beta, float *C,
} const int ldc) {
cblas_sgemm(CblasRowMajor,
template <> transA == false ? CblasNoTrans : CblasTrans,
void gemm<double>(const bool transA, const bool transB, const int M, transB == false ? CblasNoTrans : CblasTrans, M, N,
const int N, const int K, const double alpha, const double *A, K, alpha, A, lda, B, ldb, beta, C, ldc);
const int lda, const double *B, const int ldb, }
const double beta, double *C, const int ldc) {
cblas_dgemm(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans, template <>
transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A, void gemm<double>(const bool transA, const bool transB, const int M,
lda, B, ldb, beta, C, ldc); const int N, const int K, const double alpha,
} const double *A, const int lda, const double *B,
const int ldb, const double beta, double *C,
template <> const int ldc) {
void matmul<float>(const framework::Tensor &matrix_a, bool trans_a, cblas_dgemm(CblasRowMajor,
const framework::Tensor &matrix_b, bool trans_b, float alpha, transA == false ? CblasNoTrans : CblasTrans,
framework::Tensor *matrix_out, float beta) { transB == false ? CblasNoTrans : CblasTrans, M, N,
auto dim_a = matrix_a.dims(); K, alpha, A, lda, B, ldb, beta, C, ldc);
auto dim_b = matrix_b.dims(); }
auto dim_out = matrix_out->dims();
// PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == template <>
// 2, void matmul<float>(const framework::Tensor &matrix_a, bool trans_a,
// "The input and output of matmul be matrix"); const framework::Tensor &matrix_b, bool trans_b,
// float alpha, framework::Tensor *matrix_out,
// PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) && float beta) {
// platform::is_cpu_place(matrix_b.place()) && auto dim_a = matrix_a.dims();
// platform::is_cpu_place(matrix_out->place()), auto dim_b = matrix_b.dims();
// "Matrix must all be in CPUPlace"); auto dim_out = matrix_out->dims();
// PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
int M = dim_out[0]; // dim_out.size() ==
int N = dim_out[1]; // 2,
int K = (trans_a == false) ? dim_a[1] : dim_a[0]; // "The input and output of matmul be matrix");
//
CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; // PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; // platform::is_cpu_place(matrix_b.place())
// &&
gemm<float>(transA, transB, M, N, K, alpha, matrix_a.data<float>(), // platform::is_cpu_place(matrix_out->place()),
matrix_b.data<float>(), beta, matrix_out->data<float>()); // "Matrix must all be in CPUPlace");
}
int M = dim_out[0];
template <> int N = dim_out[1];
void matmul<double>(const framework::Tensor &matrix_a, bool trans_a, int K = (trans_a == false) ? dim_a[1] : dim_a[0];
const framework::Tensor &matrix_b, bool trans_b,
double alpha, framework::Tensor *matrix_out, double beta) { CBLAS_TRANSPOSE transA =
auto dim_a = matrix_a.dims(); (trans_a == false) ? CblasNoTrans : CblasTrans;
auto dim_b = matrix_b.dims(); CBLAS_TRANSPOSE transB =
auto dim_out = matrix_out->dims(); (trans_b == false) ? CblasNoTrans : CblasTrans;
// PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() ==
// 2, gemm<float>(transA, transB, M, N, K, alpha,
// "The input and output of matmul be matrix"); matrix_a.data<float>(), matrix_b.data<float>(),
// beta, matrix_out->data<float>());
// PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) && }
// platform::is_cpu_place(matrix_b.place()) &&
// platform::is_cpu_place(matrix_out->place()), template <>
// "Matrix must all be in CPUPlace"); void matmul<double>(const framework::Tensor &matrix_a, bool trans_a,
const framework::Tensor &matrix_b, bool trans_b,
int M = dim_out[0]; double alpha, framework::Tensor *matrix_out,
int N = dim_out[1]; double beta) {
int K = (trans_a == false) ? dim_a[1] : dim_a[0]; auto dim_a = matrix_a.dims();
auto dim_b = matrix_b.dims();
CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; auto dim_out = matrix_out->dims();
CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; // PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
// dim_out.size() ==
gemm<double>(transA, transB, M, N, K, alpha, matrix_a.data<double>(), // 2,
matrix_b.data<double>(), beta, matrix_out->data<double>()); // "The input and output of matmul be matrix");
} //
// PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
} // namespace math // platform::is_cpu_place(matrix_b.place())
} // namespace operators // &&
// platform::is_cpu_place(matrix_out->place()),
// "Matrix must all be in CPUPlace");
int M = dim_out[0];
int N = dim_out[1];
int K = (trans_a == false) ? dim_a[1] : dim_a[0];
CBLAS_TRANSPOSE transA =
(trans_a == false) ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE transB =
(trans_b == false) ? CblasNoTrans : CblasTrans;
gemm<double>(transA, transB, M, N, K, alpha,
matrix_a.data<double>(), matrix_b.data<double>(),
beta, matrix_out->data<double>());
}
} // namespace math
} // namespace operators
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -19,24 +19,26 @@ limitations under the License. */ ...@@ -19,24 +19,26 @@ limitations under the License. */
#include <cmath> #include <cmath>
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
namespace math { namespace math {
template <typename T> template <typename T>
void gemm(const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, void gemm(const CBLAS_TRANSPOSE transA,
const int M, const int N, const int K, const T alpha, const T *A, const CBLAS_TRANSPOSE transB, const int M, const int N,
const T *B, const T beta, T *C); const int K, const T alpha, const T *A, const T *B,
const T beta, T *C);
template <typename T>
void gemm(const bool transA, const bool transB, const int M, const int N, template <typename T>
const int K, const T alpha, const T *A, const int lda, const T *B, void gemm(const bool transA, const bool transB, const int M,
const int ldb, const T beta, T *C, const int ldc); const int N, const int K, const T alpha, const T *A,
const int lda, const T *B, const int ldb, const T beta,
// matrix multiply with continuous memory T *C, const int ldc);
template <typename T>
void matmul(const framework::Tensor &matrix_a, bool trans_a, // matrix multiply with continuous memory
const framework::Tensor &matrix_b, bool trans_b, T alpha, template <typename T>
framework::Tensor *matrix_out, T beta); void matmul(const framework::Tensor &matrix_a, bool trans_a,
} // namespace math const framework::Tensor &matrix_b, bool trans_b,
} // namespace operators T alpha, framework::Tensor *matrix_out, T beta);
} // namespace math
} // namespace operators
} // namespace paddle_mobile } // namespace paddle_mobile
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
namespace paddle_mobile {
namespace operators {
namespace math {
// Transform applys a unary or a binary functor on each element in a
// range defined by a pair of iterators.
//
// - The specialization for CPU calls std::transform.
// - The specialization for CUDA calls thrust::tranform.
//
// NOTE: We need to define InputIter and OutputIter defined as
// different types, because the InputIter points op's inputs
// and
// OutputIter pints to op's outputs.
