Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
dee0175f
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
dee0175f
编写于
9月 13, 2018
作者:
xiebaiyuan
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'upstream/develop' into develop
上级
031e6063
1c4d5d8e
变更
21
隐藏空白更改
内联
并排
Showing
21 changed file
with
596 addition
and
334 deletion
+596
-334
src/fpga/api.cpp
src/fpga/api.cpp
+39
-15
src/fpga/api.h
src/fpga/api.h
+34
-20
src/fpga/bias_scale.cpp
src/fpga/bias_scale.cpp
+1
-0
src/fpga/filter.cpp
src/fpga/filter.cpp
+2
-1
src/fpga/image.cpp
src/fpga/image.cpp
+8
-1
src/operators/feed_op.h
src/operators/feed_op.h
+5
-2
src/operators/kernel/fpga/conv_add_bn_kernel.cpp
src/operators/kernel/fpga/conv_add_bn_kernel.cpp
+2
-3
src/operators/kernel/fpga/conv_add_bn_relu_kernel.cpp
src/operators/kernel/fpga/conv_add_bn_relu_kernel.cpp
+1
-5
src/operators/kernel/fpga/conv_add_relu_kernel.cpp
src/operators/kernel/fpga/conv_add_relu_kernel.cpp
+1
-5
src/operators/kernel/fpga/conv_bn_kernel.cpp
src/operators/kernel/fpga/conv_bn_kernel.cpp
+1
-5
src/operators/kernel/fpga/conv_bn_relu_kernel.cpp
src/operators/kernel/fpga/conv_bn_relu_kernel.cpp
+1
-18
src/operators/kernel/fpga/dropout_kernel.cpp
src/operators/kernel/fpga/dropout_kernel.cpp
+1
-7
src/operators/kernel/fpga/fc_relu_kernel.cpp
src/operators/kernel/fpga/fc_relu_kernel.cpp
+2
-5
src/operators/kernel/fpga/fusion_fc_kernel.cpp
src/operators/kernel/fpga/fusion_fc_kernel.cpp
+2
-5
src/operators/kernel/fpga/pool_kernel.cpp
src/operators/kernel/fpga/pool_kernel.cpp
+0
-2
src/operators/kernel/fpga/softmax_kernel.cpp
src/operators/kernel/fpga/softmax_kernel.cpp
+20
-9
src/operators/math/im2col.cpp
src/operators/math/im2col.cpp
+1
-1
src/operators/math/math_function.cpp
src/operators/math/math_function.cpp
+26
-4
src/operators/math/pool_3x3.cpp
src/operators/math/pool_3x3.cpp
+403
-224
src/operators/op_param.h
src/operators/op_param.h
+1
-1
test/fpga/test_format_data.cpp
test/fpga/test_format_data.cpp
+45
-1
未找到文件。
src/fpga/api.cpp
浏览文件 @
dee0175f
...
@@ -14,11 +14,9 @@ limitations under the License. */
...
@@ -14,11 +14,9 @@ limitations under the License. */
#include "api.h"
#include "api.h"
#include <fcntl.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/ioctl.h>
#include <algorithm>
#include <algorithm>
#include <
cstring
>
#include <
memory
>
#include "bias_scale.h"
#include "bias_scale.h"
#include "filter.h"
#include "filter.h"
#include "image.h"
#include "image.h"
...
@@ -48,6 +46,7 @@ int open_device() {
...
@@ -48,6 +46,7 @@ int open_device() {
// memory management;
// memory management;
void
*
fpga_malloc
(
size_t
size
)
{
void
*
fpga_malloc
(
size_t
size
)
{
DLOG
<<
size
<<
" bytes allocated"
;
#ifdef PADDLE_MOBILE_OS_LINUX
#ifdef PADDLE_MOBILE_OS_LINUX
return
reinterpret_cast
<
void
*>
(
return
reinterpret_cast
<
void
*>
(
mmap64
(
NULL
,
size
,
PROT_READ
|
PROT_WRITE
,
MAP_SHARED
,
fd
,
0
));
mmap64
(
NULL
,
size
,
PROT_READ
|
PROT_WRITE
,
MAP_SHARED
,
fd
,
0
));
...
@@ -68,6 +67,20 @@ void fpga_copy(void *dest, const void *src, size_t num) {
...
@@ -68,6 +67,20 @@ void fpga_copy(void *dest, const void *src, size_t num) {
memcpy
(
dest
,
src
,
num
);
memcpy
(
dest
,
src
,
num
);
}
}
int
fpga_flush
(
void
*
address
,
size_t
size
)
{
struct
MemoryCacheArgs
args
;
args
.
address
=
address
;
args
.
size
=
size
;
return
do_ioctl
(
IOCTL_MEMCACHE_FLUSH
,
&
args
);
}
int
fpga_invalidate
(
void
*
address
,
size_t
size
)
{
struct
MemoryCacheArgs
args
;
args
.
address
=
address
;
args
.
size
=
size
;
return
do_ioctl
(
IOCTL_MEMCACHE_INVAL
,
&
args
);
}
int
ComputeFpgaConv
(
const
struct
WrapperConvArgs
&
args
)
{
int
ComputeFpgaConv
(
const
struct
WrapperConvArgs
&
args
)
{
#ifdef FPGA_TEST_MODE
#ifdef FPGA_TEST_MODE
/*DLOG << " relu_enabled:" << args.relu_enabled
/*DLOG << " relu_enabled:" << args.relu_enabled
...
@@ -145,8 +158,8 @@ int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
...
@@ -145,8 +158,8 @@ int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
}
}
int
PerformBypass
(
const
struct
BypassArgs
&
args
)
{
int
PerformBypass
(
const
struct
BypassArgs
&
args
)
{
#ifdef FPGA_TEST_MODE
#ifdef FPGA_TEST_MODE
DLOG
<<
"
layout_type:"
<<
args
.
layout
_type
DLOG
<<
"
input_type:"
<<
args
.
input_data
_type
<<
"
convert_type:"
<<
args
.
conver
t_type
;
<<
"
input_layout_type:"
<<
args
.
input_layou
t_type
;
DLOG
<<
" image_address:"
<<
args
.
image
.
address
DLOG
<<
" image_address:"
<<
args
.
image
.
address
<<
" image_scale_address:"
<<
args
.
image
.
scale_address
<<
" image_scale_address:"
<<
args
.
image
.
scale_address
<<
" image_channels:"
<<
args
.
image
.
channels
<<
" image_channels:"
<<
args
.
image
.
channels
...
@@ -181,10 +194,19 @@ void format_image(framework::Tensor *image_tensor) {
...
@@ -181,10 +194,19 @@ void format_image(framework::Tensor *image_tensor) {
void
format_ofm
(
framework
::
Tensor
*
ofm_tensor
)
{
void
format_ofm
(
framework
::
Tensor
*
ofm_tensor
)
{
auto
dims
=
ofm_tensor
->
dims
();
auto
dims
=
ofm_tensor
->
dims
();
auto
channel
=
dims
[
1
],
height
=
dims
[
2
],
width
=
dims
[
3
];
size_t
memory_size
=
0
;
size_t
memory_size
=
if
(
dims
.
size
()
==
4
)
{
height
*
align_to_x
(
channel
*
width
,
IMAGE_ALIGNMENT
)
*
sizeof
(
half
);
auto
channel
=
dims
[
1
],
height
=
dims
[
2
],
width
=
dims
[
3
];
ofm_tensor
->
reset_data_ptr
(
fpga_malloc
(
memory_size
));
memory_size
=
height
*
align_to_x
(
channel
*
width
,
IMAGE_ALIGNMENT
)
*
sizeof
(
half
);
}
else
if
(
dims
.
size
()
==
2
)
{
memory_size
=
align_to_x
(
dims
[
1
],
IMAGE_ALIGNMENT
)
*
sizeof
(
half
);
}
else
{
DLOG
<<
"Wrong ofm dimension"
;
}
auto
p
=
fpga_malloc
(
memory_size
);
memset
(
p
,
0
,
memory_size
);
ofm_tensor
->
reset_data_ptr
(
p
);
}
}
float
filter_find_max
(
framework
::
Tensor
*
filter_tensor
)
{
float
filter_find_max
(
framework
::
Tensor
*
filter_tensor
)
{
...
@@ -200,7 +222,7 @@ int get_plit_num(framework::Tensor *filter_tensor) {
...
@@ -200,7 +222,7 @@ int get_plit_num(framework::Tensor *filter_tensor) {
return
filter
::
calc_split_num
(
num
,
div_capacity
);
return
filter
::
calc_split_num
(
num
,
div_capacity
);
}
}
int
get_
element
_num_per_div
(
framework
::
Tensor
*
filter_tensor
,
int
group_num
)
{
int
get_
filter
_num_per_div
(
framework
::
Tensor
*
filter_tensor
,
int
group_num
)
{
auto
dims
=
filter_tensor
->
dims
();
auto
dims
=
filter_tensor
->
dims
();
auto
chw
=
dims
[
1
]
*
dims
[
2
]
*
dims
[
3
];
auto
chw
=
dims
[
1
]
*
dims
[
2
]
*
dims
[
3
];
auto
num
=
dims
[
0
];
auto
num
=
dims
[
0
];
...
@@ -279,7 +301,7 @@ void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
...
