未验证 提交 e5e01469 编写于 作者: X xiebaiyuan 提交者: GitHub

[OPENCL] develop pixel_shuffle opencl kernel & unit test ,test=develop (#3733)

* [OPENCL] develop pixel_shuffle opencl kernel & unit test ,test=develop

* [OPENCL] develop pixel_shuffle opencl kernel & unit test ,test=develop

* [OPENCL] develop pixel_shuffle opencl kernel & unit test ,test=develop

* [OPENCL] develop pixel_shuffle opencl kernel & unit test ,test=develop

* [OPENCL] develop pixel_shuffle opencl kernel & unit test ,test=develop

* [OPENCL] develop pixel_shuffle opencl kernel & unit test ,test=develop

* [OPENCL] develop pixel_shuffle opencl kernel & unit test ,test=develop

* [OPENCL] develop pixel_shuffle opencl kernel & unit test ,test=develop
上级 aa10b11e
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cl_common.h>
__kernel void pixel_shuffle(__read_only image2d_t input_image,
__write_only image2d_t output_image,
__private const int in_N,
__private const int in_C,
__private const int in_H,
__private const int in_W,
__private const int out_N,
__private const int out_C,
__private const int out_H,
__private const int out_W,
__private const int upscale_factor) {
const int out_c4 = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
int out_h = out_nh % out_H;
int out_n = out_nh / out_H;
const sampler_t sampler =
CLK_NORMALIZED_COORDS_TRUE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
int in_h = out_h / upscale_factor;
int in_w = out_w / upscale_factor;
int in_nh = out_n * in_H + in_h;
CL_DTYPE4 res;
int out_c;
int in_c;
CL_DTYPE4 in;
int2 in_pos;
out_c = out_c4 * 4 + 0;
in_c = out_c * upscale_factor * upscale_factor +
(out_h % upscale_factor) * upscale_factor + (out_w % upscale_factor);
in_pos.x = (in_c / 4) * in_W + in_w;
in_pos.y = in_nh;
in = READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler, in_pos);
if (in_c % 4 == 0) {
res.x = in.x;
} else if (in_c % 4 == 1) {
res.x = in.y;
} else if (in_c % 4 == 2) {
res.x = in.z;
} else if (in_c % 4 == 3) {
res.x = in.w;
}
out_c = out_c4 * 4 + 1;
in_c = out_c * upscale_factor * upscale_factor +
(out_h % upscale_factor) * upscale_factor + (out_w % upscale_factor);
in_pos.x = (in_c / 4) * in_W + in_w;
in_pos.y = in_nh;
in = READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler, in_pos);
if (in_c % 4 == 0) {
res.y = in.x;
} else if (in_c % 4 == 1) {
res.y = in.y;
} else if (in_c % 4 == 2) {
res.y = in.z;
} else if (in_c % 4 == 3) {
res.y = in.w;
}
out_c = out_c4 * 4 + 2;
in_c = out_c * upscale_factor * upscale_factor +
(out_h % upscale_factor) * upscale_factor + (out_w % upscale_factor);
in_pos.x = (in_c / 4) * in_W + in_w;
in_pos.y = in_nh;
in = READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler, in_pos);
if (in_c % 4 == 0) {
res.z = in.x;
} else if (in_c % 4 == 1) {
res.z = in.y;
} else if (in_c % 4 == 2) {
res.z = in.z;
} else if (in_c % 4 == 3) {
res.z = in.w;
}
out_c = out_c4 * 4 + 3;
in_c = out_c * upscale_factor * upscale_factor +
(out_h % upscale_factor) * upscale_factor + (out_w % upscale_factor);
in_pos.x = (in_c / 4) * in_W + in_w;
in_pos.y = in_nh;
in = READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler, in_pos);
if (in_c % 4 == 0) {
res.w = in.x;
} else if (in_c % 4 == 1) {
res.w = in.y;
} else if (in_c % 4 == 2) {
res.w = in.z;
} else if (in_c % 4 == 3) {
res.w = in.w;
}
int2 out_pos;
out_pos.x = out_c4 * out_W + out_w;
out_pos.y = out_nh;
WRITE_IMG_TYPE(CL_DTYPE_CHAR, output_image, out_pos, res);
}
......@@ -34,6 +34,7 @@ add_kernel(instance_norm_opencl OPENCL basic SRCS instance_norm_image_compute.cc