//
// NOTE: We don't assume that InputIter to be const InputType* and
// OutputIter to be OutputType*, because we might use a
// iterator
// class, paddle::fluid::operators::RowwiseTRansformIterator.
struct Transform {
template <typename InputIter, typename OutputIter,
typename UnaryOperation>
void operator()(InputIter first, InputIter last,
OutputIter result, UnaryOperation op) {
std::transform(first, last, result, op);
}
template <typename InputIter1, typename InputIter2,
typename OutputIter, typename BinaryOperation>
void operator()(InputIter1 first1, InputIter1 last1,
InputIter2 first2, OutputIter result,
BinaryOperation op) {
std::transform(first1, last1, first2, result, op);
}
};
}
} // namespace platform
} // namespace paddle
...@@ -15,179 +15,212 @@ limitations under the License. */ ...@@ -15,179 +15,212 @@ limitations under the License. */
#include "vol2col.h" #include "vol2col.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
namespace math { namespace math {
using Tensor = paddle_mobile::framework::Tensor; using Tensor = paddle_mobile::framework::Tensor;
/* /*
* vol = [input_channels, input_depth, input_height, input_width] * vol = [input_channels, input_depth, input_height, input_width]
* col = * col =
* [input_channels, filter_depth, filter_height, filter_width, * [input_channels, filter_depth, filter_height, filter_width,
* output_depth, output_height, output_width] * output_depth, output_height, output_width]
*/ */
template <typename T> class Vol2ColFunctor<CPU, T> { template <typename T> class Vol2ColFunctor<CPU, T> {
public: public:
void operator()(const Tensor &vol, const std::vector<int> &dilations, void operator()(const Tensor &vol,
const std::vector<int> &strides, const std::vector<int> &dilations,
const std::vector<int> &paddings, Tensor *col) const { const std::vector<int> &strides,
// PADDLE_ENFORCE(vol.dims().size() == 4); const std::vector<int> &paddings,
// PADDLE_ENFORCE(col->dims().size() == 7); Tensor *col) const {
// PADDLE_ENFORCE(vol.dims().size() == 4);
int input_channels = vol.dims()[0]; // PADDLE_ENFORCE(col->dims().size() == 7);
int input_depth = vol.dims()[1];
int input_height = vol.dims()[2]; int input_channels = vol.dims()[0];
int input_width = vol.dims()[3]; int input_depth = vol.dims()[1];
int filter_depth = col->dims()[1]; int input_height = vol.dims()[2];
int filter_height = col->dims()[2]; int input_width = vol.dims()[3];
int filter_width = col->dims()[3]; int filter_depth = col->dims()[1];
int output_depth = col->dims()[4]; int filter_height = col->dims()[2];
int output_height = col->dims()[5]; int filter_width = col->dims()[3];
int output_width = col->dims()[6]; int output_depth = col->dims()[4];
int channels_col = int output_height = col->dims()[5];
input_channels * filter_depth * filter_height * filter_width; int output_width = col->dims()[6];
int channels_col = input_channels * filter_depth *
// PADDLE_ENFORCE_EQ((input_depth + 2 * paddings[0] - filter_height * filter_width;
// ((dilations[0] * (filter_depth - 1) + 1))) /
// strides[0] + // PADDLE_ENFORCE_EQ((input_depth + 2 * paddings[0] -
// 1, // ((dilations[0] * (filter_depth - 1)
// output_depth, // + 1))) /
// "input_depth and output_depth are " // strides[0] +
// "mismatching."); // 1,
// PADDLE_ENFORCE_EQ((input_height + 2 * paddings[1] - // output_depth,
// ((dilations[1] * (filter_height - 1) + 1))) / // "input_depth and output_depth are "
// strides[1] + // "mismatching.");
// 1, // PADDLE_ENFORCE_EQ((input_height + 2 * paddings[1] -
// output_height, // ((dilations[1] * (filter_height -
// "input_height and output_height are " // 1) + 1))) /
// "mismatching."); // strides[1] +
// PADDLE_ENFORCE_EQ((input_width + 2 * paddings[2] - // 1,
// ((dilations[2] * (filter_width - 1) + 1))) / // output_height,
// strides[2] + // "input_height and output_height are
// 1, // "
// output_width, // "mismatching.");
// "input_width and output_width are " // PADDLE_ENFORCE_EQ((input_width + 2 * paddings[2] -
// "mismatching."); // ((dilations[2] * (filter_width - 1)
// + 1))) /
const T *vol_data = vol.data<T>(); // strides[2] +
T *col_data = col->data<T>(); // 1,
// output_width,
for (int c = 0; c < channels_col; ++c) { // "input_width and output_width are "
int w_offset = c % filter_width; // "mismatching.");
int h_offset = (c / filter_width) % filter_height;
int d_offset = (c / filter_width / filter_height) % filter_depth; const T *vol_data = vol.data<T>();
int c_in = c / filter_width / filter_height / filter_depth; T *col_data = col->data<T>();
for (int d = 0; d < output_depth; ++d) {
int d_pad = d * strides[0] - paddings[0] + d_offset * dilations[0]; for (int c = 0; c < channels_col; ++c) {
for (int h = 0; h < output_height; ++h) { int w_offset = c % filter_width;
int h_pad = h * strides[1] - paddings[1] + h_offset * dilations[1]; int h_offset = (c / filter_width) % filter_height;
for (int w = 0; w < output_width; ++w) { int d_offset =
int w_pad = w * strides[2] - paddings[2] + w_offset * dilations[2]; (c / filter_width / filter_height) % filter_depth;
int c_in =
int col_idx = c / filter_width / filter_height / filter_depth;
((c * output_depth + d) * output_height + h) * output_width + w; for (int d = 0; d < output_depth; ++d) {
int vol_idx = int d_pad = d * strides[0] - paddings[0] +
((c_in * input_depth + d_pad) * input_height + h_pad) * d_offset * dilations[0];
input_width + for (int h = 0; h < output_height; ++h) {
w_pad; int h_pad = h * strides[1] - paddings[1] +
col_data[col_idx] = h_offset * dilations[1];
(h_pad < 0 || h_pad >= input_height || w_pad < 0 || for (int w = 0; w < output_width; ++w) {
w_pad >= input_width || d_pad < 0 || d_pad >= input_depth) int w_pad = w * strides[2] - paddings[2] +
? static_cast<T>(0) w_offset * dilations[2];
: vol_data[vol_idx];
} int col_idx = ((c * output_depth + d) *
} output_height +
} h) *
} output_width +
} w;
}; int vol_idx =
((c_in * input_depth + d_pad) *
/* input_height +
* vol = [input_channels,input_depth, input_height, input_width] h_pad) *
* col = input_width +
* [input_channels, filter_depth, filter_height, filter_width, w_pad;
* output_depth, output_height, output_width] col_data[col_idx] =
*/ (h_pad < 0 || h_pad >= input_height ||
template <typename T> class Col2VolFunctor<CPU, T> { w_pad < 0 || w_pad >= input_width ||
public: d_pad < 0 || d_pad >= input_depth)
void operator()(const Tensor &col, const std::vector<int> &dilations, ? static_cast<T>(0)
const std::vector<int> &strides, : vol_data[vol_idx];
const std::vector<int> &paddings, Tensor *vol) const { }
// PADDLE_ENFORCE(vol->dims().size() == 4); }
// PADDLE_ENFORCE(col.dims().size() == 7); }
}
int input_channels = vol->dims()[0]; }