@@ -279,7 +301,7 @@ void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
arg
->
concat_arg
.
image_out
=
out_ptr
;
arg
->
concat_arg
.
image_out
=
out_ptr
;
const
int
channel
=
(
int
)
out
->
dims
()[
1
];
const
int
channel
=
(
int
)
out
->
dims
()[
1
];
int
element_num_per_div
=
fpga
::
get_element
_num_per_div
(
filter
,
group_num
);
int
filter_num_per_div
=
fpga
::
get_filter
_num_per_div
(
filter
,
group_num
);
int
element_num
=
fpga
::
get_aligned_filter_element_num
(
int
element_num
=
fpga
::
get_aligned_filter_element_num
(
filter
->
dims
()[
1
]
*
filter
->
dims
()[
2
]
*
filter
->
dims
()[
3
]);
filter
->
dims
()[
1
]
*
filter
->
dims
()[
2
]
*
filter
->
dims
()[
3
]);
...
@@ -297,12 +319,14 @@ void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
...
@@ -297,12 +319,14 @@ void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
arg
->
conv_args
[
i
].
image
.
scale_address
=
input
->
scale
;
arg
->
conv_args
[
i
].
image
.
scale_address
=
input
->
scale
;
arg
->
conv_args
[
i
].
image
.
pad_height
=
(
uint32_t
)
padding_h
;
arg
->
conv_args
[
i
].
image
.
pad_height
=
(
uint32_t
)
padding_h
;
arg
->
conv_args
[
i
].
image
.
pad_width
=
(
uint32_t
)
padding_w
;
arg
->
conv_args
[
i
].
image
.
pad_width
=
(
uint32_t
)
padding_w
;
arg
->
conv_args
[
i
].
filter_address
=
&
((
int8_t
*
)
filter_ptr
)[
i
*
element_num
];
arg
->
conv_args
[
i
].
filter_scale_address
=
filter
->
scale
;
arg
->
conv_args
[
i
].
sb_address
=
&
((
int8_t
*
)
bs_ptr
)[
i
*
element_num
];
arg
->
conv_args
[
i
].
filter_address
=
&
((
int8_t
*
)
filter_ptr
)[
i
*
element_num
*
filter_num_per_div
];
arg
->
conv_args
[
i
].
sb_address
=
&
bs_ptr
[
i
*
filter_num_per_div
*
2
];
arg
->
conv_args
[
i
].
filter_num
=
arg
->
conv_args
[
i
].
filter_num
=
(
uint32_t
)(
i
==
n
-
1
?
fpga
::
get_aligned_filter_num
(
(
uint32_t
)(
i
==
n
-
1
?
fpga
::
get_aligned_filter_num
(
channel
-
(
n
-
1
)
*
element
_num_per_div
)
channel
-
(
n
-
1
)
*
filter
_num_per_div
)
:
element
_num_per_div
);
:
filter
_num_per_div
);
if
(
n
>
1
)
{
if
(
n
>
1
)
{
arg
->
conv_args
[
i
].
output
.
scale_address
=
arg
->
conv_args
[
i
].
output
.
scale_address
=
...
...
src/fpga/api.h
浏览文件 @
dee0175f
...
@@ -25,23 +25,14 @@ limitations under the License. */
...
@@ -25,23 +25,14 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
paddle_mobile
{
namespace
fpga
{
namespace
fpga
{
int
open_device
();
enum
DataType
{
int
close_device
();
DATA_TYPE_FP32
=
1
,
DATA_TYPE_FP16
=
0
,
void
*
fpga_malloc
(
size_t
size
);
void
fpga_free
(
void
*
ptr
);
void
fpga_copy
(
void
*
dst
,
const
void
*
src
,
size_t
num
);
enum
DataConvertType
{
DATA_NO_CONVERT
=
0
,
DATA_FP32_TO_FP16
=
1
,
DATA_FP16_TO_FP32
=
2
,
};
};
enum
LayoutConvertType
{
enum
LayoutType
{
LAYOUT_NO_CONVERT
=
0
,
LAYOUT_CHW
=
1
,
LAYOUT_CHW_TO_HWC
=
1
,
LAYOUT_HWC
=
0
,
LAYOUT_HWC_TO_CHW
=
2
,
};
};
struct
VersionArgs
{
struct
VersionArgs
{
...
@@ -122,16 +113,18 @@ struct PoolingArgs {
...
@@ -122,16 +113,18 @@ struct PoolingArgs {
struct
EWAddArgs
{
struct
EWAddArgs
{
bool
relu_enabled
;
bool
relu_enabled
;
floa
t
const0
;
// output0 = const0 x input0 + const1 x input1;
uint32_
t
const0
;
// output0 = const0 x input0 + const1 x input1;
floa
t
const1
;
uint32_
t
const1
;
struct
ImageInputArgs
image0
;
struct
ImageInputArgs
image0
;
struct
ImageInputArgs
image1
;
struct
ImageInputArgs
image1
;
struct
ImageOutputArgs
output
;
struct
ImageOutputArgs
output
;
};
};
struct
BypassArgs
{
struct
BypassArgs
{
enum
DataConvertType
convert_type
;
enum
DataType
input_data_type
;
enum
LayoutConvertType
layout_type
;
enum
DataType
output_data_type
;
enum
LayoutType
input_layout_type
;
enum
LayoutType
output_layout_type
;
struct
ImageInputArgs
image
;
struct
ImageInputArgs
image
;
struct
ImageOutputArgs
output
;
struct
ImageOutputArgs
output
;
};
};
...
@@ -141,6 +134,16 @@ struct FpgaRegWriteArgs {
...
@@ -141,6 +134,16 @@ struct FpgaRegWriteArgs {
uint64_t
value
;
uint64_t
value
;
};
};
struct
FpgaRegReadArgs
{
uint64_t
address
;
uint64_t
value
;
};
struct
MemoryCacheArgs
{
void
*
address
;
size_t
size
;
};
#define IOCTL_FPGA_MAGIC 'FPGA'
#define IOCTL_FPGA_MAGIC 'FPGA'
#define IOCTL_VERSION _IOW(IOCTL_FPGA_MAGIC, 01, struct VersionArgs)
#define IOCTL_VERSION _IOW(IOCTL_FPGA_MAGIC, 01, struct VersionArgs)
...
@@ -148,6 +151,8 @@ struct FpgaRegWriteArgs {
...
@@ -148,6 +151,8 @@ struct FpgaRegWriteArgs {
#define IOCTL_SEPARATOR_0 10
#define IOCTL_SEPARATOR_0 10
#define IOCTL_MEM_COPY _IOW(IOCTL_FPGA_MAGIC, 11, struct MemoryCopyArgs)
#define IOCTL_MEM_COPY _IOW(IOCTL_FPGA_MAGIC, 11, struct MemoryCopyArgs)
#define IOCTL_MEMCACHE_INVAL _IOW(IOCTL_FPGA_MAGIC, 12, struct MemoryCacheArgs)
#define IOCTL_MEMCACHE_FLUSH _IOW(IOCTL_FPGA_MAGIC, 13, struct MemoryCacheArgs)
#define IOCTL_SEPARATOR_1 20
#define IOCTL_SEPARATOR_1 20
...
@@ -184,6 +189,15 @@ enum FPGA_ERR_TYPE {
...
@@ -184,6 +189,15 @@ enum FPGA_ERR_TYPE {
//============================== API =============================
//============================== API =============================
int
open_device
();
int
close_device
();
void
*
fpga_malloc
(
size_t
size
);
void
fpga_free
(
void
*
ptr
);
void
fpga_copy
(
void
*
dst
,
const
void
*
src
,
size_t
num
);
int
fpga_flush
(
void
*
address
,
size_t
size
);
int
fpga_invalidate
(
void
*
address
,
size_t
size
);
int
PerformBypass
(
const
struct
BypassArgs
&
args
);
int
PerformBypass
(
const
struct
BypassArgs
&
args
);
int
ComputeFpgaConv
(
const
struct
WrapperConvArgs
&
args
);
int
ComputeFpgaConv
(
const
struct
WrapperConvArgs
&
args
);
int
ComputeFpgaPool
(
const
struct
PoolingArgs
&
args
);
int
ComputeFpgaPool
(
const
struct
PoolingArgs
&
args
);
...
@@ -196,7 +210,7 @@ void format_image(framework::Tensor* image_tensor);
...
@@ -196,7 +210,7 @@ void format_image(framework::Tensor* image_tensor);
void
format_ofm
(
framework
::
Tensor
*
ofm_tensor
);
// only allocate memory
void
format_ofm
(
framework
::
Tensor
*
ofm_tensor
);
// only allocate memory
float
filter_find_max
(
framework
::
Tensor
*
filter_tensor
);
float
filter_find_max
(
framework
::
Tensor
*
filter_tensor
);
int
get_
element
_num_per_div
(
framework
::
Tensor
*
filter_tensor
,
int
group_num
);
int
get_
filter
_num_per_div
(
framework
::
Tensor
*
filter_tensor
,
int
group_num
);
int
get_plit_num
(
framework
::
Tensor
*
filter_tensor
);
int
get_plit_num
(
framework
::
Tensor
*
filter_tensor
);
int
get_aligned_filter_element_num
(
int
chw
);
int
get_aligned_filter_element_num
(
int
chw
);
int
get_aligned_filter_num
(
int
num
);
int
get_aligned_filter_num
(
int
num
);
...
...
src/fpga/bias_scale.cpp
浏览文件 @
dee0175f
...
@@ -79,6 +79,7 @@ void format_bias_scale_array(float **bias_scale_array,
...
@@ -79,6 +79,7 @@ void format_bias_scale_array(float **bias_scale_array,
int
element_num_after_division
=
int
element_num_after_division
=
align_to_x
(
element_num_per_division
,
BS_NUM_ALIGNMENT
);
align_to_x
(
element_num_per_division
,
BS_NUM_ALIGNMENT
);
interleave
(
bias_scale_array
,
div_num
*
element_num_after_division
);
interleave
(
bias_scale_array
,
div_num
*
element_num_after_division
);
fpga_flush
(
*
bias_scale_array
,
2
*
element_num_after_division
*
sizeof
(
float
));
}
}
}
// namespace bias_scale
}
// namespace bias_scale
...
