Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
dfe0c436
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
dfe0c436
编写于
9月 23, 2020
作者:
W
weihaoji
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU] add res2net fusion
test=develop, test=xpu
上级
0348583f
变更
8
展开全部
显示空白变更内容
内联
并排
Showing
8 changed file
with
2020 addition
and
0 deletion
+2020
-0
lite/api/paddle_use_passes.h
lite/api/paddle_use_passes.h
+1
-0
lite/backends/xpu/xpu_header_sitter.h
lite/backends/xpu/xpu_header_sitter.h
+3
-0
lite/core/mir/CMakeLists.txt
lite/core/mir/CMakeLists.txt
+1
-0
lite/core/mir/fusion/__xpu__res2net_fuse_pass.cc
lite/core/mir/fusion/__xpu__res2net_fuse_pass.cc
+1955
-0
lite/core/optimizer.h
lite/core/optimizer.h
+1
-0
lite/kernels/xpu/__xpu__resnet50_compute.cc
lite/kernels/xpu/__xpu__resnet50_compute.cc
+44
-0
lite/kernels/xpu/__xpu__resnet50_compute.h
lite/kernels/xpu/__xpu__resnet50_compute.h
+14
-0
lite/operators/__xpu__resnet50_op.cc
lite/operators/__xpu__resnet50_op.cc
+1
-0
未找到文件。
lite/api/paddle_use_passes.h
浏览文件 @
dfe0c436
...
@@ -62,6 +62,7 @@ USE_MIR_PASS(quantized_op_attributes_inference_pass);
...
@@ -62,6 +62,7 @@ USE_MIR_PASS(quantized_op_attributes_inference_pass);
USE_MIR_PASS
(
control_flow_op_unused_inputs_and_outputs_eliminate_pass
)
USE_MIR_PASS
(
control_flow_op_unused_inputs_and_outputs_eliminate_pass
)
USE_MIR_PASS
(
lite_scale_activation_fuse_pass
);
USE_MIR_PASS
(
lite_scale_activation_fuse_pass
);
USE_MIR_PASS
(
__xpu__resnet_fuse_pass
);
USE_MIR_PASS
(
__xpu__resnet_fuse_pass
);
USE_MIR_PASS
(
__xpu__res2net_fuse_pass
);
USE_MIR_PASS
(
__xpu__resnet_d_fuse_pass
);
USE_MIR_PASS
(
__xpu__resnet_d_fuse_pass
);
USE_MIR_PASS
(
__xpu__resnet_cbam_fuse_pass
);
USE_MIR_PASS
(
__xpu__resnet_cbam_fuse_pass
);
USE_MIR_PASS
(
__xpu__multi_encoder_fuse_pass
);
USE_MIR_PASS
(
__xpu__multi_encoder_fuse_pass
);
...
...
lite/backends/xpu/xpu_header_sitter.h
浏览文件 @
dfe0c436
...
@@ -17,6 +17,9 @@
...
@@ -17,6 +17,9 @@
#pragma GCC system_header
#pragma GCC system_header
#include <xpu/api.h>
#include <xpu/api.h>
#include <xpu/golden.h>
#include <xpu/golden.h>
#include <xpu/refactor/fusion.h>
#include <xpu/refactor/math.h>
#include <xpu/refactor/nn.h>
#include <xpu/runtime.h>
#include <xpu/runtime.h>
#if defined(LITE_WITH_XTCL)
#if defined(LITE_WITH_XTCL)
...
...
lite/core/mir/CMakeLists.txt
浏览文件 @
dfe0c436
...
@@ -25,6 +25,7 @@ lite_cc_library(mir_passes
...
@@ -25,6 +25,7 @@ lite_cc_library(mir_passes
fusion/scale_activation_fuse_pass.cc
fusion/scale_activation_fuse_pass.cc
fusion/reshape_fuse_pass.cc
fusion/reshape_fuse_pass.cc
fusion/__xpu__resnet_fuse_pass.cc
fusion/__xpu__resnet_fuse_pass.cc
fusion/__xpu__res2net_fuse_pass.cc
fusion/__xpu__resnet_cbam_fuse_pass.cc
fusion/__xpu__resnet_cbam_fuse_pass.cc
fusion/__xpu__multi_encoder_fuse_pass.cc
fusion/__xpu__multi_encoder_fuse_pass.cc
fusion/__xpu__embedding_with_eltwise_add_fuse_pass.cc
fusion/__xpu__embedding_with_eltwise_add_fuse_pass.cc
...
...
lite/core/mir/fusion/__xpu__res2net_fuse_pass.cc
0 → 100644
浏览文件 @
dfe0c436
此差异已折叠。
点击以展开。
lite/core/optimizer.h
浏览文件 @
dfe0c436
...
@@ -109,6 +109,7 @@ class Optimizer {
...
@@ -109,6 +109,7 @@ class Optimizer {
"identity_dropout_eliminate_pass"
,
"identity_dropout_eliminate_pass"
,
"__xpu__resnet_fuse_pass"
,
"__xpu__resnet_fuse_pass"
,
"__xpu__resnet_d_fuse_pass"
,
"__xpu__resnet_d_fuse_pass"
,
"__xpu__res2net_fuse_pass"
,
"__xpu__resnet_cbam_fuse_pass"
,
"__xpu__resnet_cbam_fuse_pass"
,
"__xpu__conv2d_fuse_pass"
,
"__xpu__conv2d_fuse_pass"
,
"__xpu__conv2d_link_previous_out_max_pass"
,
"__xpu__conv2d_link_previous_out_max_pass"
,
...