int input_depth = vol->dims()[1]; };
int input_height = vol->dims()[2];
int input_width = vol->dims()[3]; /*
int filter_depth = col.dims()[1]; * vol = [input_channels,input_depth, input_height, input_width]
int filter_height = col.dims()[2]; * col =
int filter_width = col.dims()[3]; * [input_channels, filter_depth, filter_height, filter_width,
int output_depth = col.dims()[4]; * output_depth, output_height, output_width]
int output_height = col.dims()[5]; */
int output_width = col.dims()[6]; template <typename T> class Col2VolFunctor<CPU, T> {
int channels_col = public:
input_channels * filter_depth * filter_height * filter_width; void operator()(const Tensor &col,
const std::vector<int> &dilations,
// PADDLE_ENFORCE_EQ((input_depth + 2 * paddings[0] - const std::vector<int> &strides,
// ((dilations[0] * (filter_depth - 1) + 1))) / const std::vector<int> &paddings,
// strides[0] + Tensor *vol) const {
// 1, // PADDLE_ENFORCE(vol->dims().size() == 4);
// output_depth, // PADDLE_ENFORCE(col.dims().size() == 7);
// "input_depth and output_depth are "
// "mismatching."); int input_channels = vol->dims()[0];
// PADDLE_ENFORCE_EQ((input_height + 2 * paddings[1] - int input_depth = vol->dims()[1];
// ((dilations[1] * (filter_height - 1) + 1))) / int input_height = vol->dims()[2];
// strides[1] + int input_width = vol->dims()[3];
// 1, int filter_depth = col.dims()[1];
// output_height, int filter_height = col.dims()[2];
// "input_height and output_height are " int filter_width = col.dims()[3];
// "mismatching."); int output_depth = col.dims()[4];
// PADDLE_ENFORCE_EQ((input_width + 2 * paddings[2] - int output_height = col.dims()[5];
// ((dilations[2] * (filter_width - 1) + 1))) / int output_width = col.dims()[6];
// strides[2] + int channels_col = input_channels * filter_depth *
// 1, filter_height * filter_width;
// output_width,
// "input_width and output_width are " // PADDLE_ENFORCE_EQ((input_depth + 2 * paddings[0] -
// "mismatching."); // ((dilations[0] * (filter_depth - 1)
T *vol_data = vol->data<T>(); // + 1))) /
const T *col_data = col.data<T>(); // strides[0] +
// 1,
for (int c = 0; c < channels_col; ++c) { // output_depth,
int w_offset = c % filter_width; // "input_depth and output_depth are "
int h_offset = (c / filter_width) % filter_height; // "mismatching.");
int d_offset = (c / filter_width / filter_height) % filter_depth; // PADDLE_ENFORCE_EQ((input_height + 2 * paddings[1] -
int cIm = c / filter_width / filter_height / filter_depth; // ((dilations[1] * (filter_height -
for (int d = 0; d < output_depth; ++d) { // 1) + 1))) /
int d_pad = d * strides[0] - paddings[0] + d_offset * dilations[0]; // strides[1] +
for (int h = 0; h < output_height; ++h) { // 1,
int h_pad = h * strides[1] - paddings[1] + h_offset * dilations[1]; // output_height,
for (int w = 0; w < output_width; ++w) { // "input_height and output_height are
int w_pad = w * strides[2] - paddings[2] + w_offset * dilations[2]; // "
// "mismatching.");
if (h_pad >= 0 && h_pad < input_height && w_pad >= 0 && // PADDLE_ENFORCE_EQ((input_width + 2 * paddings[2] -
w_pad < input_width && d_pad >= 0 && d_pad < input_depth) { // ((dilations[2] * (filter_width - 1)
int vol_idx = // + 1))) /
((cIm * input_depth + d_pad) * input_height + h_pad) * // strides[2] +
input_width + // 1,
w_pad; // output_width,
// "input_width and output_width are "
int col_idx = // "mismatching.");
((c * output_depth + d) * output_height + h) * output_width + T *vol_data = vol->data<T>();
w; const T *col_data = col.data<T>();
vol_data[vol_idx] += col_data[col_idx];
} for (int c = 0; c < channels_col; ++c) {
} int w_offset = c % filter_width;
} int h_offset = (c / filter_width) % filter_height;
} int d_offset =
} (c / filter_width / filter_height) % filter_depth;
} int cIm =
}; c / filter_width / filter_height / filter_depth;
for (int d = 0; d < output_depth; ++d) {
template class Vol2ColFunctor<CPU, float>; int d_pad = d * strides[0] - paddings[0] +
template class Vol2ColFunctor<CPU, double>; d_offset * dilations[0];
template class Col2VolFunctor<CPU, float>; for (int h = 0; h < output_height; ++h) {
template class Col2VolFunctor<CPU, double>; int h_pad = h * strides[1] - paddings[1] +
h_offset * dilations[1];
} // namespace math for (int w = 0; w < output_width; ++w) {
} // namespace operators int w_pad = w * strides[2] - paddings[2] +
w_offset * dilations[2];
if (h_pad >= 0 && h_pad < input_height &&
w_pad >= 0 && w_pad < input_width &&
d_pad >= 0 && d_pad < input_depth) {
int vol_idx =
((cIm * input_depth + d_pad) *
input_height +
h_pad) *
input_width +
w_pad;
int col_idx = ((c * output_depth + d) *
output_height +
h) *
output_width +
w;
vol_data[vol_idx] += col_data[col_idx];
}
}
}
}
}
}
};
template class Vol2ColFunctor<CPU, float>;
template class Vol2ColFunctor<CPU, double>;
template class Col2VolFunctor<CPU, float>;
template class Col2VolFunctor<CPU, double>;
} // namespace math
} // namespace operators
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -18,66 +18,78 @@ limitations under the License. */ ...@@ -18,66 +18,78 @@ limitations under the License. */
#include "framework/tensor.h" #include "framework/tensor.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
namespace math { namespace math {
/* /*
* \brief Converts the feature data of four dimensions(CDHW) into a colData of * \brief Converts the feature data of four dimensions(CDHW) into a
* seven dimensions in the Vol2ColFunctor calculation, * colData of
* And in the Col2VolFunctor calculation, it is reversed. * seven dimensions in the Vol2ColFunctor calculation,
* * And in the Col2VolFunctor calculation, it is reversed.
* \param volData Vol data. *
* \param volShape The shape of volData, * \param volData Vol data.
* [input_channels, input_depth, input_height, input_width]. * \param volShape The shape of volData,
* \param colData Column data. * [input_channels, input_depth, input_height,
* \param colShape The shape of colData. * input_width].
* * \param colData Column data.
* \param dilations dilation data. * \param colShape The shape of colData.
* \param 3-dimension [dilation_depth, dilation_height, dilation_width]. *
* * \param dilations dilation data.
* \param strides stride data. * \param 3-dimension [dilation_depth, dilation_height,
* \param 3-dimension [stride_depth, stride_height, stride_width]. * dilation_width].
* *
* \param paddings padding data. * \param strides stride data.
* \param 3-dimension [d_pad, h_pad, w_pad]. * \param 3-dimension [stride_depth, stride_height, stride_width].
* *
* The shape of colData is: * \param paddings padding data.
* [input_channels, filter_depth, filter_height, filter_width, output_depth, * \param 3-dimension [d_pad, h_pad, w_pad].
