Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
e3b69d86
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e3b69d86
编写于
2月 17, 2020
作者:
G
GaoWei8
提交者:
GitHub
2月 17, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add reduce sum op test (#2899)
* Add reduce sum op test test=develop
上级
dab697c5
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
351 addition
and
0 deletion
+351
-0
lite/tests/kernels/CMakeLists.txt
lite/tests/kernels/CMakeLists.txt
+1
-0
lite/tests/kernels/reduce_sum_compute_test.cc
lite/tests/kernels/reduce_sum_compute_test.cc
+350
-0
未找到文件。
lite/tests/kernels/CMakeLists.txt
浏览文件 @
e3b69d86
...
...
@@ -44,6 +44,7 @@ if(LITE_BUILD_EXTRA)
lite_cc_test
(
test_kernel_assign_value_compute SRCS assign_value_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
bm_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_box_clip_compute SRCS box_clip_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
bm_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_reduce_mean_compute SRCS reduce_mean_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
bm_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_reduce_sum_compute SRCS reduce_sum_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
bm_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_reduce_prod_compute SRCS reduce_prod_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
bm_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_stack_compute SRCS stack_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
bm_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_range_compute SRCS range_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
bm_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
...
...
lite/tests/kernels/reduce_sum_compute_test.cc
0 → 100644
浏览文件 @
e3b69d86
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
namespace
paddle
{
namespace
lite
{
void
reduce_sum_n
(
const
float
*
src
,
float
*
dst
,
int
num_in
,
int
channel_in
,
int
height_in
,
int
width_in
)
{
int
hw_size
=
height_in
*
width_in
;
int
chw_size
=
channel_in
*
hw_size
;
int
data_index
,
src_index
;
for
(
int
c
=
0
;
c
<
channel_in
;
++
c
)
{
for
(
int
h
=
0
;
h
<
height_in
;
++
h
)
{
for
(
int
w
=
0
;
w
<
width_in
;
++
w
)
{
data_index
=
c
*
hw_size
+
h
*
width_in
+
w
;
dst
[
data_index
]
=
0.0
;
for
(
int
n
=
0
;
n
<
num_in
;
++
n
)
{
src_index
=
n
*
chw_size
+
data_index
;
dst
[
data_index
]
+=
static_cast
<
float
>
(
src
[
src_index
]);
}
}
}
}
}
void
reduce_sum_c
(
const
float
*
src
,
float
*
dst
,
int
num_in
,
int
channel_in
,
int
height_in
,
int
width_in
)
{
int
hw_size
=
height_in
*
width_in
;
int
chw_size
=
hw_size
*
channel_in
;
int
data_index
,
src_index0
,
src_index
;
for
(
int
n
=
0
;
n
<
num_in
;
++
n
)
{
for
(
int
h
=
0
;
h
<
height_in
;
++
h
)
{
for
(
int
w
=
0
;
w
<
width_in
;
++
w
)
{
data_index
=
n
*
hw_size
+