...
src/fpga/filter.cpp
浏览文件 @
dee0175f
...
@@ -101,7 +101,6 @@ void align_element(char **data_in, int num, int chw) {
...
@@ -101,7 +101,6 @@ void align_element(char **data_in, int num, int chw) {
int
j
=
0
;
int
j
=
0
;
int
align_chw
=
align_to_x
(
chw
,
FILTER_ELEMENT_ALIGNMENT
);
int
align_chw
=
align_to_x
(
chw
,
FILTER_ELEMENT_ALIGNMENT
);
if
(
align_chw
!=
chw
)
{
if
(
align_chw
!=
chw
)
{
printf
(
"align %d
\n
"
,
align_chw
);
char
*
tmp
=
*
data_in
;
char
*
tmp
=
*
data_in
;
char
*
data_tmp
=
(
char
*
)
fpga_malloc
(
num
*
align_chw
*
sizeof
(
char
));
char
*
data_tmp
=
(
char
*
)
fpga_malloc
(
num
*
align_chw
*
sizeof
(
char
));
...
@@ -207,6 +206,8 @@ void format_filter(float **data_in, int num, int channel, int height, int width,
...
@@ -207,6 +206,8 @@ void format_filter(float **data_in, int num, int channel, int height, int width,
align_num
(
quantize_data
,
num_per_div_before_alignment
,
num
,
chw
);
align_num
(
quantize_data
,
num_per_div_before_alignment
,
num
,
chw
);
reorder
(
quantize_data
,
num_after_alignment
,
chw
);
reorder
(
quantize_data
,
num_after_alignment
,
chw
);
interleave
(
quantize_data
,
num_after_alignment
,
chw
);
interleave
(
quantize_data
,
num_after_alignment
,
chw
);
fpga_flush
(
*
quantize_data
,
align_to_x
(
chw
,
FILTER_ELEMENT_ALIGNMENT
)
*
num_after_alignment
*
sizeof
(
char
));
}
}
}
// namespace filter
}
// namespace filter
...
...
src/fpga/image.cpp
浏览文件 @
dee0175f
...
@@ -38,7 +38,6 @@ void convert_to_hwc(float **data_in, int channel, int height, int width) {
...
@@ -38,7 +38,6 @@ void convert_to_hwc(float **data_in, int channel, int height, int width) {
}
}
void
align_element_conv
(
float
**
data_in
,
int
height
,
int
cw
)
{
void
align_element_conv
(
float
**
data_in
,
int
height
,
int
cw
)
{
int
i
=
0
;
int
h
=
0
;
int
h
=
0
;
int
align_cw
=
align_to_x
(
cw
,
IMAGE_ALIGNMENT
);
int
align_cw
=
align_to_x
(
cw
,
IMAGE_ALIGNMENT
);
if
(
align_cw
!=
cw
)
{
if
(
align_cw
!=
cw
)
{
...
@@ -60,6 +59,8 @@ void align_element_conv(float **data_in, int height, int cw) {
...
@@ -60,6 +59,8 @@ void align_element_conv(float **data_in, int height, int cw) {
void
format_image
(
float
**
data_in
,
int
channel
,
int
height
,
int
width
)
{
void
format_image
(
float
**
data_in
,
int
channel
,
int
height
,
int
width
)
{
convert_to_hwc
(
data_in
,
channel
,
height
,
width
);
convert_to_hwc
(
data_in
,
channel
,
height
,
width
);
align_element_conv
(
data_in
,
height
,
channel
*
width
);
align_element_conv
(
data_in
,
height
,
channel
*
width
);
fpga_flush
(
*
data_in
,
align_to_x
(
channel
*
width
,
IMAGE_ALIGNMENT
)
*
height
*
sizeof
(
float
));
}
}
void
concat_images
(
int16_t
**
images_in
,
float
**
scales_in
,
void
*
image_out
,
void
concat_images
(
int16_t
**
images_in
,
float
**
scales_in
,
void
*
image_out
,
...
@@ -77,6 +78,10 @@ void concat_images(int16_t **images_in, float **scales_in, void *image_out,
...
@@ -77,6 +78,10 @@ void concat_images(int16_t **images_in, float **scales_in, void *image_out,
for
(
i
=
0
;
i
<
image_num
;
i
++
)
{
for
(
i
=
0
;
i
<
image_num
;
i
++
)
{
each_out_line_channel
+=
channel_num
[
i
];
each_out_line_channel
+=
channel_num
[
i
];
*
scale_out
=
std
::
max
(
*
scale_out
,
scales_in
[
i
][
0
]);
*
scale_out
=
std
::
max
(
*
scale_out
,
scales_in
[
i
][
0
]);
fpga_invalidate
(
images_in
[
i
],
height
*
align_to_x
(
channel_num
[
i
]
*
width
,
IMAGE_ALIGNMENT
)
*
sizeof
(
int16_t
));
}
}
align_each_out_area_cw
=
align_each_out_area_cw
=
align_to_x
(
each_out_line_channel
*
width
,
IMAGE_ALIGNMENT
);
align_to_x
(
each_out_line_channel
*
width
,
IMAGE_ALIGNMENT
);
...
@@ -97,6 +102,8 @@ void concat_images(int16_t **images_in, float **scales_in, void *image_out,
...
@@ -97,6 +102,8 @@ void concat_images(int16_t **images_in, float **scales_in, void *image_out,
}
}
}
}
}
}
fpga_flush
(
image_out
,
height
*
align_each_out_area_cw
*
sizeof
(
int16_t
));
}
}
}
// namespace image
}
// namespace image
...
...
src/operators/feed_op.h
浏览文件 @
dee0175f
...
@@ -56,8 +56,11 @@ class FeedOp : public framework::OperatorBase<DeviceType> {
...
@@ -56,8 +56,11 @@ class FeedOp : public framework::OperatorBase<DeviceType> {
auto
output_ptr
=
output
->
mutable_data
<
half
>
();
auto
output_ptr
=
output
->
mutable_data
<
half
>
();
fpga
::
BypassArgs
args
;
fpga
::
BypassArgs
args
;
args
.
convert_type
=
fpga
::
DATA_FP32_TO_FP16
;
args
.
layout_type
=
fpga
::
LAYOUT_NO_CONVERT
;
args
.
input_data_type
=
fpga
::
DATA_TYPE_FP32
;
args
.
output_data_type
=
fpga
::
DATA_TYPE_FP16
;
args
.
input_layout_type
=
fpga
::
LAYOUT_CHW
;
args
.
output_layout_type
=
fpga
::
LAYOUT_HWC
;
args
.
image
.
address
=
(
void
*
)
input_ptr
;
args
.
image
.
address
=
(
void
*
)
input_ptr
;
args
.
image
.
channels
=
input
->
dims
()[
1
];
args
.
image
.
channels
=
input
->
dims
()[
1
];
args
.
image
.
height
=
input
->
dims
()[
2
];
args
.
image
.
height
=
input
->
dims
()[
2
];
...
...
src/operators/kernel/fpga/conv_add_bn_kernel.cpp
浏览文件 @
dee0175f
...
@@ -23,7 +23,7 @@ template <>
...
@@ -23,7 +23,7 @@ template <>
bool
ConvAddBNKernel
<
FPGA
,
float
>::
Init
(
FusionConvAddBNParam
<
FPGA
>
*
param
)
{
bool
ConvAddBNKernel
<
FPGA
,
float
>::
Init
(
FusionConvAddBNParam
<
FPGA
>
*
param
)
{
bool
relu_enabled
=
false
;
bool
relu_enabled
=
false
;
auto
input
=
const_cast
<
Tensor
*>
(
param
->
Input
());
auto
input
=
const_cast
<
Tensor
*>
(
param
->
Input
());
auto
input_ptr
=
input
->
data
<
float
>
();
auto
bias
=
param
->
Bias
();
auto
bias
=
param
->
Bias
();
auto
bias_ptr
=
bias
->
data
<
float
>
();
auto
bias_ptr
=
bias
->
data
<
float
>
();
auto
filter
=
const_cast
<
Tensor
*>
(
param
->
Filter
());
auto
filter
=
const_cast
<
Tensor
*>
(
param
->
Filter
());
...
@@ -62,7 +62,7 @@ bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam<FPGA> *param) {
...
@@ -62,7 +62,7 @@ bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam<FPGA> *param) {
fpga
::
format_filter
(
filter
,
max_value
,
param
->
Groups
());
fpga
::
format_filter
(
filter
,
max_value
,
param
->
Groups
());
int
element_num_per_div
=
int
element_num_per_div
=
fpga
::
get_
element
_num_per_div
(
filter
,
param
->
Groups
());
fpga
::
get_
filter
_num_per_div
(
filter
,
param
->
Groups
());
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_ofm
(
out
);
fpga
::
format_ofm
(
out
);
...
@@ -80,7 +80,6 @@ void ConvAddBNKernel<FPGA, float>::Compute(
...
@@ -80,7 +80,6 @@ void ConvAddBNKernel<FPGA, float>::Compute(
const
FusionConvAddBNParam
<
FPGA
>
&
param
)
const
{
const
FusionConvAddBNParam
<
FPGA
>
&
param
)
const
{
fpga
::
ComputeFpgaConv
(
param
.
FpgaArgs
());
fpga
::
ComputeFpgaConv
(
param
.