* output_height, output_width] *
* So, it is easy to reshape into a convolution matrix for convolution * The shape of colData is:
* calculation based on matrix multiplication. * [input_channels, filter_depth, filter_height, filter_width,
* The shape of convolution matrix is [height, width], where the height is equal * output_depth,
* input_channels * filter_depth * filter_height * filter_width, and the width * output_height, output_width]
* is equal output_depth * output_height * output_width. * So, it is easy to reshape into a convolution matrix for
* * convolution
* Reshape: * calculation based on matrix multiplication.
* shape of colData shape of convolution matrix * The shape of convolution matrix is [height, width], where the
* [input_channels, * height is equal
* filter_depth, * input_channels * filter_depth * filter_height * filter_width, and
* filter_height, * the width
* filter_width, ======> [height, width] * is equal output_depth * output_height * output_width.
* output_depth, *
* output_height, * Reshape:
* output_width] * shape of colData shape of convolution matrix
* * [input_channels,
* \note The caller needs to ensure that volShape.inputChannels is equal to * filter_depth,
* colShape.inputChannels. * filter_height,
*/ * filter_width, ======> [height, width]
using Tensor = paddle_mobile::framework::Tensor; * output_depth,
* output_height,
* output_width]
*
* \note The caller needs to ensure that volShape.inputChannels is
* equal to
* colShape.inputChannels.
*/
using Tensor = paddle_mobile::framework::Tensor;
template <typename DeviceType, typename T> class Vol2ColFunctor { template <typename DeviceType, typename T> class Vol2ColFunctor {
public: public:
void operator()(const Tensor &vol, const std::vector<int> &dilations, void operator()(const Tensor &vol,
const std::vector<int> &strides, const std::vector<int> &dilations,
const std::vector<int> &paddings, Tensor *col) const; const std::vector<int> &strides,
}; const std::vector<int> &paddings,
Tensor *col) const;
};
template <typename DeviceType, typename T> class Col2VolFunctor { template <typename DeviceType, typename T> class Col2VolFunctor {
public: public:
void operator()(const Tensor &col, const std::vector<int> &dilations, void operator()(const Tensor &col,
const std::vector<int> &strides, const std::vector<int> &dilations,
const std::vector<int> &paddings, Tensor *vol) const; const std::vector<int> &strides,
}; const std::vector<int> &paddings,
Tensor *vol) const;
};
} // namespace math } // namespace math
} // namespace operators } // namespace operators
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -19,28 +19,27 @@ SOFTWARE. ...@@ -19,28 +19,27 @@ SOFTWARE.
#include "op_param.h" #include "op_param.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
Print &operator<<(Print &printer, const ConvParam &conv_param) {
Print &operator<<(Print &printer, const ConvParam &conv_param) { printer << "parameter of conv: "
printer << "parameter of conv: " << "\n";
<< "\n"; printer << " stride: "
printer << " stride: " << " (" << conv_param.Strides()[0]
<< " (" << conv_param.Strides()[0] << conv_param.Strides()[1] << ") " << conv_param.Strides()[1] << ") "
<< "\n"; << "\n";
printer << " paddings: " printer << " paddings: "
<< " (" << conv_param.Paddings()[0] << conv_param.Paddings()[1] << " (" << conv_param.Paddings()[0]
<< ") " << conv_param.Paddings()[1] << ") "
<< "\n"; << "\n";
printer << " dilations: " printer << " dilations: "
<< " (" << conv_param.Dilations()[0] << conv_param.Dilations()[1] << " (" << conv_param.Dilations()[0]
<< ") " << conv_param.Dilations()[1] << ") "
<< "\n"; << "\n";
printer << " groups: " << conv_param.Groups() << "\n"; printer << " groups: " << conv_param.Groups() << "\n";
printer << " input dims: " << conv_param.Input()->dims() << "\n"; printer << " input dims: " << conv_param.Input()->dims() << "\n";
printer << " filter dims: " << conv_param.Filter()->dims() << "\n"; printer << " filter dims: " << conv_param.Filter()->dims() << "\n";
printer << " output dims: " << conv_param.Output()->dims(); printer << " output dims: " << conv_param.Output()->dims();
return printer; return printer;
} }
} // namespace operators
} // namespace operators
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -26,86 +26,211 @@ SOFTWARE. ...@@ -26,86 +26,211 @@ SOFTWARE.
#include "framework/variable.h" #include "framework/variable.h"
namespace paddle_mobile { namespace paddle_mobile {
namespace operators { namespace operators {
using namespace framework; using namespace framework;
class OpParam : PaddleMobileObject { class OpParam : PaddleMobileObject {
public: public:
protected: protected:
template <typename T> template <typename T>
static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) { static T *InputFrom(const VariableNameMap &inputs,
return GetVarValue<T>("Input", inputs, scope); const Scope &scope) {
} return GetVarValue<T>("Input", inputs, scope);
}
template <typename T>
static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) { template <typename T>
return GetVarValue<T>("Output", outputs, scope); static T *InputXFrom(const VariableNameMap &inputs,
} const Scope &scope) {
return GetVarValue<T>("X", inputs, scope);
template <typename T> }
static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
return GetVarValue<T>("Filter", inputs, scope); template <typename T>
} static T *InputYFrom(const VariableNameMap &inputs,
const Scope &scope) {
template <typename T> return GetVarValue<T>("Y", inputs, scope);
static const T GetAttr(std::string key, const AttributeMap &map) { }
return ((Attribute)map.at(key)).Get<T>();
} template <typename T>
static std::vector<T *>
template <typename T> InputMultiFrom(const VariableNameMap &inputs, const Scope &scope) {
static T *GetVarValue(std::string key, const VariableNameMap &var_map, return GetMultiVarValue<T>("Input", inputs, scope);
const Scope &scope) { }
auto var_vec = var_map.at(key);
if (var_vec.size()) { template <typename T>
// std::cout << " get var value -- " << var_vec[0] << std::endl; static T *OutputFrom(const VariableNameMap &outputs,
auto var = scope.FindVar(var_vec[0]); const Scope &scope) {
return var->GetMutable<T>(); return GetVarValue<T>("Output", outputs, scope);
} else { }
return nullptr;
} template <typename T>
} static T *OutFrom(const VariableNameMap &outputs,
}; const Scope &scope) {
return GetVarValue<T>("Out", outputs, scope);
class ConvParam : OpParam { }
public:
ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs, template <typename T>
const framework::AttributeMap &attrs, static T *FilterFrom(const VariableNameMap &inputs,