add_kernel(dropout_opencl OPENCL basic SRCS dropout_image_compute.cc DEPS ${cl_kernel_deps})
add_kernel(pad2d_opencl OPENCL basic SRCS pad2d_image_compute.cc DEPS ${cl_kernel_deps})
add_kernel(box_coder_opencl OPENCL basic SRCS box_coder_image_compute.cc DEPS ${cl_kernel_deps})
add_kernel(pixel_shuffle_opencl OPENCL basic SRCS pixel_shuffle_image_compute.cc DEPS ${cl_kernel_deps})
# extra
# wait to add ...
......@@ -73,6 +74,9 @@ lite_cc_test(test_concat_image_opencl SRCS concat_image_compute_test.cc
lite_cc_test(test_layout_image_opencl SRCS layout_image_compute_test.cc
DEPS layout_opencl op_registry program context)
lite_cc_test(test_pixel_shuffle_image_opencl SRCS pixel_shuffle_image_compute_test.cc
DEPS pixel_shuffle_opencl op_registry program context)
lite_cc_test(test_elementwise_add_image_opencl SRCS elementwise_add_image_compute_test.cc
DEPS elementwise_add_opencl fusion_elementwise_add_activation_opencl op_registry program context)
lite_cc_test(test_elementwise_sub_image_opencl SRCS elementwise_sub_image_compute_test.cc
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <vector>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"
#include "lite/utils/string.h"
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/profiler.h"
#endif
#include "lite/backends/opencl/cl_utility.h"
namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
class PixelShuffleComputeImage2D
: public KernelLite<TARGET(kOpenCL),
PRECISION(kFP16),
DATALAYOUT(kImageDefault)> {
public:
using param_t = operators::PixelShuffleParam;
std::string doc() const override {
return "PixelShuffle using cl::Image2D, kFP16";
}
void PrepareForRun() override {
VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
auto& context = ctx_->As<OpenCLContext>();
context.cl_context()->AddKernel(kernel_func_name_,
"image/pixel_shuffle_kernel.cl",
build_options_,
time_stamp_);
STL::stringstream kernel_key;
kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
kernel_ = context.cl_context()->GetKernel(kernel_key.str());
}
void ReInitWhenNeeded() override {
VLOG(1) << "ReInitWhenNeeded: " << kernel_func_name_;
pixel_shuffle_param_ = param_.get_mutable<param_t>();
auto x_dims = pixel_shuffle_param_->x->dims();
auto out_dims = pixel_shuffle_param_->output->dims();
VLOG(1) << "x_dims: " << x_dims;
VLOG(1) << "out_dims: " << out_dims;
VLOG(1) << "upscale_factor: " << pixel_shuffle_param_->upscale_factor;
if ((!first_epoch_for_reinit_ && x_dims != last_x_dims_) ||
first_epoch_for_reinit_) {
last_x_dims_ = x_dims;
first_epoch_for_reinit_ = false;
// compute image shape
paddle::lite::CLImageConverterDefault default_convertor;
out_img_shape_ = default_convertor.InitImageDimInfoWith(
pixel_shuffle_param_->output->dims());
VLOG(1) << "out_img_shape_: " << out_img_shape_[0] << " "
<< out_img_shape_[1];
// compute global work size
auto image_width = out_dims[3] * ((out_dims[1] + 3) / 4);
size_t work_size_0 = image_width / out_dims[3];
size_t work_size_1 = out_dims[3];
size_t work_size_2 = out_dims[0] * out_dims[2];
global_work_size_ = cl::NDRange{work_size_0, work_size_1, work_size_2};
VLOG(1) << "global_work_size_: " << global_work_size_[0] << " "
<< global_work_size_[1] << " " << global_work_size_[2];
}
}
void Run() override {
auto* x_img = pixel_shuffle_param_->x->data<half_t, cl::Image2D>();
auto* out_img =
pixel_shuffle_param_->output->mutable_data<half_t, cl::Image2D>(
out_img_shape_[0], out_img_shape_[1]);
auto x_dims = pixel_shuffle_param_->x->dims();
int in_n = x_dims[0];
int in_c = x_dims[1];
