diff --git a/src/io/api.cc b/src/io/api.cc new file mode 100644 index 0000000000000000000000000000000000000000..2103c5317b8d15988b19d1c1bf07e1042a6453a0 --- /dev/null +++ b/src/io/api.cc @@ -0,0 +1,84 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "io/paddle_inference_api.h" + +namespace paddle_mobile { + +int PaddleDtypeSize(PaddleDType dtype) { + switch (dtype) { + case PaddleDType::FLOAT32: + return sizeof(float); + case PaddleDType::INT64: + return sizeof(int64_t); + default: + assert(false); + return -1; + } +} + +PaddleBuf::PaddleBuf(PaddleBuf&& other) + : data_(other.data_), + length_(other.length_), + memory_owned_(other.memory_owned_) { + other.memory_owned_ = false; + other.data_ = nullptr; + other.length_ = 0; +} + +PaddleBuf::PaddleBuf(const PaddleBuf& other) { *this = other; } + +PaddleBuf& PaddleBuf::operator=(const PaddleBuf& other) { + // only the buffer with external memory can be copied + if (!other.memory_owned_) { + data_ = other.data_; + length_ = other.length_; + memory_owned_ = other.memory_owned_; + } else { + Resize(other.length()); + memcpy(data_, other.data(), other.length()); + length_ = other.length(); + memory_owned_ = true; + } + return *this; +} + +void PaddleBuf::Resize(size_t length) { + // Only the owned memory can be reset, the external memory can't be changed. + if (length_ == length) return; + if (memory_owned_) { + Free(); + } + data_ = new char[length]; + length_ = length; + memory_owned_ = true; +} + +void PaddleBuf::Reset(void* data, size_t length) { + Free(); + memory_owned_ = false; + data_ = data; + length_ = length; +} + +void PaddleBuf::Free() { + if (memory_owned_ && data_) { + assert(length_ > 0); + delete[] static_cast(data_); + data_ = nullptr; + length_ = 0; + } +} + +} // namespace paddle_mobile diff --git a/src/io/api_paddle_mobile.cc b/src/io/api_paddle_mobile.cc new file mode 100644 index 0000000000000000000000000000000000000000..4609438ec9fbdb5b5030b56a4bf18b9437bf7c2e --- /dev/null +++ b/src/io/api_paddle_mobile.cc @@ -0,0 +1,128 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "io/api_paddle_mobile.h" +#include +#include "framework/tensor.h" + +namespace paddle_mobile { + +template +PaddleMobilePredictor::PaddleMobilePredictor( + const PaddleMobileConfig &config) { + PADDLE_MOBILE_ENFORCE(Init(config) == true, + "paddle mobile predictor init failed!"); + config_ = config; +} + +template +bool PaddleMobilePredictor::Init(const PaddleMobileConfig &config) { + paddle_mobile_.reset(new PaddleMobile()); + if (!config.model_dir.empty()) { + paddle_mobile_->Load(config.model_dir, config.optimize, + config.quantification, config.batch_size); + } else if (!config.prog_file.empty() && !config.param_file.empty()) { + paddle_mobile_->Load(config.prog_file, config.param_file, config.optimize, + config.quantification, config.batch_size); + } else { + LOG(kLOG_ERROR) << "fail to load inference model!"; + return false; + } + // If the openmp is open, set the thread num + paddle_mobile_->SetThreadNum(config.thread_num); + return true; +} + +template +bool PaddleMobilePredictor::Run( + const std::vector &inputs, + std::vector *output_data, int batch_size) { + if (inputs.empty()) { + LOG(kLOG_ERROR) << "At least one output should be set with tensors' names."; + return false; + } + auto input = inputs[0]; + + if (input.shape.size() != 4) { + LOG(kLOG_ERROR) << "input shape not equal to 4!"; + return false; + } + std::vector dims; + for (auto d : input.shape) { + dims.push_back(static_cast(d)); + } + + // use tensor + framework::DDim ddim = + framework::make_ddim({dims[0], dims[1], dims[2], dims[3]}); + + framework::Tensor input_tensor; + input_tensor.Resize(ddim); + int input_length = framework::product(ddim); + typedef typename PrecisionTrait