const framework::Scope &scope) { const Scope &scope) {
filter_ = FilterFrom<framework::LoDTensor>(inputs, scope); return GetVarValue<T>("Filter", inputs, scope);
input_ = InputFrom<framework::Tensor>(inputs, scope); }
output_ = OutputFrom<framework::Tensor>(outputs, scope);
strides_ = GetAttr<std::vector<int>>("strides", attrs); template <typename T>
paddings_ = GetAttr<std::vector<int>>("paddings", attrs); static const T GetAttr(std::string key, const AttributeMap &map) {
dilations_ = GetAttr<std::vector<int>>("dilations", attrs); return ((Attribute)map.at(key)).Get<T>();
groups = GetAttr<int>("groups", attrs); }
}
template <typename T>
const Tensor *Input() const { return input_; } static T *GetVarValue(std::string key,
const VariableNameMap &var_map,
const LoDTensor *Filter() const { return filter_; } const Scope &scope) {
auto var_vec = var_map.at(key);
Tensor *Output() const { return output_; } if (var_vec.size()) {
// std::cout << " get var value -- " << var_vec[0] <<
const std::vector<int> &Strides() const { return strides_; } // std::endl;
auto var = scope.FindVar(var_vec[0]);
const std::vector<int> &Paddings() const { return paddings_; } return var->GetMutable<T>();
} else {
const std::vector<int> &Dilations() const { return dilations_; } return nullptr;
}
const int &Groups() const { return groups; } }
private: template <typename T>
Tensor *input_; static std::vector<T *>
Tensor *output_; GetMultiVarValue(std::string key, const VariableNameMap &var_map,
LoDTensor *filter_; const Scope &scope) {
std::vector<int> strides_; auto var_vecs = var_map.at(key);
std::vector<int> paddings_; assert(var_vecs.size() > 1);
std::vector<int> dilations_; std::vector<T *> var_res;
int groups; for (auto &var_vec : var_vecs) {
}; auto var = scope.FindVar(var_vec);
var_res.push_back(var->GetMutable<T>());
Print &operator<<(Print &printer, const ConvParam &conv_param); }
return var_res;
} // namespace operators }
};
class ConvParam : OpParam {
public:
ConvParam(const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
const framework::Scope &scope) {
filter_ = FilterFrom<framework::LoDTensor>(inputs, scope);
input_ = InputFrom<framework::Tensor>(inputs, scope);
output_ = OutputFrom<framework::Tensor>(outputs, scope);
strides_ = GetAttr<std::vector<int>>("strides", attrs);
paddings_ = GetAttr<std::vector<int>>("paddings", attrs);
dilations_ = GetAttr<std::vector<int>>("dilations", attrs);
groups = GetAttr<int>("groups", attrs);
}
const Tensor *Input() const { return input_; }
const LoDTensor *Filter() const { return filter_; }
Tensor *Output() const { return output_; }
const std::vector<int> &Strides() const { return strides_; }
const std::vector<int> &Paddings() const { return paddings_; }
const std::vector<int> &Dilations() const { return dilations_; }
const int &Groups() const { return groups; }
private:
Tensor *input_;
Tensor *output_;
LoDTensor *filter_;
std::vector<int> strides_;
std::vector<int> paddings_;
std::vector<int> dilations_;
int groups;
};
Print &operator<<(Print &printer, const ConvParam &conv_param);
class ElementwiseAddParam : OpParam {
public:
ElementwiseAddParam(const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
const framework::Scope &scope) {
input_x_ = InputXFrom<framework::Tensor>(inputs, scope);
input_y_ = InputYFrom<framework::Tensor>(inputs, scope);
out_ = OutFrom<framework::Tensor>(outputs, scope);
axis_ = GetAttr<int>("axis", attrs);
}
const Tensor *InputX() const { return input_x_; }
const Tensor *InputY() const { return input_y_; }
Tensor *Out() const { return out_; }
const int &Axis() const { return axis_; }
private:
Tensor *input_x_;
Tensor *input_y_;
Tensor *out_;
int axis_;
};
class MulParam : OpParam {
public:
MulParam(const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
const framework::Scope &scope) {
input_x_ = InputXFrom<framework::Tensor>(inputs, scope);
input_y_ = InputYFrom<framework::Tensor>(inputs, scope);
out_ = OutFrom<framework::Tensor>(outputs, scope);
x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
}
const Tensor *InputX() const { return input_x_; }
const Tensor *InputY() const { return input_y_; }
Tensor *Out() const { return out_; }
const int &XNumColDims() const { return x_num_col_dims_; }
const int &YNumColDims() const { return y_num_col_dims_; }
private:
Tensor *input_x_;
Tensor *input_y_;
Tensor *out_;
int x_num_col_dims_;
int y_num_col_dims_;
};
class ConcatParam : public OpParam {
public:
ConcatParam(const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
const framework::Scope &scope) {
inputs_ = InputMultiFrom<framework::Tensor>(inputs, scope);
out_ = OutFrom<framework::Tensor>(outputs, scope);
axis_ = GetAttr<int>("axis", attrs);
}
std::vector<Tensor *> Inputs() const { return inputs_; }
Tensor *Out() const { return out_; }
const int &Axis() const { return axis_; }
private:
std::vector<Tensor *> inputs_;
Tensor *out_;
int axis_;
};
} // namespace operators
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -19,106 +19,107 @@ limitations under the License. */ ...@@ -19,106 +19,107 @@ limitations under the License. */
#include <typeindex> #include <typeindex>
namespace paddle_mobile { namespace paddle_mobile {
namespace framework { namespace framework {
inline proto::VarType::Type ToDataType(std::type_index type) { inline proto::VarType::Type ToDataType(std::type_index type) {
/*if (typeid(platform::float16).hash_code() == type.hash_code()) { /*if (typeid(platform::float16).hash_code() == type.hash_code()) {
return proto::VarType::FP16; return proto::VarType::FP16;
} else */ } else */
if (typeid(const float).hash_code() == type.hash_code()) { if (typeid(const float).hash_code() == type.hash_code()) {
// CPPLint complains Using C-style cast. Use static_cast<float>() instead // CPPLint complains Using C-style cast. Use
// One fix to this is to replace float with const float because // static_cast<float>() instead
// typeid(T) == typeid(const T) // One fix to this is to replace float with const float because
// http://en.cppreference.com/w/cpp/language/typeid // typeid(T) == typeid(const T)
return proto::VarType::FP32; // http://en.cppreference.com/w/cpp/language/typeid
} else if (typeid(const double).hash_code() == type.hash_code()) { return proto::VarType::FP32;
return proto::VarType::FP64; } else if (typeid(const double).hash_code() == type.hash_code()) {
} else if (typeid(const int).hash_code() == type.hash_code()) { return proto::VarType::FP64;
return proto::VarType::INT32; } else if (typeid(const int).hash_code() == type.hash_code()) {
} else if (typeid(const int64_t).hash_code() == type.hash_code()) { return proto::VarType::INT32;