FpgaArgs
());
}
}
template
class
ConvAddBNKernel
<
FPGA
,
float
>;
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
...
...
src/operators/kernel/fpga/conv_add_bn_relu_kernel.cpp
浏览文件 @
dee0175f
...
@@ -24,7 +24,6 @@ bool ConvAddBNReluKernel<FPGA, float>::Init(
...
@@ -24,7 +24,6 @@ bool ConvAddBNReluKernel<FPGA, float>::Init(
FusionConvAddBNReluParam
<
FPGA
>
*
param
)
{
FusionConvAddBNReluParam
<
FPGA
>
*
param
)
{
bool
relu_enabled
=
true
;
bool
relu_enabled
=
true
;
auto
input
=
const_cast
<
Tensor
*>
(
param
->
Input
());
auto
input
=
const_cast
<
Tensor
*>
(
param
->
Input
());
auto
input_ptr
=
input
->
data
<
float
>
();
const
Tensor
*
bias
=
param
->
Bias
();
const
Tensor
*
bias
=
param
->
Bias
();
auto
bias_ptr
=
bias
->
data
<
float
>
();
auto
bias_ptr
=
bias
->
data
<
float
>
();
auto
filter
=
const_cast
<
Tensor
*>
(
param
->
Filter
());
auto
filter
=
const_cast
<
Tensor
*>
(
param
->
Filter
());
...
@@ -58,14 +57,12 @@ bool ConvAddBNReluKernel<FPGA, float>::Init(
...
@@ -58,14 +57,12 @@ bool ConvAddBNReluKernel<FPGA, float>::Init(
float
max_value
=
fpga
::
filter_find_max
(
filter
);
float
max_value
=
fpga
::
filter_find_max
(
filter
);
fpga
::
format_filter
(
filter
,
max_value
,
param
->
Groups
());
fpga
::
format_filter
(
filter
,
max_value
,
param
->
Groups
());
auto
filter_ptr
=
filter
->
data
<
float
>
();
int
element_num_per_div
=
int
element_num_per_div
=
fpga
::
get_
element
_num_per_div
(
filter
,
param
->
Groups
());
fpga
::
get_
filter
_num_per_div
(
filter
,
param
->
Groups
());
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_ofm
(
out
);
fpga
::
format_ofm
(
out
);
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
fill_conv_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
fpga
::
fill_conv_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
...
@@ -80,7 +77,6 @@ void ConvAddBNReluKernel<FPGA, float>::Compute(
...
@@ -80,7 +77,6 @@ void ConvAddBNReluKernel<FPGA, float>::Compute(
const
FusionConvAddBNReluParam
<
FPGA
>
&
param
)
const
{
const
FusionConvAddBNReluParam
<
FPGA
>
&
param
)
const
{
fpga
::
ComputeFpgaConv
(
param
.
FpgaArgs
());
fpga
::
ComputeFpgaConv
(
param
.
FpgaArgs
());
}
}
template
class
ConvAddBNReluKernel
<
FPGA
,
float
>;
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
...
...
src/operators/kernel/fpga/conv_add_relu_kernel.cpp
浏览文件 @
dee0175f
...
@@ -23,7 +23,6 @@ template <>
...
@@ -23,7 +23,6 @@ template <>
bool
ConvAddReluKernel
<
FPGA
,
float
>::
Init
(
FusionConvAddReluParam
<
FPGA
>
*
param
)
{
bool
ConvAddReluKernel
<
FPGA
,
float
>::
Init
(
FusionConvAddReluParam
<
FPGA
>
*
param
)
{
bool
relu_enabled
=
true
;
bool
relu_enabled
=
true
;
auto
input
=
const_cast
<
Tensor
*>
(
param
->
Input
());
auto
input
=
const_cast
<
Tensor
*>
(
param
->
Input
());
auto
input_ptr
=
input
->
data
<
float
>
();
const
Tensor
*
bias
=
param
->
Bias
();
const
Tensor
*
bias
=
param
->
Bias
();
auto
bias_ptr
=
bias
->
data
<
float
>
();
auto
bias_ptr
=
bias
->
data
<
float
>
();
auto
filter
=
const_cast
<
Tensor
*>
(
param
->
Filter
());
auto
filter
=
const_cast
<
Tensor
*>
(
param
->
Filter
());
...
@@ -40,14 +39,12 @@ bool ConvAddReluKernel<FPGA, float>::Init(FusionConvAddReluParam<FPGA> *param) {
...
@@ -40,14 +39,12 @@ bool ConvAddReluKernel<FPGA, float>::Init(FusionConvAddReluParam<FPGA> *param) {
float
max_value
=
fpga
::
filter_find_max
(
filter
);
float
max_value
=
fpga
::
filter_find_max
(
filter
);
fpga
::
format_filter
(
filter
,
max_value
,
param
->
Groups
());
fpga
::
format_filter
(
filter
,
max_value
,
param
->
Groups
());
auto
filter_ptr
=
filter
->
data
<
float
>
();
int
element_num_per_div
=
int
element_num_per_div
=
fpga
::
get_
element
_num_per_div
(
filter
,
param
->
Groups
());
fpga
::
get_
filter
_num_per_div
(
filter
,
param
->
Groups
());
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_ofm
(
out
);
fpga
::
format_ofm
(
out
);
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
fill_conv_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
fpga
::
fill_conv_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
...
@@ -62,7 +59,6 @@ void ConvAddReluKernel<FPGA, float>::Compute(
...
@@ -62,7 +59,6 @@ void ConvAddReluKernel<FPGA, float>::Compute(
const
FusionConvAddReluParam
<
FPGA
>
&
param
)
const
{
const
FusionConvAddReluParam
<
FPGA
>
&
param
)
const
{
fpga
::
ComputeFpgaConv
(
param
.
FpgaArgs
());
fpga
::
ComputeFpgaConv
(
param
.
FpgaArgs
());
}
}
template
class
ConvAddReluKernel
<
FPGA
,
float
>;
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
...
...
src/operators/kernel/fpga/conv_bn_kernel.cpp
浏览文件 @
dee0175f
...
@@ -24,7 +24,6 @@ template <>
...
@@ -24,7 +24,6 @@ template <>
bool
ConvBNKernel
<
FPGA
,
float
>::
Init
(
FusionConvBNParam
<
FPGA
>
*
param
)
{
bool
ConvBNKernel
<
FPGA
,
float
>::
Init
(
FusionConvBNParam
<
FPGA
>
*
param
)
{
bool
relu_enabled
=
false
;
bool
relu_enabled
=
false
;
auto
input
=
const_cast
<
Tensor
*>
(
param
->
Input
());
auto
input
=
const_cast
<
Tensor
*>
(
param
->
Input
());
auto
input_ptr
=
input
->
data
<
float
>
();
auto
filter
=
const_cast
<
Tensor
*>
(
param
->
Filter
());
auto
filter
=
const_cast
<
Tensor
*>
(
param
->
Filter
());
auto
out
=
param
->
Output
();
auto
out
=
param
->
Output
();
auto
bn_mean_ptr
=
param
->
InputMean
()
->
data
<
float
>
();
auto
bn_mean_ptr
=
param
->
InputMean
()
->
data
<
float
>
();
...
@@ -55,14 +54,12 @@ bool ConvBNKernel<FPGA, float>::Init(FusionConvBNParam<FPGA> *param) {
...
@@ -55,14 +54,12 @@ bool ConvBNKernel<FPGA, float>::Init(FusionConvBNParam<FPGA> *param) {
float
max_value
=
fpga
::
filter_find_max
(
filter
);
float
max_value
=
fpga
::
filter_find_max
(
filter
);
fpga
::
format_filter
(
filter
,
max_value
,
param
->
Groups
());
fpga
::
format_filter
(
filter
,
max_value
,
param
->
Groups
());
auto
filter_ptr
=
filter
->
data
<
float
>
();
int
element_num_per_div
=
int
element_num_per_div
=
fpga
::
get_
element
_num_per_div
(
filter
,
param
->
Groups
());
fpga
::
get_
filter
_num_per_div
(
filter
,
param
->
Groups
());
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_ofm
(
out
);
fpga
::
format_ofm
(
out
);
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
fill_conv_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
fpga
::
fill_conv_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
...
@@ -77,7 +74,6 @@ void ConvBNKernel<FPGA, float>::Compute(
...
@@ -77,7 +74,6 @@ void ConvBNKernel<FPGA, float>::Compute(
const
FusionConvBNParam
<
FPGA
>
&
param
)
const
{
const
FusionConvBNParam
<
FPGA
>
&
param
)
const
{
fpga
::
ComputeFpgaConv
(
param
.
FpgaArgs
());
fpga
::
ComputeFpgaConv
(
param
.
FpgaArgs
());
}
}
template
class
ConvBNKernel
<
FPGA
,
float
>;
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
...
...
src/operators/kernel/fpga/conv_bn_relu_kernel.cpp
浏览文件 @
dee0175f
...
@@ -23,7 +23,6 @@ template <>
...
@@ -23,7 +23,6 @@ template <>
bool
ConvBNReluKernel
<
FPGA
,
float
>::
Init
(
FusionConvBNReluParam
<
FPGA
>
*
param
)
{
bool
ConvBNReluKernel
<
FPGA
,
float
>::
Init
(
FusionConvBNReluParam
<
FPGA
>
*
param
)
{
bool
relu_enabled
=
true
;
bool
relu_enabled
=
true
;
auto
input
=
const_cast
<
Tensor
*>
(
param
->
Input
());
auto
input
=
const_cast
<
Tensor
*>
(
param
->
Input
());
auto
input_ptr
=
input
->
data
<
float
>
();
auto
filter
=
const_cast
<
Tensor
*>
(
param
->
Filter
());
auto
filter
=
const_cast
<
Tensor
*>
(
param
->
Filter
());
auto
out
=
param
->
Output
();
auto
out
=
param
->
Output
();
auto
bn_mean_ptr
=
param
->
InputMean
()
->
data
<
float
>
();
auto
bn_mean_ptr
=
param
->
InputMean
()
->
data
<
float
>
();
...