::ptype PType; + auto input_ptr = input_tensor.mutable_data(); + + memcpy(input_ptr, static_cast(input.data.data()), + input_length * sizeof(PType)); + auto output_tensor = paddle_mobile_->Predict(input_tensor); + + if (output_data->empty()) { + LOG(kLOG_ERROR) << "At least one output should be set with tensors' names."; + return false; + } + + auto &output = (*output_data)[0]; + int output_length = output_tensor->numel(); + std::vector tensor_shape = + framework::vectorize(output_tensor->dims()); + + for (auto d : tensor_shape) { + output.shape.push_back(static_cast(d)); + } + + if (output.data.length() < output_length * sizeof(PType)) { + output.data.Resize(output_length * sizeof(PType)); + } + + memcpy(output.data.data(), output_tensor->template data(), + output_length * sizeof(PType)); + + return true; +} + +// A factory to help create difference predictor. +template <> +std::unique_ptr +CreatePaddlePredictor( + const PaddleMobileConfig &config) { + std::unique_ptr x; + if (config.precision == PaddleMobileConfig::FP32) { + if (config.device == PaddleMobileConfig::kCPU) { + x.reset(new PaddleMobilePredictor(config)); + } else if (config.device == PaddleMobileConfig::kFPGA) { + x.reset(new PaddleMobilePredictor(config)); + } else if (config.device == PaddleMobileConfig::kGPU_MALI) { + x.reset(new PaddleMobilePredictor(config)); + } else { + LOG(kLOG_ERROR) << "unsupport device type!"; + return nullptr; + } + } else { + LOG(kLOG_ERROR) << "unsupport precision type!"; + return nullptr; + } + return std::move(x); +} + +} // namespace paddle_mobile diff --git a/src/io/api_paddle_mobile.h b/src/io/api_paddle_mobile.h new file mode 100644 index 0000000000000000000000000000000000000000..66c6a4d5d9f8fc81b96642c6d5b62757dd581bc3 --- /dev/null +++ b/src/io/api_paddle_mobile.h @@ -0,0 +1,52 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +/* + * This file contains the implementation of inference API with Anakin engine + * embeded, this API can only support Anakin models. + */ + +#pragma once + +#include +#include "io/paddle_inference_api.h" + +// from paddle_mobile +#include "common/enforce.h" +#include "common/types.h" +#include "io/paddle_mobile.h" + +namespace paddle_mobile { + +template +class PaddleMobilePredictor : public PaddlePredictor { + public: + PaddleMobilePredictor() {} + + explicit PaddleMobilePredictor(const PaddleMobileConfig& config); + + bool Run(const std::vector& inputs, + std::vector* output_data, + int batch_size = -1) override; + + ~PaddleMobilePredictor() override{}; + + private: + std::unique_ptr> paddle_mobile_; + bool Init(const PaddleMobileConfig& config); + + PaddleMobileConfig config_; +}; + +} // namespace paddle_mobile diff --git a/src/io/paddle_inference_api.h b/src/io/paddle_inference_api.h new file mode 100644 index 0000000000000000000000000000000000000000..97564f4132d2e43cf736c2eb4a95d437584be24f --- /dev/null +++ b/src/io/paddle_inference_api.h @@ -0,0 +1,132 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +/* + * This file contains the definition of a simple Inference API for Paddle. + * + * ATTENTION: It requires some C++ features, for lower version C++ or C, we + * might release another API. + */ + +#pragma once + +#include +#include +#include +#include + +namespace paddle_mobile { + +enum PaddleDType { + FLOAT32, + INT64, +}; + +class PaddleBuf { + public: + PaddleBuf() = default; + PaddleBuf(PaddleBuf&& other); + // Copy only available when memory is managed externally. + explicit PaddleBuf(const PaddleBuf&); + PaddleBuf& operator=(const PaddleBuf&); + // Do not own the memory. + PaddleBuf(void* data, size_t length) + : data_(data), length_(length), memory_owned_{false} {} + // Own memory. + PaddleBuf(size_t length) + : data_(new char[length]), length_(length), memory_owned_(true) {} + // Resize to `length` bytes. + void Resize(size_t length); + // Reset to external memory. + void Reset(void* data, size_t length); + bool empty() const { return length_ == 0; } + void* data() const { return data_; } + size_t length() const { return length_; } + + ~PaddleBuf() { Free(); } + + private: + void Free(); + void* data_{nullptr}; // pointer to the data memory. + size_t length_{0}; // number of memory