return proto::VarType::INT64; } else if (typeid(const int64_t).hash_code() == type.hash_code()) {
} else if (typeid(const bool).hash_code() == type.hash_code()) { return proto::VarType::INT64;
return proto::VarType::BOOL; } else if (typeid(const bool).hash_code() == type.hash_code()) {
} else { return proto::VarType::BOOL;
// PADDLE_THROW("Not supported"); } else {
// std::cout << "Not supported"; // PADDLE_THROW("Not supported");
} // std::cout << "Not supported";
} }
}
inline std::type_index ToTypeIndex(proto::VarType::Type type) { inline std::type_index ToTypeIndex(proto::VarType::Type type) {
switch (type) { switch (type) {
// case proto::VarType::FP16: // case proto::VarType::FP16:
// return typeid(platform::float16); // return typeid(platform::float16);
case proto::VarType::FP32: case proto::VarType::FP32:
return typeid(float); return typeid(float);
case proto::VarType::FP64: case proto::VarType::FP64:
return typeid(double); return typeid(double);
case proto::VarType::INT32: case proto::VarType::INT32:
return typeid(int); return typeid(int);
case proto::VarType::INT64: case proto::VarType::INT64:
return typeid(int64_t); return typeid(int64_t);
case proto::VarType::BOOL: case proto::VarType::BOOL:
return typeid(bool); return typeid(bool);
default: default:
// PADDLE_THROW("Not support type %d", type); // PADDLE_THROW("Not support type %d", type);
printf("Not support type %d", type); printf("Not support type %d", type);
} }
} }
template <typename Visitor> template <typename Visitor>
inline void VisitDataType(proto::VarType::Type type, Visitor visitor) { inline void VisitDataType(proto::VarType::Type type, Visitor visitor) {
switch (type) { switch (type) {
// case proto::VarType::FP16: // case proto::VarType::FP16:
// visitor.template operator()<platform::float16>(); // visitor.template operator()<platform::float16>();
// break; // break;
case proto::VarType::FP32: case proto::VarType::FP32:
visitor.template operator()<float>(); visitor.template operator()<float>();
break; break;
case proto::VarType::FP64: case proto::VarType::FP64:
visitor.template operator()<double>(); visitor.template operator()<double>();
break; break;
case proto::VarType::INT32: case proto::VarType::INT32:
visitor.template operator()<int>(); visitor.template operator()<int>();
break; break;
case proto::VarType::INT64: case proto::VarType::INT64:
visitor.template operator()<int64_t>(); visitor.template operator()<int64_t>();
break; break;
case proto::VarType::BOOL: case proto::VarType::BOOL:
visitor.template operator()<bool>(); visitor.template operator()<bool>();
break; break;
default: default:
// PADDLE_THROW("Not supported"); // PADDLE_THROW("Not supported");
printf("Not supported"); printf("Not supported");
} }
} }
inline std::string DataTypeToString(const proto::VarType::Type type) { inline std::string DataTypeToString(const proto::VarType::Type type) {
switch (type) { switch (type) {
case proto::VarType::FP16: case proto::VarType::FP16:
return "float16"; return "float16";
case proto::VarType::FP32: case proto::VarType::FP32:
return "float32"; return "float32";
case proto::VarType::FP64: case proto::VarType::FP64:
return "float64"; return "float64";
case proto::VarType::INT16: case proto::VarType::INT16:
return "int16"; return "int16";
case proto::VarType::INT32: case proto::VarType::INT32:
return "int32"; return "int32";
case proto::VarType::INT64: case proto::VarType::INT64:
return "int64"; return "int64";
case proto::VarType::BOOL: case proto::VarType::BOOL:
return "bool"; return "bool";
default: default:
// PADDLE_THROW("Not support type %d", type); // PADDLE_THROW("Not support type %d", type);
printf("Not support type %d", type); printf("Not support type %d", type);
} }
} }
inline std::ostream &operator<<(std::ostream &out, inline std::ostream &operator<<(std::ostream &out,
const proto::VarType::Type &type) { const proto::VarType::Type &type) {
out << DataTypeToString(type); out << DataTypeToString(type);
return out; return out;
} }
} // namespace framework } // namespace framework
} // namespace paddle_mobile } // namespace paddle_mobile
...@@ -17,9 +17,9 @@ limitations under the License. */ ...@@ -17,9 +17,9 @@ limitations under the License. */
// Disable the copy and assignment operator for a class. // Disable the copy and assignment operator for a class.
#ifndef DISABLE_COPY_AND_ASSIGN #ifndef DISABLE_COPY_AND_ASSIGN
#define DISABLE_COPY_AND_ASSIGN(classname) \ #define DISABLE_COPY_AND_ASSIGN(classname) \
private: \ private: \
classname(const classname &) = delete; \ classname(const classname &) = delete; \
classname(classname &&) = delete; \ classname(classname &&) = delete; \
classname &operator=(const classname &) = delete; \ classname &operator=(const classname &) = delete; \
classname &operator=(classname &&) = delete classname &operator=(classname &&) = delete
#endif #endif
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#pragma once
#include "operators/elementwise_add_op.h"
#include "test_include.h"
namespace paddle_mobile {
namespace framework {
template <typename Dtype> class TestElementwiseAddOp {
public:
TestElementwiseAddOp(const Program<Dtype> p) : program_(p) {
if (use_optimize_) {
to_predict_program_ = program_.optimizeProgram;
} else {
to_predict_program_ = program_.originProgram;
}
const std::vector<std::shared_ptr<BlockDesc>> blocks =
to_predict_program_->Blocks();
// std::cout << " **block size " << blocks.size() << std::endl;
for (int i = 0; i < blocks.size(); ++i) {
std::shared_ptr<BlockDesc> block_desc = blocks[i];
std::vector<std::shared_ptr<OpDesc>> ops =
block_desc->Ops();
// std::cout << " ops " << ops.size() << std::endl;
for (int j = 0; j < ops.size(); ++j) {
std::shared_ptr<OpDesc> op = ops[j];
if (op->Type() == "elementwise_add") {
if (op->GetAttrMap().at("axis").Get<int>() != -1) {
std::cout
<< "attr: axis = "
<< op->GetAttrMap().at("axis").Get<int>()
<< std::endl;
}
}
std::cout << "op:" << op->Type() << std::endl;
if (op->Type() == "elementwise_add" &&
op->Input("X")[0] == "batch_norm_2.tmp_2") {
std::cout << " elementwise_add attr size: "
<< op->GetAttrMap().size() << std::endl;
std::cout
<< " inputs size: " << op->GetInputs().size()
<< std::endl;
std::cout
<< " outputs size: " << op->GetOutputs().size()
<< std::endl;
std::cout << " Input X is : " << op->Input("X")[0]
<< std::endl;
std::cout << " Input Y is : " << op->Input("Y")[0]
<< std::endl;
std::cout
<< " Output Out is : " << op->Output("Out")[0]
<< std::endl;
Attribute axis_attr = op->GetAttrMap().at("axis");
int axis = axis_attr.Get<int>();
std::cout << " Attr axis is : " << axis