h
*
width_in
+
w
;
src_index0
=
n
*
chw_size
+
h
*
width_in
+
w
;
dst
[
data_index
]
=
0.0
;
for
(
int
c
=
0
;
c
<
channel_in
;
++
c
)
{
src_index
=
src_index0
+
c
*
hw_size
;
dst
[
data_index
]
+=
static_cast
<
float
>
(
src
[
src_index
]);
}
}
}
}
}
void
reduce_sum_h
(
const
float
*
src
,
float
*
dst
,
int
num_in
,
int
channel_in
,
int
height_in
,
int
width_in
)
{
int
cw_size
=
channel_in
*
width_in
;
int
chw_size
=
cw_size
*
height_in
;
int
hw_size
=
height_in
*
width_in
;
int
data_index
,
src_index
,
src_index0
;
for
(
int
n
=
0
;
n
<
num_in
;
++
n
)
{
for
(
int
c
=
0
;
c
<
channel_in
;
++
c
)
{
for
(
int
w
=
0
;
w
<
width_in
;
++
w
)
{
data_index
=
n
*
cw_size
+
c
*
width_in
+
w
;
src_index0
=
n
*
chw_size
+
c
*
hw_size
+
w
;
dst
[
data_index
]
=
0.0
;
for
(
int
h
=
0
;
h
<
height_in
;
++
h
)
{
src_index
=
src_index0
+
h
*
width_in
;
dst
[
data_index
]
+=
static_cast
<
float
>
(
src
[
src_index
]);
}
}
}
}
}
void
reduce_sum_w
(
const
float
*
src
,
float
*
dst
,
int
num_in
,
int
channel_in
,
int
height_in
,
int
width_in
)
{
int
ch_size
=
channel_in
*
height_in
;
int
hw_size
=
height_in
*
width_in
;
int
chw_size
=
ch_size
*
width_in
;
int
data_index
=
0
;
int
src_index0
=
0
;
int
src_index
=
0
;
for
(
int
n
=
0
;
n
<
num_in
;
++
n
)
{
for
(
int
c
=
0
;
c
<
channel_in
;
++
c
)
{
for
(
int
h
=
0
;
h
<
height_in
;
++
h
)
{
data_index
=
n
*
ch_size
+
c
*
height_in
+
h
;
src_index0
=
n
*
chw_size
+
c
*
hw_size
+
h
*
width_in
;
dst
[
data_index
]
=
0.0
;
for
(
int
w
=
0
;
w
<
width_in
;
++
w
)
{
src_index
=
src_index0
+
w
;
dst
[
data_index
]
+=
static_cast
<
float
>
(
src
[
src_index
]);
}
}
}
}
}
void
reduce_sum_all
(
const
float
*
src
,
float
*
dst
,
int
num_in
,
int
channel_in
,
int
height_in
,
int
width_in
)
{
float
sum
=
0.0
;
int
src_index
;
int
n_id
,
c_id
;
for
(
int
n
=
0
;
n
<
num_in
;
++
n
)
{
n_id
=
n
*
channel_in
*
height_in
*
width_in
;
for
(
int
c
=
0
;
c
<
channel_in
;
++
c
)
{
c_id
=
c
*
height_in
*
width_in
;
for
(
int
h
=
0
;
h
<
height_in
;
++
h
)
{
for
(
int
w
=
0
;
w
<
width_in
;
++
w
)
{
src_index
=
n_id
+
c_id
+
h
*
width_in
+
w
;
sum
=
sum
+
src
[
src_index
];
}
}
}
}
dst
[
0
]
=
sum
;
}
void
reduce_sum_nc
(
const
float
*
src
,
float
*
dst
,
int
num_in
,
int
channel_in
,
int
height_in
,
int
width_in
)
{
// reduce n first.
DDimLite
ddimA
({
1
,
channel_in
,
height_in
,
width_in
});
lite
::
Tensor
tensor_tmp
;
tensor_tmp
.
Resize
(
ddimA
);
float
*
tmp_out
=
tensor_tmp
.
mutable_data
<
float
>
();
reduce_sum_n
(
src
,
tmp_out
,
num_in
,
channel_in
,
height_in
,
width_in
);
reduce_sum_c
(
tmp_out
,
dst
,
1
,
channel_in
,
height_in
,
width_in
);
}
void
reduce_sum_ch
(
const
float
*
src
,
float
*
dst
,
int
num_in
,
int
channel_in
,
int
height_in
,
int
width_in
)
{
// reduce c first
DDimLite
ddimA
({
num_in
,
1
,
height_in
,
width_in
});
lite
::
Tensor
tensor_tmp
;
tensor_tmp
.