int in_h = x_dims[2];
int in_w = x_dims[3];
auto out_dims = pixel_shuffle_param_->output->dims();
int out_n = out_dims[0];
int out_c = out_dims[1];
int out_h = out_dims[2];
int out_w = out_dims[3];
const int upscale_factor = pixel_shuffle_param_->upscale_factor;
auto& context = ctx_->As<OpenCLContext>();
CHECK(context.cl_context() != nullptr);
auto kernel = kernel_;
cl_int status;
status = kernel.setArg(0, *x_img);
CL_CHECK_FATAL(status);
status = kernel.setArg(1, *out_img);
CL_CHECK_FATAL(status);
status = kernel.setArg(2, in_n);
CL_CHECK_FATAL(status);
status = kernel.setArg(3, in_c);
CL_CHECK_FATAL(status);
status = kernel.setArg(4, in_h);
CL_CHECK_FATAL(status);
status = kernel.setArg(5, in_w);
CL_CHECK_FATAL(status);
status = kernel.setArg(6, out_n);
CL_CHECK_FATAL(status);
status = kernel.setArg(7, out_c);
CL_CHECK_FATAL(status);
status = kernel.setArg(8, out_h);
CL_CHECK_FATAL(status);
status = kernel.setArg(9, out_w);
CL_CHECK_FATAL(status);
status = kernel.setArg(10, upscale_factor);
CL_CHECK_FATAL(status);
status = EnqueueNDRangeKernel(context,
kernel,
cl::NullRange,
global_work_size_,
cl::NullRange,
nullptr,
event_);
CL_CHECK_FATAL(status);
}
#ifdef LITE_WITH_PROFILE
void SetProfileRuntimeKernelInfo(paddle::lite::profile::OpCharacter* ch) {
ch->kernel_func_name = kernel_func_name_;
ch->cl_event =
event_; // `event_` defined in `kernel.h`, valid after kernel::Run
}
#endif
private:
std::string kernel_func_name_{"pixel_shuffle"};
std::string build_options_{"-DCL_DTYPE_half"};
std::string time_stamp_{GetTimeStamp()};
param_t* pixel_shuffle_param_{nullptr};
cl::Kernel kernel_;
bool first_epoch_for_reinit_{true};
DDim last_x_dims_;
DDim out_img_shape_ = DDim(std::vector<DDim::value_type>(
{static_cast<DDim::value_type>(1), static_cast<DDim::value_type>(1)}));
cl::NDRange global_work_size_ = cl::NDRange{
static_cast<size_t>(1), static_cast<size_t>(1), static_cast<size_t>(1)};
};
} // namespace opencl
} // namespace kernels
} // namespace lite
} // namespace paddle
REGISTER_LITE_KERNEL(pixel_shuffle,
kOpenCL,
kFP16,
kImageDefault,
paddle::lite::kernels::opencl::PixelShuffleComputeImage2D,
image2d)
.BindInput("X",
{LiteType::GetTensorTy(TARGET(kOpenCL),
PRECISION(kFP16),
DATALAYOUT(kImageDefault))})
.BindOutput("Out",
{LiteType::GetTensorTy(TARGET(kOpenCL),
PRECISION(kFP16),
DATALAYOUT(kImageDefault))})
.Finalize();
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <random>
#include <gtest/gtest.h>
#include "lite/backends/opencl/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/kernels/opencl/test_helper.h"
#define FP16_MAX_DIFF (5e-1)
namespace paddle {
namespace lite {
TEST(pixel_shuffle_image2d, compute) {
LOG(INFO) << "create kernel ...";
auto kernels = KernelRegistry::Global().Create("pixel_shuffle",
TARGET(kOpenCL),
PRECISION(kFP16),
DATALAYOUT(kImageDefault));
ASSERT_FALSE(kernels.empty());
const int INPUT_N = 1;
const int INPUT_C = 4;
const int INPUT_H = 2;
const int INPUT_W = 2;
const int UPSCALE_FACTOR = 2;
auto kernel = std::move(kernels.front());
LOG(INFO) << "prepare to test kernel ====> " << kernel->doc();
lite::Tensor x, out;
operators::PixelShuffleParam param;
param.x = &x;
param.output = &out;
param.upscale_factor = UPSCALE_FACTOR;
std::unique_ptr<KernelContext> context(new KernelContext);
context->As<OpenCLContext>().InitOnce();
kernel->SetParam(param);
std::unique_ptr<KernelContext> pixel_shuffle_context(new KernelContext);
context->As<OpenCLContext>().CopySharedTo(
&(pixel_shuffle_context->As<OpenCLContext>()));