<< std::endl;
std::shared_ptr<
operators::ElementwiseAddOp<Dtype, float>>
add = std::make_shared<
operators::ElementwiseAddOp<Dtype, float>>(
op->Type(), op->GetInputs(),
op->GetOutputs(), op->GetAttrMap(),
program_.scope);
ops_of_block_[*block_desc.get()].push_back(add);
}
}
}
}
std::shared_ptr<Tensor> predict_add(Tensor &t1, Tensor &t2) {
// feed
auto scope = program_.scope;
Variable *x_feed_value = scope->Var("batch_norm_2.tmp_2");
auto tensor_x = x_feed_value->GetMutable<Tensor>();
tensor_x->ShareDataWith(t1);
Variable *y_feed_value = scope->Var("batch_norm_0.tmp_3");
auto tensor_y = y_feed_value->GetMutable<Tensor>();
tensor_y->ShareDataWith(t2);
Variable *con_output = scope->Var("elementwise_add_0.tmp_0");
Tensor *output_tensor = con_output->GetMutable<Tensor>();
output_tensor->mutable_data<float>({1, 3, 224, 224});
// std::cout << typeid(output_tensor).name() << std::endl;
// std::cout << "output_tensor dims: " << output_tensor->dims()
// <<
// std::endl;
std::shared_ptr<Tensor> out_tensor =
std::make_shared<LoDTensor>();
out_tensor.reset(output_tensor);
predict_add(t1, t2, 0);
return out_tensor;
}
private:
const framework::Program<Dtype> program_;
std::shared_ptr<ProgramDesc> to_predict_program_;
std::map<framework::BlockDesc,
std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
ops_of_block_;
bool use_optimize_ = false;
void predict_add(const Tensor &t1, const Tensor &t2, int block_id) {
std::shared_ptr<BlockDesc> to_predict_block =
to_predict_program_->Block(block_id);
for (int j = 0;
j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
auto op = ops_of_block_[*to_predict_block.get()][j];
std::cout << "op -> run()" << std::endl;
op->Run();
}
}
};
template class TestElementwiseAddOp<CPU>;
} // namespace framework
namespace test {
void testElementwiseAdd() {
paddle_mobile::Loader<paddle_mobile::CPU> loader;
auto program = loader.Load(
std::string("../../test/models/"
"image_classification_resnet.inference.model"));
/// input x (1,3,224,224)
paddle_mobile::framework::Tensor inputx;
SetupTensor<float>(&inputx, {1, 3, 224, 224}, static_cast<float>(0),
static_cast<float>(1));
float *inputx_ptr = inputx.data<float>();
/// input y (224,)
paddle_mobile::framework::Tensor inputy;
SetupTensor<float>(&inputy, {224}, static_cast<float>(0),
static_cast<float>(1));
float *inputy_ptr = inputy.data<float>();
paddle_mobile::framework::TestElementwiseAddOp<paddle_mobile::CPU>
testElementwiseAddOp(program);
auto output_add = testElementwiseAddOp.predict_add(inputx, inputy);
float *output_add_ptr = output_add->data<float>();
for (int j = 0; j < output_add->numel(); ++j) {
// std::cout << "value of output: " << output_add_ptr[j] <<
// std::endl;
}
/// output (1,3,224,224)
std::cout << "output memory size : " << output_add->memory_size()
<< std::endl;
std::cout << "output numel : " << output_add->numel() << std::endl;
std::cout << inputx_ptr[226] << " + " << inputy_ptr[2] << " = "
<< output_add_ptr[226] << std::endl;
}
} // namespace test
} // namespace paddle_mobile
...@@ -16,6 +16,7 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE ...@@ -16,6 +16,7 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. SOFTWARE.
==============================================================================*/ ==============================================================================*/
#include "elementwise_add_op_test.h"
#include "framework/executor.h" #include "framework/executor.h"
#include "io.h" #include "io.h"
#include "test_helper.h" #include "test_helper.h"
...@@ -36,45 +37,44 @@ SOFTWARE. ...@@ -36,45 +37,44 @@ SOFTWARE.
//} //}
int main() { int main() {
std::string data_set = "cifar10"; std::string data_set = "cifar10";
// //
// if (data_set == "cifar10") { // if (data_set == "cifar10") {
// SetupTensor<float>(&input, {FLAGS_batch_size, 3, 32, 32}, // SetupTensor<float>(&input, {FLAGS_batch_size, 3, 32, 32},
// static_cast<float>(0), static_cast<float>(1)); // static_cast<float>(0), static_cast<float>(1));
// } else if (data_set == "imagenet") { // } else if (data_set == "imagenet") {
// SetupTensor<float>(&input, {FLAGS_batch_size, 3, 224, 224}, // SetupTensor<float>(&input, {FLAGS_batch_size, 3, 224, 224},
// static_cast<float>(0), static_cast<float>(1)); // static_cast<float>(0), static_cast<float>(1));
// } else { // } else {
// LOG(FATAL) << "Only cifar10 or imagenet is supported."; // LOG(FATAL) << "Only cifar10 or imagenet is supported.";
// } // }
paddle_mobile::Loader<paddle_mobile::CPU> loader; paddle_mobile::Loader<paddle_mobile::CPU> loader;
//../../test/models/image_classification_resnet.inference.model auto program = loader.Load(std::string(
auto program = loader.Load(std::string( "../../test/models/image_classification_resnet.inference.model"));
"../../test/models/image_classification_resnet.inference.model"));
paddle_mobile::framework::Executor<paddle_mobile::CPU> executor(program); paddle_mobile::framework::Executor<paddle_mobile::CPU> executor(program);
paddle_mobile::framework::Tensor input; paddle_mobile::framework::Tensor input;
SetupTensor<float>(&input, {1, 3, 32, 32}, static_cast<float>(0), SetupTensor<float>(&input, {1, 3, 32, 32}, static_cast<float>(0),
static_cast<float>(1)); static_cast<float>(1));
float *input_ptr = input.data<float>(); float *input_ptr = input.data<float>();
for (int i = 0; i < input.numel(); ++i) { for (int i = 0; i < input.numel(); ++i) {
// std::cout << input_ptr[i] << std::endl; // std::cout << input_ptr[i] << std::endl;
} }
// std::cout << "input: " << input.memory_size() << std::endl; // std::cout << "input: " << input.memory_size() << std::endl;
// std::cout << "input: " << input.numel() << std::endl; // std::cout << "input: " << input.numel() << std::endl;
auto output = executor.predict(input); auto output = executor.predict(input);
// std::cout << "output: " << output->memory_size() << std::endl; // std::cout << "output: " << output->memory_size() << std::endl;
// std::cout << "output: " << output->numel() << std::endl; // std::cout << "output: " << output->numel() << std::endl;
// float* output_ptr = output->data<float>(); // float* output_ptr = output->data<float>();
// for (int j = 0; j < output->numel(); ++j) { // for (int j = 0; j < output->numel(); ++j) {
// std::cout << " value of output: " << output_ptr[j] << std::endl; // std::cout << " value of output: " << output_ptr[j] << std::endl;
// } //
paddle_mobile::test::testElementwiseAdd();
return 0; return 0;
} }
...@@ -15,20 +15,21 @@ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, ...@@ -15,20 +15,21 @@ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. SOFTWARE.