Resize
(
ddimA
);
float
*
tmp_out
=
tensor_tmp
.
mutable_data
<
float
>
();
reduce_sum_c
(
src
,
tmp_out
,
num_in
,
channel_in
,
height_in
,
width_in
);
reduce_sum_h
(
tmp_out
,
dst
,
num_in
,
1
,
height_in
,
width_in
);
}
void
reduce_sum_hw
(
const
float
*
src
,
float
*
dst
,
int
num_in
,
int
channel_in
,
int
height_in
,
int
width_in
)
{
// reduce h first
DDimLite
ddimA
({
num_in
,
channel_in
,
1
,
width_in
});
lite
::
Tensor
tensor_tmp
;
tensor_tmp
.
Resize
(
ddimA
);
float
*
tmp_out
=
tensor_tmp
.
mutable_data
<
float
>
();
reduce_sum_h
(
src
,
tmp_out
,
num_in
,
channel_in
,
height_in
,
width_in
);
reduce_sum_w
(
tmp_out
,
dst
,
num_in
,
channel_in
,
1
,
width_in
);
}
class
ReduceSumComputeTester
:
public
arena
::
TestCase
{
protected:
// common attributes for this op.
std
::
string
input_
=
"x"
;
std
::
string
output_
=
"out"
;
std
::
vector
<
int
>
dim_
{
0
};
bool
keep_dim_
=
false
;
bool
reduce_all_
=
false
;
DDim
x_dims_
{{
3
,
2
,
3
,
4
}};
public:
ReduceSumComputeTester
(
const
Place
&
place
,
const
std
::
string
&
alias
,
std
::
vector
<
int
>
dim
,
bool
keep_dim
,
bool
reduce_all
,
DDim
x_dims
)
:
TestCase
(
place
,
alias
),
dim_
(
dim
),
keep_dim_
(
keep_dim
),
reduce_all_
(
reduce_all
),
x_dims_
(
x_dims
)
{}
void
RunBaseline
(
Scope
*
scope
)
override
{
auto
*
x
=
scope
->
FindMutableTensor
(
input_
);
const
auto
*
x_data
=
x
->
data
<
float
>
();
auto
*
out
=
scope
->
NewTensor
(
output_
);
auto
x_rank
=
x_dims_
.
size
();
if
(
!
dim_
.
empty
())
{
for
(
int
i
=
0
;
i
<
dim_
.
size
();
i
++
)
{
if
(
dim_
[
i
]
<
0
)
{
dim_
[
i
]
+=
x_rank
;
}
}
}
sort
(
dim_
.
begin
(),
dim_
.
end
());
std
::
vector
<
int64_t
>
out_dims
;
if
(
reduce_all_
)
{
if
(
keep_dim_
)
{
out_dims
.
resize
(
x_rank
);
for
(
int
i
=
0
;
i
<
x_rank
;
++
i
)
{
out_dims
[
i
]
=
1
;
}
}
else
{
out_dims
.
push_back
(
1
);
}
}
else
{
for
(
int
i
=
0
;
i
<
x_dims_
.
size
();
i
++
)
{
out_dims
.
push_back
(
x_dims_
[
i
]);
}
if
(
keep_dim_
)
{
for
(
size_t
i
=
0
;
i
<
dim_
.
size
();
++
i
)
{
out_dims
[
dim_
[
i
]]
=
1L
;
}
}
else
{
int64_t
kDelFlag
=
-
2
;
for
(
size_t
i
=
0
;
i
<
dim_
.
size
();
++
i
)
{
out_dims
[
dim_
[
i
]]
=
kDelFlag
;
}
out_dims
.
erase
(
remove
(
out_dims
.
begin
(),
out_dims
.
end
(),
kDelFlag
),
out_dims
.
end
());
}
}
out
->
Resize
(
DDim
(
out_dims
));
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
int
in_n
=
x_dims_
[
0
];
int
in_c
=
x_dims_
[
1
];
int
in_h
=
x_dims_
[
2
];
int
in_w
=
x_dims_
[
3
];
if
(
reduce_all_
)
{
reduce_sum_all
(
x_data
,
out_data
,
in_n
,
in_c
,
in_h
,
in_w
);
}
else
if
(
dim_
.