bytes. + bool memory_owned_{true}; +}; + +struct PaddleTensor { + PaddleTensor() = default; + std::string name; // variable name. + std::vector shape; + // TODO(Superjomn) for LoD support, add a vector> field if needed. + PaddleBuf data; // blob of data. + PaddleDType dtype; +}; + +enum class PaddleEngineKind { + kPaddleMobile, + // TODO(Superjomn) support following engines latter. + // kTensorRT, // Use TensorRT for inference. + // kAutoMixedAnakin, // Automatically mix Fluid with Anakin. + // kAutoMixedTensorRT, // Automatically mix Fluid with TensorRT. +}; + +/* + * A simple Inference API for Paddle. Currently this API can be used by + * non-sequence scenerios. + */ +class PaddlePredictor { + public: + struct Config; + PaddlePredictor() = default; + PaddlePredictor(const PaddlePredictor&) = delete; + PaddlePredictor& operator=(const PaddlePredictor&) = delete; + + // Predict an record. + // The caller should be responsible for allocating and releasing the memory of + // `inputs`. `inputs` should be available until Run returns. Caller should be + // responsible for the output tensor's buffer, either allocated or passed from + // outside. + virtual bool Run(const std::vector& inputs, + std::vector* output_data, + int batch_size = -1) = 0; + + // Destroy the Predictor. + virtual ~PaddlePredictor() = default; + + // The common configs for all the predictors. + struct Config { + std::string model_dir; // path to the model directory. + }; +}; + +struct PaddleMobileConfig : public PaddlePredictor::Config { + enum Precision { FP32 = 0 }; + enum Device { kCPU = 0, kFPGA = 1, kGPU_MALI = 2 }; + + enum Precision precision; + enum Device device; + + int batch_size = 1; + bool optimize = true; + bool quantification = false; + int thread_num = 1; + std::string prog_file; + std::string param_file; +}; + +// A factory to help create different predictors. +template +std::unique_ptr CreatePaddlePredictor(const ConfigT& config); + +} // namespace paddle_mobile diff --git a/test/CMakeLists.txt b/test/CMakeLists.txt index 5072db53874e0becf1318a26633fb13cc33d07f4..ee1d12bfd6be13d67fd8360be2ab5c8d7f86e662 100644 --- a/test/CMakeLists.txt +++ b/test/CMakeLists.txt @@ -100,6 +100,10 @@ else () ADD_EXECUTABLE(test-load framework/test_load.cpp) target_link_libraries(test-load paddle-mobile) + ADD_EXECUTABLE(test-inference-api framework/test_inference_api.cpp) + target_link_libraries(test-inference-api paddle-mobile) + + # gen test log # gen test ADD_EXECUTABLE(test-optimize framework/test_optimize.cpp) diff --git a/test/framework/test_inference_api.cpp b/test/framework/test_inference_api.cpp new file mode 100644 index 0000000000000000000000000000000000000000..7dec2fe29753c75ee70f31428d104450acce9404 --- /dev/null +++ b/test/framework/test_inference_api.cpp @@ -0,0 +1,57 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include "io/paddle_inference_api.h" + +using namespace paddle_mobile; + +PaddleMobileConfig GetConfig() { + PaddleMobileConfig config; + config.precision = PaddleMobileConfig::FP32; + config.device = PaddleMobileConfig::kCPU; + config.model_dir = "../models/mobilenet/"; + config.thread_num = 4; + return config; +} + +int main() { + PaddleMobileConfig config = GetConfig(); + auto predictor = + CreatePaddlePredictor(config); + + float data[1 * 3 * 224 * 224] = {1.0f}; + + PaddleTensor tensor; + tensor.shape = std::vector({1, 3, 224, 224}); + tensor.data = PaddleBuf(data, sizeof(data)); + tensor.dtype = PaddleDType::FLOAT32; + std::vector paddle_tensor_feeds(1, tensor); + + PaddleTensor tensor_out; + tensor_out.shape = std::vector({}); + tensor_out.data = PaddleBuf(); + tensor_out.dtype = PaddleDType::FLOAT32; + std::vector outputs(1, tensor_out); + + assert(predictor->Run(paddle_tensor_feeds, &outputs)); + + float* data_o = static_cast(outputs[0].data.data()); + for (size_t j = 0; j < outputs[0].data.length() / sizeof(float); ++j) { + std::cout << "output[" << j << "]: " << data_o[j] << std::endl; + } + + return 0; +}