==============================================================================*/ ==============================================================================*/
#pragma once
#include <random>
#include "framework/ddim.h" #include "framework/ddim.h"
#include "framework/tensor.h" #include "framework/tensor.h"
#include <random>
template <typename T> template <typename T>
void SetupTensor(paddle_mobile::framework::Tensor* input, void SetupTensor(paddle_mobile::framework::Tensor *input,
paddle_mobile::framework::DDim dims, T lower, T upper) { paddle_mobile::framework::DDim dims, T lower, T upper) {
static unsigned int seed = 100; static unsigned int seed = 100;
std::mt19937 rng(seed++); std::mt19937 rng(seed++);
std::uniform_real_distribution<double> uniform_dist(0, 1); std::uniform_real_distribution<double> uniform_dist(0, 1);
T* input_ptr = input->mutable_data<T>(dims); T *input_ptr = input->mutable_data<T>(dims);
for (int i = 0; i < input->numel(); ++i) { for (int i = 0; i < input->numel(); ++i) {
input_ptr[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower); input_ptr[i] =
} static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
}
} }
#include "framework/block_desc.h"
#include "framework/framework.pb.h"
#include "framework/lod_tensor.h"
#include "framework/operator.h"
#include "framework/program.h"
#include "framework/program_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
#include "framework/variable.h"
#include "io.h"
#include "test_helper.h"
#include <map>
#include <string>
#include <vector>
\ No newline at end of file
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import io, re
import sys, os
import subprocess
import platform
COPYRIGHT = '''
Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
LANG_COMMENT_MARK = None
NEW_LINE_MARK = None
COPYRIGHT_HEADER = None
if platform.system() == "Windows":
NEW_LINE_MARK = "\r\n"
else:
NEW_LINE_MARK = '\n'
COPYRIGHT_HEADER = COPYRIGHT.split(NEW_LINE_MARK)[1]
p = re.search('(\d{4})', COPYRIGHT_HEADER).group(0)
process = subprocess.Popen(["date", "+%Y"], stdout=subprocess.PIPE)
date, err = process.communicate()
date = date.decode("utf-8").rstrip("\n")
COPYRIGHT_HEADER = COPYRIGHT_HEADER.replace(p, date)
def generate_copyright(template, lang='C'):
if lang == 'Python':
LANG_COMMENT_MARK = '#'
else:
LANG_COMMENT_MARK = "//"
lines = template.split(NEW_LINE_MARK)
BLANK = " "
ans = LANG_COMMENT_MARK + BLANK + COPYRIGHT_HEADER + NEW_LINE_MARK
for lino, line in enumerate(lines):
if lino == 0 or lino == 1 or lino == len(lines) - 1: continue
if len(line) == 0:
BLANK = ""
else:
BLANK = " "
ans += LANG_COMMENT_MARK + BLANK + line + NEW_LINE_MARK
return ans + "\n"
def lang_type(filename):
if filename.endswith(".py"):
return "Python"
elif filename.endswith(".h"):
return "C"
elif filename.endswith(".c"):
return "C"
elif filename.endswith(".hpp"):
return "C"
elif filename.endswith(".cc"):
return "C"
elif filename.endswith(".cpp"):
return "C"
elif filename.endswith(".cu"):
return "C"
elif filename.endswith(".cuh"):
return "C"
elif filename.endswith(".go"):
return "C"
elif filename.endswith(".proto"):
return "C"
else:
print("Unsupported filetype %s", filename)
exit(0)
PYTHON_ENCODE = re.compile("^[ \t\v]*#.*?coding[:=][ \t]*([-_.a-zA-Z0-9]+)")
def main(argv=None):
parser = argparse.ArgumentParser(
description='Checker for copyright declaration.')
parser.add_argument('filenames', nargs='*', help='Filenames to check')
args = parser.parse_args(argv)
retv = 0
for filename in args.filenames:
fd = io.open(filename, encoding="utf-8")
first_line = fd.readline()
second_line = fd.readline()
if "COPYRIGHT (C)" in first_line.upper(): continue
if first_line.startswith("#!") or PYTHON_ENCODE.match(
second_line) != None or PYTHON_ENCODE.match(first_line) != None:
continue
original_contents = io.open(filename, encoding="utf-8").read()
new_contents = generate_copyright(
COPYRIGHT, lang_type(filename)) + original_contents
print('Auto Insert Copyright Header {}'.format(filename))
retv = 1
with io.open(filename, 'w') as output_file:
output_file.write(new_contents)
return retv
if __name__ == '__main__':
exit(main())
#!/bin/bash
set -e
readonly VERSION="version 3."
version=$(clang-format -version)
if ! [[ $version == *"$VERSION"* ]]; then
echo "clang-format version check failed."
echo "a version contains '$VERSION' is needed, but get '$version'"
echo "you can install the right version, and make an soft-link to '\$PATH' env"
exit -1
fi
clang-format $@
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import io, re
import sys, os
import subprocess
import platform
COPYRIGHT = '''
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
'''
LANG_COMMENT_MARK = None
NEW_LINE_MARK = None
COPYRIGHT_HEADER = None
if platform.system() == "Windows":
NEW_LINE_MARK = "\r\n"
else:
NEW_LINE_MARK = '\n'
COPYRIGHT_HEADER = COPYRIGHT.split(NEW_LINE_MARK)[1]
p = re.search('(\d{4})', COPYRIGHT_HEADER).group(0)
process = subprocess.Popen(["date", "+%Y"], stdout=subprocess.PIPE)
date, err = process.communicate()
date = date.decode("utf-8").rstrip("\n")
COPYRIGHT_HEADER = COPYRIGHT_HEADER.replace(p, date)
def generate_copyright(template, lang='C'):
if lang == 'Python':
LANG_COMMENT_MARK = '#'
else:
LANG_COMMENT_MARK = "//"
lines = template.split(NEW_LINE_MARK)
BLANK = " "
ans = LANG_COMMENT_MARK + BLANK + COPYRIGHT_HEADER + NEW_LINE_MARK
for lino, line in enumerate(lines):
if lino == 0 or lino == 1 or lino == len(lines) - 1: continue
if len(line) == 0:
BLANK = ""
else:
BLANK = " "
ans += LANG_COMMENT_MARK + BLANK + line + NEW_LINE_MARK
return ans + "\n"
def lang_type(filename):
if filename.endswith(".py"):
return "Python"
elif filename.endswith(".h"):
return "C"
elif filename.endswith(".c"):
return "C"
elif filename.endswith(".hpp"):
return "C"
elif filename.endswith(".cc"):
return "C"
elif filename.endswith(".cpp"):
return "C"
elif filename.endswith(".cu"):
return "C"
elif filename.endswith(".cuh"):
return "C"
elif filename.endswith(".go"):
return "C"
elif filename.endswith(".proto"):
return "C"
else:
print("Unsupported filetype %s", filename)
exit(0)
PYTHON_ENCODE = re.compile("^[ \t\v]*#.*?coding[:=][ \t]*([-_.a-zA-Z0-9]+)")
def main(argv=None):
parser = argparse.ArgumentParser(
description='Checker for copyright declaration.')
parser.add_argument('filenames', nargs='*', help='Filenames to check')
args = parser.parse_args(argv)
retv = 0
for filename in args.filenames:
fd = io.open(filename, encoding="utf-8")
first_line = fd.readline()
second_line = fd.readline()
if "COPYRIGHT " in first_line.upper(): continue
if first_line.startswith("#!") or PYTHON_ENCODE.match(
second_line) != None or PYTHON_ENCODE.match(
first_line) != None:
continue
original_contents = io.open(filename, encoding="utf-8").read()
new_contents = generate_copyright(
COPYRIGHT, lang_type(filename)) + original_contents
print('Auto Insert Copyright Header {}'.format(filename))
retv = 1
with io.open(filename, 'w') as output_file:
output_file.write(new_contents)
return retv
if __name__ == '__main__':
exit(main())
#!/bin/bash
TOTAL_ERRORS=0
#iclang-tidy *.[ch]pp -checks=*
# The trick to remove deleted files: https://stackoverflow.com/a/2413151
for file in $(git diff --cached --name-status | awk '$1 != "D" {print $2}'|grep -v ".pb." | grep -v "third-party/"); do
cpplint $file
TOTAL_ERRORS=$(expr $TOTAL_ERRORS + $?);
done
exit $TOTAL_ERRORS
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册