...
lite/kernels/xpu/__xpu__resnet50_compute.cc
浏览文件 @
dfe0c436
...
@@ -49,6 +49,21 @@ void XPUResNet50DtypeCompute::PrepareForRun() {
...
@@ -49,6 +49,21 @@ void XPUResNet50DtypeCompute::PrepareForRun() {
}
}
}
}
void
XPURes2Net50Compute
::
PrepareForRun
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
for
(
auto
*
filter
:
param
.
filter
)
{
arg_filter_
.
push_back
(
reinterpret_cast
<
const
int16_t
*>
(
filter
->
data
<
float
>
()));
}
for
(
auto
*
bias
:
param
.
bias
)
{
arg_bias_
.
push_back
(
bias
->
data
<
float
>
());
}
for
(
auto
*
max_filter
:
param
.
max_filter
)
{
arg_max_filter_
.
push_back
(
max_filter
->
data
<
float
>
());
}
}
void
XPUResNet50Compute
::
Run
()
{
void
XPUResNet50Compute
::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
&
ctx
=
this
->
ctx_
->
As
<
XPUContext
>
();
auto
&
ctx
=
this
->
ctx_
->
As
<
XPUContext
>
();
...
@@ -81,6 +96,22 @@ void XPUResNet50DtypeCompute::Run() {
...
@@ -81,6 +96,22 @@ void XPUResNet50DtypeCompute::Run() {
CHECK_EQ
(
r
,
0
);
CHECK_EQ
(
r
,
0
);
}
}
void
XPURes2Net50Compute
::
Run
()
{
auto
&
param
=
this
->
Param
<
param_t
>
();
auto
&
ctx
=
this
->
ctx_
->
As
<
XPUContext
>
();
int
batch_size
=
param
.
input
->
dims
()[
0
];
int
r
=
xdnn
::
conv2d_int16_res2net
<
float
,
int16_t
>
(
ctx
.
GetRawContext
(),
/* context */
batch_size
,
/* num */
param
.
input
->
data
<
float
>
(),
/* bottom */
&
arg_filter_
[
0
],
/* weight_list */
param
.
output
->
mutable_data
<
float
>
(
TARGET
(
kXPU
)),
/* top */
&
arg_bias_
[
0
],
/* bias_list */
&
arg_max_filter_
[
0
]
/* max_filter_list */
);
CHECK_EQ
(
r
,
0
);
}
}
// namespace xpu
}
// namespace xpu
}
// namespace kernels
}
// namespace kernels
}
// namespace lite
}
// namespace lite
...
@@ -111,3 +142,16 @@ REGISTER_LITE_KERNEL(__xpu__resnet50_d,
...
@@ -111,3 +142,16 @@ REGISTER_LITE_KERNEL(__xpu__resnet50_d,
.
BindInput
(
"MaxFilter"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kXPU
))})
.
BindInput
(
"MaxFilter"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kXPU
))})
.
BindOutput
(
"Output"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kXPU
))})
.
BindOutput
(
"Output"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kXPU
))})
.
Finalize
();
.
Finalize
();
REGISTER_LITE_KERNEL
(
__xpu__res2net50
,
kXPU
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
xpu
::
XPURes2Net50Compute
,
def
)
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kXPU
))})
.
BindInput
(
"Filter"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kXPU
))})
.
BindInput
(
"Bias"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kXPU
))})
.
BindInput
(
"MaxFilter"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kXPU
))})
.
BindOutput
(
"Output"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kXPU
))})
.
Finalize
();
lite/kernels/xpu/__xpu__resnet50_compute.h
浏览文件 @
dfe0c436
...
@@ -53,6 +53,20 @@ class XPUResNet50DtypeCompute
...
@@ -53,6 +53,20 @@ class XPUResNet50DtypeCompute
std
::
vector
<
const
float
*>
arg_bias_
;
std
::
vector
<
const
float
*>
arg_bias_
;
};
};
class
XPURes2Net50Compute
:
public
KernelLite
<
TARGET
(
kXPU
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
XPUResNet50Param
;
virtual
void
PrepareForRun
();
virtual
void
Run
();
private:
std
::
vector
<
const
int16_t
*>
arg_filter_
;
std
::
vector
<
const
float
*>
arg_max_filter_
;
std
::
vector
<
const
float
*>
arg_bias_
;
};
}
// namespace xpu
}
// namespace xpu
}
// namespace kernels
}
// namespace kernels
}
// namespace lite
}
// namespace lite
...
...
lite/operators/__xpu__resnet50_op.cc
浏览文件 @
dfe0c436
...
@@ -63,3 +63,4 @@ bool XPUResNet50Op::AttachImpl(const cpp::OpDesc& op_desc, lite::Scope* scope) {
...
@@ -63,3 +63,4 @@ bool XPUResNet50Op::AttachImpl(const cpp::OpDesc& op_desc, lite::Scope* scope) {
REGISTER_LITE_OP
(
__xpu__resnet50
,
paddle
::
lite
::
operators
::
XPUResNet50Op
);
REGISTER_LITE_OP
(
__xpu__resnet50
,
paddle
::
lite
::
operators
::
XPUResNet50Op
);
REGISTER_LITE_OP
(
__xpu__resnet50_d
,
paddle
::
lite
::
operators
::
XPUResNet50Op
);
REGISTER_LITE_OP
(
__xpu__resnet50_d
,
paddle
::
lite
::
operators
::
XPUResNet50Op
);
REGISTER_LITE_OP
(
__xpu__res2net50
,
paddle
::
lite
::
operators
::
XPUResNet50Op
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录