kernel->SetContext(std::move(pixel_shuffle_context));
const DDim in_dim =
DDim(std::vector<DDim::value_type>{INPUT_N, INPUT_C, INPUT_H, INPUT_W});
const DDim out_dim = DDim(
std::vector<DDim::value_type>{INPUT_N,
INPUT_C / UPSCALE_FACTOR / UPSCALE_FACTOR,
INPUT_H * UPSCALE_FACTOR,
INPUT_W * UPSCALE_FACTOR});
LOG(INFO) << "in_dim: " << in_dim;
LOG(INFO) << "UPSCALE_FACTOR: " << UPSCALE_FACTOR;
LOG(INFO) << "out_dim: " << out_dim;
x.Resize(in_dim);
out.Resize(out_dim);
std::default_random_engine engine;
std::uniform_real_distribution<float> dist(-2, 2);
std::vector<float> input_v(INPUT_N * INPUT_C * INPUT_H * INPUT_W);
int index = 0;
for (auto& i : input_v) {
i = index++;
}
VLOG(1) << "input_v ..... ";
for (size_t i = 0; i < input_v.size(); i++) {
VLOG(10) << input_v[i];
}
LOG(INFO) << "prepare input";
CLImageConverterDefault* default_converter = new CLImageConverterDefault();
DDim x_image_shape = default_converter->InitImageDimInfoWith(in_dim);
LOG(INFO) << "x_image_shape = " << x_image_shape[0] << " "
<< x_image_shape[1];
std::vector<half_t> x_image_data(x_image_shape.production() * 4); // 4 : RGBA
default_converter->NCHWToImage(input_v.data(), x_image_data.data(), in_dim);
auto* x_image = x.mutable_data<half_t, cl::Image2D>(
x_image_shape[0], x_image_shape[1], x_image_data.data());
VLOG(1) << "x_image_data ..... ";
for (size_t i = 0; i < x_image_data.size(); i++) {
VLOG(10) << Half2Float(x_image_data[i]);
}
DDim out_image_shape = default_converter->InitImageDimInfoWith(out_dim);
LOG(INFO) << "out_image_shape = " << out_image_shape[0] << " "
<< out_image_shape[1];
auto* out_image = out.mutable_data<half_t, cl::Image2D>(out_image_shape[0],
out_image_shape[1]);
kernel->Launch();
CLRuntime::Global()->command_queue().finish();
std::vector<float> out_data_v{
0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15};
const size_t cl_image2d_row_pitch{0};
const size_t cl_image2d_slice_pitch{0};
half_t* out_image_data = new half_t[out_image_shape.production() * 4];
TargetWrapperCL::ImgcpySync(out_image_data,
out_image,
out_image_shape[0],
out_image_shape[1],
cl_image2d_row_pitch,
cl_image2d_slice_pitch,
IoDirection::DtoH);
VLOG(1) << "out_image_data ..... ";
for (size_t i = 0; i < out_image_shape.production() * 4; i++) {
VLOG(10) << Half2Float(out_image_data[i]);
}
float* out_data = new float[out_image_shape.production() * 4];
default_converter->ImageToNCHW(
out_image_data, out_data, out_image_shape, out_dim);
VLOG(1) << "out_data ..... ";
for (int i = 0; i < out_dim.production(); i++) {
VLOG(10) << out_data[i];
}
for (int i = 0; i < out_dim.production(); i++) {
auto abs_diff = abs(out_data[i] - out_data_v[i]);
auto relative_diff = COMPUTE_RELATIVE_DIFF(out_data[i], out_data_v[i]);
EXPECT_EQ((relative_diff <= FP16_MAX_DIFF) || (abs_diff <= FP16_MAX_DIFF),
true);
if ((relative_diff > FP16_MAX_DIFF) && (abs_diff > FP16_MAX_DIFF)) {
LOG(ERROR) << "error idx:" << i << " out_data[" << i
<< "]:" << out_data[i] << " "
"out_ref["
<< i << "]:" << out_data_v[i] << " abs_diff:" << abs_diff
<< " relative_diff:" << relative_diff
<< " FP16_MAX_DIFF:" << FP16_MAX_DIFF;
}
}
}
} // namespace lite
} // namespace paddle
USE_LITE_KERNEL(pixel_shuffle, kOpenCL, kFP16, kImageDefault, image2d);
......@@ -1515,6 +1515,11 @@ struct XPUFcParam : ParamBase {
std::string activation_type{""};
};
struct PixelShuffleParam : ParamBase {
lite::Tensor* x{nullptr};
lite::Tensor* output{nullptr};
int upscale_factor{1};
};
} // namespace operators
} // namespace lite
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册