size
()
==
1
)
{
switch
(
dim_
[
0
])
{
case
0
:
reduce_sum_n
(
x_data
,
out_data
,
in_n
,
in_c
,
in_h
,
in_w
);
break
;
case
1
:
reduce_sum_c
(
x_data
,
out_data
,
in_n
,
in_c
,
in_h
,
in_w
);
break
;
case
2
:
reduce_sum_h
(
x_data
,
out_data
,
in_n
,
in_c
,
in_h
,
in_w
);
break
;
case
3
:
reduce_sum_w
(
x_data
,
out_data
,
in_n
,
in_c
,
in_h
,
in_w
);
break
;
default:
LOG
(
FATAL
)
<<
"error!!!"
;
}
}
else
if
(
dim_
.
size
()
==
2
)
{
if
(
dim_
[
0
]
==
0
&&
dim_
[
1
]
==
1
)
{
reduce_sum_nc
(
x_data
,
out_data
,
in_n
,
in_c
,
in_h
,
in_w
);
}
else
if
(
dim_
[
0
]
==
1
&&
dim_
[
1
]
==
2
)
{
reduce_sum_ch
(
x_data
,
out_data
,
in_n
,
in_c
,
in_h
,
in_w
);
}
else
if
(
dim_
[
0
]
==
2
&&
dim_
[
1
]
==
3
)
{
reduce_sum_hw
(
x_data
,
out_data
,
in_n
,
in_c
,
in_h
,
in_w
);
}
else
{
LOG
(
FATAL
)
<<
"invalid dims_!!"
;
}
}
}
void
PrepareOpDesc
(
cpp
::
OpDesc
*
op_desc
)
{
op_desc
->
SetType
(
"reduce_sum"
);
op_desc
->
SetInput
(
"X"
,
{
input_
});
op_desc
->
SetOutput
(
"Out"
,
{
output_
});
op_desc
->
SetAttr
(
"dim"
,
dim_
);
op_desc
->
SetAttr
(
"keep_dim"
,
keep_dim_
);
op_desc
->
SetAttr
(
"reduce_all"
,
reduce_all_
);
}
void
PrepareData
()
override
{
std
::
vector
<
float
>
data
(
x_dims_
.
production
());
for
(
int
i
=
0
;
i
<
x_dims_
.
production
();
i
++
)
{
data
[
i
]
=
i
*
1.0
;
}
SetCommonTensor
(
input_
,
x_dims_
,
data
.
data
());
}
};
void
test_reduce_sum
(
Place
place
)
{
std
::
vector
<
std
::
vector
<
int
>>
reduce_dim
{
{
0
},
{
1
},
{
2
},
{
3
},
{
0
,
1
},
{
1
,
2
},
{
2
,
3
},
{
-
2
,
-
1
}};
for
(
auto
n
:
{
1
,
3
})
{
for
(
auto
c
:
{
1
,
2
})
{
for
(
auto
h
:
{
1
,
3
})
{
for
(
auto
w
:
{
1
,
3
})
{
for
(
bool
keep_dim
:
{
false
,
true
})
{
for
(
bool
reduce_all
:
{
false
,
true
})
{
for
(
auto
dim
:
reduce_dim
)
{
auto
x_dims
=
DDim
(
std
::
vector
<
int64_t
>
({
n
,
c
,
h
,
w
}));
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
ReduceSumComputeTester
(
place
,
"def"
,
dim
,
keep_dim
,
reduce_all
,
x_dims
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
2e-5
);
arena
.
TestPrecision
();
}
}
}
}
}
}
}
}
TEST
(
ReduceSum
,
precision
)
{
#ifdef LITE_WITH_X86
Place
place
(
TARGET
(
kX86
));
test_reduce_sum
(
place
);
#endif
// #ifdef LITE_WITH_ARM
// Place place(TARGET(kARM));
// test_reduce_sum(place);
// #endif
}
}
// namespace lite
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录