@@ -52,27 +51,12 @@ bool ConvBNReluKernel<FPGA, float>::Init(FusionConvBNReluParam<FPGA> *param) {
...
@@ -52,27 +51,12 @@ bool ConvBNReluKernel<FPGA, float>::Init(FusionConvBNReluParam<FPGA> *param) {
float
max_value
=
fpga
::
filter_find_max
(
filter
);
float
max_value
=
fpga
::
filter_find_max
(
filter
);
fpga
::
format_filter
(
filter
,
max_value
,
param
->
Groups
());
fpga
::
format_filter
(
filter
,
max_value
,
param
->
Groups
());
auto
filter_ptr
=
filter
->
data
<
float
>
();
int
element_num_per_div
=
int
element_num_per_div
=
fpga
::
get_
element
_num_per_div
(
filter
,
param
->
Groups
());
fpga
::
get_
filter
_num_per_div
(
filter
,
param
->
Groups
());
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_ofm
(
out
);
fpga
::
format_ofm
(
out
);
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
fpga
::
WrapperConvArgs
convArgs
;
convArgs
.
group_num
=
(
uint32_t
)
param
->
Groups
();
convArgs
.
split_num
=
(
uint32_t
)
fpga
::
get_plit_num
(
filter
);
convArgs
.
filter_num
=
(
uint32_t
)
filter
->
dims
()[
0
];
convArgs
.
output
.
address
=
out_ptr
;
convArgs
.
output
.
scale_address
=
out
->
scale
;
convArgs
.
conv_args
=
(
fpga
::
ConvArgs
*
)
fpga
::
fpga_malloc
(
convArgs
.
split_num
*
sizeof
(
fpga
::
ConvArgs
));
param
->
SetFpgaArgs
(
convArgs
);
int
element_num
=
fpga
::
get_aligned_filter_element_num
(
filter
->
dims
()[
1
]
*
filter
->
dims
()[
2
]
*
filter
->
dims
()[
3
]);
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
fill_conv_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
fpga
::
fill_conv_arg
(
&
conv_arg
,
input
,
out
,
filter
,
relu_enabled
,
...
@@ -87,7 +71,6 @@ void ConvBNReluKernel<FPGA, float>::Compute(
...
@@ -87,7 +71,6 @@ void ConvBNReluKernel<FPGA, float>::Compute(
const
FusionConvBNReluParam
<
FPGA
>
&
param
)
const
{
const
FusionConvBNReluParam
<
FPGA
>
&
param
)
const
{
fpga
::
ComputeFpgaConv
(
param
.
FpgaArgs
());
fpga
::
ComputeFpgaConv
(
param
.
FpgaArgs
());
}
}
template
class
ConvBNReluKernel
<
FPGA
,
float
>;
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
...
...
src/operators/kernel/fpga/dropout_kernel.cpp
浏览文件 @
dee0175f
...
@@ -27,13 +27,7 @@ bool DropoutKernel<FPGA, float>::Init(DropoutParam<FPGA> *param) {
...
@@ -27,13 +27,7 @@ bool DropoutKernel<FPGA, float>::Init(DropoutParam<FPGA> *param) {
template
<
>
template
<
>
void
DropoutKernel
<
FPGA
,
float
>::
Compute
(
void
DropoutKernel
<
FPGA
,
float
>::
Compute
(
const
DropoutParam
<
FPGA
>
&
param
)
const
{
const
DropoutParam
<
FPGA
>
&
param
)
const
{}
// auto *input_x = param.InputX();
// auto *out = param.Out();
// auto input_x_ptr = input_x->data<float>();
// auto out_ptr = out->mutable_data<float>();
// out_ptr = const_cast<float *>(input_x_ptr);
}
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
...
...
src/operators/kernel/fpga/fc_relu_kernel.cpp
浏览文件 @
dee0175f
...
@@ -21,7 +21,6 @@ template <>
...
@@ -21,7 +21,6 @@ template <>
bool
FusionFcReluKernel
<
FPGA
,
float
>::
Init
(
FusionFcReluParam
<
FPGA
>
*
param
)
{
bool
FusionFcReluKernel
<
FPGA
,
float
>::
Init
(
FusionFcReluParam
<
FPGA
>
*
param
)
{
bool
relu_enabled
=
true
;
bool
relu_enabled
=
true
;
auto
input_x
=
const_cast
<
LoDTensor
*>
(
param
->
InputX
());
auto
input_x
=
const_cast
<
LoDTensor
*>
(
param
->
InputX
());
auto
input_x_ptr
=
input_x
->
data
<
float
>
();
auto
filter
=
const_cast
<
Tensor
*>
(
param
->
InputY
());
auto
filter
=
const_cast
<
Tensor
*>
(
param
->
InputY
());
auto
input_z
=
param
->
InputZ
();
auto
input_z
=
param
->
InputZ
();
auto
input_z_ptr
=
input_z
->
data
<
float
>
();
auto
input_z_ptr
=
input_z
->
data
<
float
>
();
...
@@ -47,12 +46,10 @@ bool FusionFcReluKernel<FPGA, float>::Init(FusionFcReluParam<FPGA> *param) {
...
@@ -47,12 +46,10 @@ bool FusionFcReluKernel<FPGA, float>::Init(FusionFcReluParam<FPGA> *param) {
filter
->
Resize
(
framework
::
make_ddim
({
num
,
filter_channel
,
height
,
width
}));
filter
->
Resize
(
framework
::
make_ddim
({
num
,
filter_channel
,
height
,
width
}));
float
max_value
=
fpga
::
filter_find_max
(
filter
);
float
max_value
=
fpga
::
filter_find_max
(
filter
);
fpga
::
format_filter
(
filter
,
max_value
,
1
);
fpga
::
format_filter
(
filter
,
max_value
,
1
);
auto
filter_ptr
=
filter
->
data
<
float
>
();
int
element_num_per_div
=
fpga
::
get_
element
_num_per_div
(
filter
,
1
);
int
element_num_per_div
=
fpga
::
get_
filter
_num_per_div
(
filter
,
1
);
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_ofm
(
out
);
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
fill_conv_arg
(
&
conv_arg
,
input_x
,
out
,
filter
,
relu_enabled
,
1
,
1
,
1
,
0
,
fpga
::
fill_conv_arg
(
&
conv_arg
,
input_x
,
out
,
filter
,
relu_enabled
,
1
,
1
,
1
,
0
,
...
...
src/operators/kernel/fpga/fusion_fc_kernel.cpp
浏览文件 @
dee0175f
...
@@ -22,7 +22,6 @@ template <>
...
@@ -22,7 +22,6 @@ template <>
bool
FusionFcKernel
<
FPGA
,
float
>::
Init
(
FusionFcParam
<
FPGA
>
*
param
)
{
bool
FusionFcKernel
<
FPGA
,
float
>::
Init
(
FusionFcParam
<
FPGA
>
*
param
)
{
bool
relu_enabled
=
false
;
bool
relu_enabled
=
false
;
auto
input_x
=
const_cast
<
LoDTensor
*>
(
param
->
InputX
());
auto
input_x
=
const_cast
<
LoDTensor
*>
(
param
->
InputX
());
auto
input_x_ptr
=
input_x
->
data
<
float
>
();
auto
filter
=
const_cast
<
Tensor
*>
(
param
->
InputY
());
auto
filter
=
const_cast
<
Tensor
*>
(
param
->
InputY
());
const
Tensor
*
input_z
=
param
->
InputZ
();
const
Tensor
*
input_z
=
param
->
InputZ
();
auto
input_z_ptr
=
input_z
->
data
<
float
>
();
auto
input_z_ptr
=
input_z
->
data
<
float
>
();
...
@@ -48,12 +47,10 @@ bool FusionFcKernel<FPGA, float>::Init(FusionFcParam<FPGA> *param) {
...
@@ -48,12 +47,10 @@ bool FusionFcKernel<FPGA, float>::Init(FusionFcParam<FPGA> *param) {
filter
->
Resize
(
framework
::
make_ddim
({
num
,
filter_channel
,
height
,
width
}));
filter
->
Resize
(
framework
::
make_ddim
({
num
,
filter_channel
,
height
,
width
}));
float
max_value
=
fpga
::
filter_find_max
(
filter
);
float
max_value
=
fpga
::
filter_find_max
(
filter
);
fpga
::
format_filter
(
filter
,
max_value
,
1
);
fpga
::
format_filter
(
filter
,
max_value
,
1
);
auto
filter_ptr
=
filter
->
data
<
float
>
();
int
element_num_per_div
=
fpga
::
get_
element
_num_per_div
(
filter
,
1
);
int
element_num_per_div
=
fpga
::
get_
filter
_num_per_div
(
filter
,
1
);
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
channel
);
fpga
::
format_ofm
(
out
);
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
WrapperConvArgs
conv_arg
;
fpga
::
fill_conv_arg
(
&
conv_arg
,
input_x
,
out
,
filter
,
relu_enabled
,
1
,
1
,
1
,
0
,
fpga
::
fill_conv_arg
(
&
conv_arg
,
input_x
,
out
,
filter
,
relu_enabled
,
1
,
1
,
1
,
0
,
...
...
src/operators/kernel/fpga/pool_kernel.cpp
浏览文件 @
dee0175f
...
@@ -50,9 +50,7 @@ bool PoolKernel<FPGA, float>::Init(PoolParam<FPGA> *param) {
...
@@ -50,9 +50,7 @@ bool PoolKernel<FPGA, float>::Init(PoolParam<FPGA> *param) {
template
<
>
template
<
>
void
PoolKernel
<
FPGA
,
float
>::
Compute
(
const
PoolParam
<
FPGA
>
&
param
)
const
{
void
PoolKernel
<
FPGA
,
float
>::
Compute
(
const
PoolParam
<
FPGA
>
&
param
)
const
{
#ifdef PADDLE_MOBILE_FPGA
fpga
::
ComputeFpgaPool
(
param
.
FpgaArgs
());
fpga
::
ComputeFpgaPool
(
param
.
FpgaArgs
());
#endif
}
}
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
...
...
src/operators/kernel/fpga/softmax_kernel.cpp
浏览文件 @
dee0175f
...
@@ -25,30 +25,41 @@ namespace operators {
...
@@ -25,30 +25,41 @@ namespace operators {
template
<
>
template
<
>
bool
SoftmaxKernel
<
FPGA
,
float
>::
Init
(
SoftmaxParam
<
FPGA
>
*
param
)
{
bool
SoftmaxKernel
<
FPGA
,
float
>::
Init
(
SoftmaxParam
<
FPGA
>
*
param
)
{
const
Tensor
*
input
=
param
->
InputX
();
const
Tensor
*
input
=
param
->
InputX
();
auto
input_ptr
=
input
->
data
<
float
>
();
auto
input_ptr
=
input
->
data
<
float
>
();
auto
output
=
param
->
Out
();
auto
output
_ptr
=
param
->
Out
();
auto
output_ptr
=
output
->
mutable_data
<
float
>
(
);
Tensor
*
floatInput
=
new
Tensor
(
*
input
);
fpga
::
BypassArgs
args
;
fpga
::
BypassArgs
args
;
args
.
convert_type
=
fpga
::
DATA_FP16_TO_FP32
;
args
.
input_layout_type
=
fpga
::
LAYOUT_HWC
;
args
.
layout_type
=
fpga
::
LAYOUT_NO_CONVERT
;
args
.
output_layout_type
=
fpga
::
LAYOUT_CHW
;
args
.
input_data_type
=
fpga
::
DATA_TYPE_FP16
;
args
.
output_data_type
=
fpga
::
DATA_TYPE_FP32
;
args
.
image
.
address
=
(
void
*
)(
input_ptr
);
args
.
image
.
address
=
(
void
*
)(
input_ptr
);
args
.
image
.
height
=
(
uint32_t
)
input
->
dims
()[
0
];
args
.
image
.
height
=
(
uint32_t
)
input
->
dims
()[
0
];
args
.
image
.
width
=
(
uint32_t
)
input
->
dims
()[
1
];
args
.
image
.
width
=
(
uint32_t
)
input
->
dims
()[
1
];
args
.
image
.
channels
=
1
;
args
.
image
.
channels
=
1
;
args
.
output
.
address
=
output_ptr
;
args
.
output
.
address
=
(
void
*
)
floatInput
->
mutable_data
<
float
>
();
param
->
SetFpgaArgs
(
args
);
param
->
SetFloatInput
(
floatInput
);
param
->
SetFpgaArgs
(
args
);
return
true
;
return
true
;
}
}
template
<
>
template
<
>
void
SoftmaxKernel
<
FPGA
,
float
>::
Compute
(
void
SoftmaxKernel
<
FPGA
,
float
>::
Compute
(
const
SoftmaxParam
<
FPGA
>
&
param
)
const
{
const
SoftmaxParam
<
FPGA
>
&
param
)
const
{
// SoftmaxCompute<float>(param);
DLOG
<<
"======================================= FPGA SoftMAX "
"==============================================="
;
const
Tensor
*
in_x
=
param
.
FloatInput
();
Tensor
*
out
=
param
.
Out
();
fpga
::
fpga_flush
((
void
*
)
in_x
->
data
<
float
>
(),
in_x
->
memory_size
());
fpga
::
PerformBypass
(
param
.
FpgaArgs
());
fpga
::
fpga_invalidate
(
out
->
data
<
float
>
(),
out
->
memory_size
());
auto
x_dims
=
in_x
->
dims
();
out
->
Resize
(
x_dims
);
math
::
SoftmaxFuntor
<
CPU
,
float
>
()(
in_x
,
out
);
}
}
template
class
SoftmaxKernel
<
FPGA
,
float
>;
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
...
...
src/operators/math/im2col.cpp
浏览文件 @
dee0175f
...
@@ -74,7 +74,7 @@ class Im2ColFunctor<ColFormat::kCFO, CPU, T> {
...
@@ -74,7 +74,7 @@ class Im2ColFunctor<ColFormat::kCFO, CPU, T> {
const
int
isize
=
im_height
;
const
int
isize
=
im_height
;
bool
pad1
=
padding
[
0
]
>
0
;
bool
pad1
=
padding
[
0
]
>
0
;
bool
pad2
=
bool
pad2
=
(
pad1
&&
(
pad1
&&
padding
[
1
]
&&
(((
isize
-
2
*
padding
[
0
]
+
filter_height
)
%
stride
[
0
]
==
0
)
?
1
:
0
));
(((
isize
-
2
*
padding
[
0
]
+
filter_height
)
%
stride
[
0
]
==
0
)
?
1
:
0
));
int
fill
=
isize
%
2
;
int
fill
=
isize
%
2
;
if
(
stride
[
0
]
==
1
&&
filter_height
==
3
&&
pad1
&&
pad2
&&
if
(
stride
[
0
]
==
1
&&
filter_height
==
3
&&
pad1
&&
pad2
&&
...
...
src/operators/math/math_function.cpp
浏览文件 @
dee0175f
...
@@ -36,13 +36,35 @@ void matmul<float>(const framework::Tensor &matrix_a, bool trans_a,
...
@@ -36,13 +36,35 @@ void matmul<float>(const framework::Tensor &matrix_a, bool trans_a,
int
N
=
dim_out
[
1
];
int
N
=
dim_out
[
1
];
int
K
=
(
!
trans_a
)
?
dim_a
[
1
]
:
dim_a
[
0
];
int
K
=
(
!
trans_a
)
?
dim_a
[
1
]
:
dim_a
[
0
];
if
(
trans_a
)
{
int
numel
=
matrix_a
.
numel
();
int
m
=
matrix_a
.
dims
()[
0
];
int
n
=
matrix_a
.
dims
()[
1
];
float
*
tmp
=
(
float
*
)(
matrix_a
.
data
<
float
>
());
float
*
a
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
numel
));
int
index
=
0
;
for
(
int
j
=
0
;
j
<
n
;
j
++
)
{
for
(
int
i
=
0
;
i
<
m
;
i
++
)
{
a
[
index
++
]
=
tmp
[
i
*
n
+
j
];
}
}
#ifdef _OPENMP
Sgemm_omp
(
M
,
N
,
K
,
alpha
,
a
,
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
,
bias
);
#else
Sgemm
(
M
,
N
,
K
,
alpha
,
a
,
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
,
bias
);
#endif
}
else
{
#ifdef _OPENMP
#ifdef _OPENMP
Sgemm_omp
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
Sgemm_omp
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
,
bias
);
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
,
bias
);
#else
#else
Sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
Sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
,
bias
);
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
,
bias
);
#endif
#endif
}
}
}
template
<
>
template
<
>
...
...
src/operators/math/pool_3x3.cpp
浏览文件 @
dee0175f
...
@@ -31,186 +31,43 @@ using std::min;
...
@@ -31,186 +31,43 @@ using std::min;
using
std
::
vector
;
using
std
::
vector
;
void
Pool3x3Avgs1p1
(
const
Tensor
*
input
,
Tensor
*
output
)
{
void
Pool3x3Avgs1p1
(
const
Tensor
*
input
,
Tensor
*
output
)
{
#if __ARM_NEON
#if __ARM_NEON
const
int
batch_size
=
input
->
dims
()[
0
];
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
input_channel
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
h_in
=
input
->
dims
()[
2
];
const
int
input_height
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
input_width
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
output_height
=
static_cast
<
int
>
(
output
->
dims
()[
2
]);
const
int
output_width
=
static_cast
<
int
>
(
output
->
dims
()[
3
]);
const
int
w_in
=
input
->
dims
()[
3
];
const
int
hxw
=
input_height
*
input_width
;
const
int
output_channels
=
output
->
dims
()[
1
];
const
int
h_out
=
output
->
dims
()[
2
];
const
int
l
=
input_height
;
const
int
w_out
=
output
->
dims
()[
3
];
const
int
outputdata_channel_stride
=
h_out
*
w_out
;
const
int
inputdata_channel_stride
=
h_in
*
w_in
;
const
int
input_batch_stride
=
output_channels
*
inputdata_channel_stride
;
const
int
output_batch_stride
=
output_channels
*
outputdata_channel_stride
;
float
*
out_data
=
output
->
data
<
float
>
();
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
coef
=
1.0
/
9.0
;
const
float
coef
=
1.0
/
9.0
;
for
(
int
k
=
0
;
k
<
batch_size
;
++
k
)
{
const
float
coef1
=
1.0
/
6.0
;
#pragma omp parallel for
const
float
coef2
=
1.0
/
4.0
;
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
const
float
*
input_seg
=
input_data
+
c
*
inputdata_channel_stride
;
float
*
output_seg
=
out_data
+
c
*
outputdata_channel_stride
;
// four corner point
output_seg
[
0
]
=
(
input_seg
[
0
]
+
input_seg
[
1
]
+
input_seg
[
w_in
]
+
input_seg
[
w_in
+
1
])
*
coef
;
output_seg
[
w_out
-
1
]
=
(
input_seg
[
w_in
-
2
]
+
input_seg
[
w_in
-
1
]
+
input_seg
[
w_in
*
2
-
2
]
+
input_seg
[
2
*
w_in
-
1
])
*
coef
;
output_seg
[(
h_out
-
1
)
*
w_out
]
=
(
input_seg
[(
h_in
-
2
)
*
w_in
]
+
input_seg
[(
h_in
-
2
)
*
w_in
+
1
]
+
input_seg
[(
h_in
-
1
)
*
w_in
]
+
input_seg
[(
h_in
-
1
)
*
w_in
+
1
])
*
coef
;
output_seg
[
h_out
*
w_out
-
1
]
=
(
input_seg
[
h_in
*
w_in
-
1
]
+
input_seg
[
h_in
*
w_in
-
2
]
+
input_seg
[(
h_in
-
1
)
*
w_in
-
1
]
+
input_seg
[(
h_in
-
1
)
*
w_in
-
2
])
*
coef
;
// left side & right side
for
(
int
i
=
1
;
i
<
h_in
-
1
;
++
i
)
{
output_seg
[
i
*
w_out
]
=
(
input_seg
[
i
*
w_in
-
w_in
]
+
input_seg
[
i
*
w_in
-
w_in
+
1
]
+
input_seg
[
i
*
w_in
]
+
input_seg
[
i
*
w_in
+
1
]
+
input_seg
[
i
*
w_in
+
w_in
]
+
input_seg
[
i
*
w_in
+
w_in
+
1
])
*
coef
;
output_seg
[
i
*
w_out
+
w_out
-
1
]
=
(
input_seg
[
i
*
w_in
-
w_in
+
w_in
-
2
]
+
input_seg
[
i
*
w_in
-
w_in
+
1
+
w_in
-
2
]
+
input_seg
[
i
*
w_in
+
w_in
-
2
]
+
input_seg
[
i
*
w_in
+
1
+
w_in
-
2
]
+
input_seg
[
i
*
w_in
+
w_in
+
w_in
-
2
]
+
input_seg
[
i
*
w_in
+
w_in
+
1
+
w_in
-
2
])
*
coef
;
}
// top 1 row & bottom 1 row
const
float
*
input_tmp
=
input_seg
;
float32x4_t
in0
,
in1
,
in2
,
in3
,
in4
,
in5
,
in6
,
in7
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
sum
,
out0
;
float32x4_t
v_coef
=
vdupq_n_f32
(
coef
);
in0
=
vld1q_f32
(
input_tmp
);
in2
=
vld1q_f32
(
input_tmp
+
w_in
);
const
float
*
input_tmp_end
=
input_tmp
+
(
h_in
-
2
)
*
w_in
;
in4
=
vld1q_f32
(
input_tmp_end
);
in6
=
vld1q_f32
(
input_tmp_end
+
w_in
);
int
c_mid
=
w_out
-
2
;
auto
output_ptr
=
output_seg
+
1
;
for
(;
c_mid
>
3
;
c_mid
-=
4
)
{
in1
=
vld1q_f32
(
input_tmp
+
4
);
in3
=
vld1q_f32
(
input_tmp
+
w_in
+
4
);
tmp0
=
vextq_f32
(
in0
,
in1
,
1
);
tmp1
=
vextq_f32
(
in0
,
in1
,
2
);
tmp2
=
vextq_f32
(
in2
,
in3
,
1
);
tmp3
=
vextq_f32
(
in2
,
in3
,
2
);
sum
=
vaddq_f32
(
in0
,
tmp0
);
sum
=
vaddq_f32
(
sum
,
tmp1
);
sum
=
vaddq_f32
(
sum
,
in2
);
sum
=
vaddq_f32
(
sum
,
tmp2
);
sum
=
vaddq_f32
(
sum
,
tmp3
);
vst1q_f32
(
output_ptr
,
vmulq_f32
(
sum
,
v_coef
));
in5
=
vld1q_f32
(
input_tmp_end
+
4
);
in7
=
vld1q_f32
(
input_tmp_end
+
w_in
+
4
);
tmp0
=
vextq_f32
(
in4
,
in5
,
1
);
tmp1
=
vextq_f32
(
in4
,
in5
,
2
);
tmp2
=
vextq_f32
(
in6
,
in7
,
1
);
tmp3
=
vextq_f32
(
in6
,
in7
,
2
);
sum
=
vaddq_f32
(
in0
,
tmp0
);
sum
=
vaddq_f32
(
sum
,
tmp1
);
sum
=
vaddq_f32
(
sum
,
in2
);
sum
=
vaddq_f32
(
sum
,
tmp2
);
sum
=
vaddq_f32
(
sum
,
tmp3
);
vst1q_f32
(
output_ptr
+
(
h_out
-
1
)
*
w_out
,
vmulq_f32
(
sum
,
v_coef
));
// can optimize to each 8 stride.
input_tmp
+=
4
;
input_tmp_end
+=
4
;
output_ptr
+=
4
;
in0
=
in1
;
in2
=
in3
;
in4
=
in5
;
in6
=
in7
;
}
// top right remain
float32x4_t
pad0
=
vdupq_n_f32
(
input_seg
[
w_in
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_seg
[
2
*
w_in
-
1
]);
tmp0
=
vextq_f32
(
in0
,
pad0
,
1
);
tmp1
=
vextq_f32
(
in0
,
pad0
,
2
);
tmp2
=
vextq_f32
(
in2
,
pad1
,
2
);
tmp3
=
vextq_f32
(
in2
,
pad1
,
2
);
sum
=
vaddq_f32
(
in0
,
tmp0
);
sum
=
vaddq_f32
(
sum
,
tmp1
);
sum
=
vaddq_f32
(
sum
,
in2
);
sum
=
vaddq_f32
(
sum
,
tmp2
);
sum
=
vaddq_f32
(
sum
,
tmp3
);
out0
=
vmulq_f32
(
sum
,
v_coef
);
for
(
int
i
=
0
;
i
<
c_mid
;
++
i
)
{
if
(
i
==
0
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
0
);
}
if
(
i
==
1
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
1
);
}
if
(
i
==
2
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
2
);
}
}
// bottom_right remain
float32x4_t
pad2
=
vdupq_n_f32
(
input_seg
[(
h_in
-
1
)
*
w_in
-
1
]);
float32x4_t
pad3
=
vdupq_n_f32
(
input_seg
[
h_in
*
w_in
-
1
]);
tmp0
=
vextq_f32
(
in4
,
pad2
,
1
);
tmp1
=
vextq_f32
(
in4
,
pad2
,
2
);
tmp2
=
vextq_f32
(
in6
,
pad3
,
2
);
tmp3
=
vextq_f32
(
in6
,
pad3
,
2
);
sum
=
vaddq_f32
(
in4
,
tmp0
);
sum
=
vaddq_f32
(
sum
,
tmp1
);
sum
=
vaddq_f32
(
sum
,
in6
);
sum
=
vaddq_f32
(
sum
,
tmp2
);
sum
=
vaddq_f32
(
sum
,
tmp3
);
out0
=
vmulq_f32
(
sum
,
v_coef
);
for
(
int
i
=
0
;
i
<
c_mid
;
++
i
)
{
float32x4_t
v_coef
=
vdupq_n_f32
(
coef
);
if
(
i
==
0
)
{
float32x4_t
v_coef1
=
vdupq_n_f32
(
coef1
);
vst1q_lane_f32
(
output_ptr
+
(
h_out
-
1
)
*
w_out
+
i
,
out0
,
0
);
}
if
(
i
==
1
)
{
vst1q_lane_f32
(
output_ptr
+
(
h_out
-
1
)
*
w_out
+
i
,
out0
,
1
);
}
if
(
i
==
2
)
{
vst1q_lane_f32
(
output_ptr
+
(
h_out
-
1
)
*
w_out
+
i
,
out0
,
2
);
}
}
// mid
for
(
int
j
=
0
;
j
<
h_out
-
2
;
++
j
)
{
output_ptr
=
output_seg
+
w_out
*
(
j
+
1
)
+
1
;
input_tmp
=
input_seg
+
j
*
w_in
;
in0
=
vld1q_f32
(
input_tmp
);
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
in2
=
vld1q_f32
(
input_tmp
+
w_in
);
#pragma omp parallel for
in4
=
vld1q_f32
(
input_tmp
+
2
*
w_in
);
for
(
int
c
=
0
;
c
<
input_channel
;
c
++
)
{
c_mid
=
w_out
-
2
;
const
float
*
input_data
=
input
->
data
<
float
>
()
+
c
*
hxw
;
for
(;
c_mid
>
3
;
c_mid
-=
4
)
{
float
*
output_data
=
output
->
data
<
float
>
()
+
c
*
hxw
;
in1
=
vld1q_f32
(
input_tmp
+
4
);
in3
=
vld1q_f32
(
input_tmp
+
w_in
+
4
);
for
(
int
i
=
1
;
i
<
output_height
-
1
;
i
++
)
{
in5
=
vld1q_f32
(
input_tmp
+
2
*
w_in
+
4
);
float
*
output_ptr
;
float32x4_t
in0
,
in1
,
in2
,
in3
,
in4
,
in5
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
out0
;
for
(
int
m
=
1
;
m
<
output_width
-
4
;
m
+=
4
)
{
output_ptr
=
output_data
+
i
*
output_width
+
m
;
in0
=
vld1q_f32
(
input_data
+
(
i
-
1
)
*
input_width
+
m
-
1
);
in1
=
vld1q_f32
(
input_data
+
(
i
-
1
)
*
input_width
+
m
+
3
);
in2
=
vld1q_f32
(
input_data
+
i
*
input_width
+
m
-
1
);
in3
=
vld1q_f32
(
input_data
+
i
*
input_width
+
m
+
3
);
in4
=
vld1q_f32
(
input_data
+
(
i
+
1
)
*
input_width
+
m
-
1
);
in5
=
vld1q_f32
(
input_data
+
(
i
+
1
)
*
input_width
+
m
+
3
);
tmp0
=
vextq_f32
(
in0
,
in1
,
1
);
tmp0
=
vextq_f32
(
in0
,
in1
,
1
);
tmp1
=
vextq_f32
(
in0
,
in1
,
2
);
tmp1
=
vextq_f32
(
in0
,
in1
,
2
);
...
@@ -219,63 +76,383 @@ void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
...
@@ -219,63 +76,383 @@ void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
tmp4
=
vextq_f32
(
in4
,
in5
,
1
);
tmp4
=
vextq_f32
(
in4
,
in5
,
1
);
tmp5
=
vextq_f32
(
in4
,
in5
,
2
);
tmp5
=
vextq_f32
(
in4
,
in5
,
2
);
sum
=
vaddq_f32
(
in0
,
tmp0
);
out0
=
in0
;
sum
=
vaddq_f32
(
sum
,
tmp1
);
out0
=
vaddq_f32
(
out0
,
tmp0
);
sum
=
vaddq_f32
(
sum
,
in2
);
out0
=
vaddq_f32
(
out0
,
tmp1
);
sum
=
vaddq_f32
(
sum
,
tmp2
);
out0
=
vaddq_f32
(
out0
,
in2
);
sum
=
vaddq_f32
(
sum
,
tmp3
);
out0
=
vaddq_f32
(
out0
,
tmp2
);
sum
=
vaddq_f32
(
sum
,
in4
);
out0
=
vaddq_f32
(
out0
,
tmp3
);
sum
=
vaddq_f32
(
sum
,
tmp4
);
out0
=
vaddq_f32
(
out0
,
in4
);
sum
=
vaddq_f32
(
sum
,
tmp5
);
out0
=
vaddq_f32
(
out0
,
tmp4
);
out0
=
vaddq_f32
(
out0
,
tmp5
);
out0
=
vmulq_f32
(
sum
,
v_coef
);
vst1q_f32
(
output_ptr
,
out0
);
vst1q_f32
(
output_ptr
,
vmulq_f32
(
out0
,
v_coef
));
output_ptr
+=
4
;
}
input_tmp
+=
4
;
int
m
;
in0
=
in1
;
for
(
m
=
1
;
(
m
+
3
)
<
output_width
-
1
;
m
=
m
+
4
)
{
in2
=
in3
;
in4
=
in5
;
}
}
// mid remain
float32x4_t
pad0
=
vdupq_n_f32
(
input_seg
[(
j
+
1
)
*
w_in
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_seg
[(
j
+
2
)
*
w_in
-
1
]);
float32x4_t
pad2
=
vdupq_n_f32
(
input_seg
[(
j
+
2
)
*
w_in
-
1
]);
tmp0
=
vextq_f32
(
in0
,
pad0
,
1
);
for
(
int
j
=
m
;
j
<
output_width
-
1
;
j
++
)
{
tmp1
=
vextq_f32
(
in0
,
pad0
,
2
);
output_data
[
i
*
output_width
+
j
]
=
tmp2
=
vextq_f32
(
in2
,
pad1
,
1
);
input_data
[(
i
-
1
)
*
input_width
+
j
-
1
]
+
tmp3
=
vextq_f32
(
in2
,
pad1
,
2
);
input_data
[(
i
-
1
)
*
input_width
+
j
]
+
tmp4
=
vextq_f32
(
in4
,
pad2
,
1
);
input_data
[(
i
-
1
)
*
input_width
+
j
+
1
]
+
tmp5
=
vextq_f32
(
in4
,
pad2
,
2
);
input_data
[(
i
)
*
input_width
+
j
-
1
]
+
input_data
[(
i
)
*
input_width
+
j
]
+
input_data
[(
i
)
*
input_width
+
j
+
1
]
+
input_data
[(
i
+
1
)
*
input_width
+
j
-
1
]
+
input_data
[(
i
+
1
)
*
input_width
+
j
]
+
input_data
[(
i
+
1
)
*
input_width
+
j
+
1
];
output_data
[
i
*
output_width
+
j
]
=
output_data
[
i
*
output_width
+
j
]
*
coef
;
}
}
sum
=
vaddq_f32
(
in0
,
tmp0
);
output_data
[
0
]
=
sum
=
vaddq_f32
(
sum
,
tmp1
);
input_data
[
0
]
+
input_data
[
1
]
+
input_data
[
l
]
+
input_data
[
l
+
1
];
sum
=
vaddq_f32
(
sum
,
in2
);
output_data
[
l
-
1
]
=
input_data
[
l
-
2
]
+
input_data
[
l
-
1
]
+
sum
=
vaddq_f32
(
sum
,
tmp2
);
input_data
[
2
*
l
-
2
]
+
input_data
[
2
*
l
-
1
];
sum
=
vaddq_f32
(
sum
,
tmp3
);
output_data
[(
l
-
1
)
*
l
]
=
sum
=
vaddq_f32
(
sum
,
in4
);
input_data
[(
l
-
2
)
*
l
]
+
input_data
[(
l
-
2
)
*
l
+
1
]
+
sum
=
vaddq_f32
(
sum
,
tmp4
);
input_data
[(
l
-
1
)
*
l
]
+
input_data
[(
l
-
1
)
*
l
+
1
];
sum
=
vaddq_f32
(
sum
,
tmp5
);
output_data
[
l
*
l
-
1
]
=
input_data
[(
l
-
2
)
*
(
l
+
1
)]
+
out0
=
vmulq_f32
(
sum
,
v_coef
);
input_data
[(
l
-
2
)
*
(
l
+
1
)
+
1
]
+
input_data
[
l
*
l
-
2
]
+
input_data
[
l
*
l
-
1
];
output_data
[
0
]
=
output_data
[
0
]
*
coef2
;
output_data
[
l
-
1
]
=
output_data
[
l
-
1
]
*
coef2
;
output_data
[(
l
-
1
)
*
l
]
=
output_data
[(
l
-
1
)
*
l
]
*
coef2
;
output_data
[
l
*
l
-
1
]
=
output_data
[
l
*
l
-
1
]
*
coef2
;
for
(
int
i
=
1
;
i
<
l
-
1
;
++
i
)
{
output_data
[
i
*
l
]
=
input_data
[
i
*
l
-
l
]
+
input_data
[
i
*
l
-
l
+
1
]
+
input_data
[
i
*
l
]
+
input_data
[
i
*
l
+
1
]
+
input_data
[
i
*
l
+
l
]
+
input_data
[
i
*
l
+
l
+
1
];
output_data
[
i
*
l
+
l
-
1
]
=
input_data
[
i
*
l
+
l
-
1
-
l
-
1
]
+
input_data
[
i
*
l
+
l
-
1
-
l
]
+
input_data
[
i
*
l
+
l
-
1
-
1
]
+
input_data
[
i
*
l
+
l
-
1
]
+
input_data
[
i
*
l
+
l
-
1
+
l
-
1
]
+
input_data
[
i
*
l
+
l
-
1
+
l
];
output_data
[
i
*
l
]
=
output_data
[
i
*
l
]
*
coef1
;
output_data
[
i
*
l
+
l
-
1
]
=
output_data
[
i
*
l
+
l
-
1
]
*
coef1
;
}
for
(
int
i
=
0
;
i
<
c_mid
;
++
i
)
{
int
m
;
if
(
i
==
0
)
{
for
(
m
=
1
;
m
<
output_width
-
4
;
m
+=
4
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
0
);
float
*
output_ptr
=
output_data
+
m
;
}
float32x4_t
in0
,
in1
,
in2
,
in3
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
out0
;
if
(
i
==
1
)
{
in0
=
vld1q_f32
(
input_data
+
m
-
1
);
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
1
);
in1
=
vld1q_f32
(
input_data
+
m
+
3
);
}
in2
=
vld1q_f32
(
input_data
+
input_width
+
m
-
1
);
if
(
i
==
2
)
{
in3
=
vld1q_f32
(
input_data
+
input_width
+
m
+
3
);
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
2
);
tmp0
=
vextq_f32
(
in0
,
in1
,
1
);
}
tmp1
=
vextq_f32
(
in0
,
in1
,
2
);
}
tmp2
=
vextq_f32
(
in2
,
in3
,
1
);
tmp3
=
vextq_f32
(
in2
,
in3
,
2
);
out0
=
in0
;
out0
=
vaddq_f32
(
out0
,
tmp0
);
out0
=
vaddq_f32
(
out0
,
tmp1
);
out0
=
vaddq_f32
(
out0
,
in2
);
out0
=
vaddq_f32
(
out0
,
tmp2
);
out0
=
vaddq_f32
(
out0
,
tmp3
);
vst1q_f32
(
output_ptr
,
vmulq_f32
(
out0
,
v_coef1
));
}
for
(
m
=
1
;
(
m
+
3
)
<
output_width
-
1
;
m
+=
4
)
{
}
for
(
int
j
=
m
;
j
<
output_width
-
1
;
j
++
)
{
output_data
[
j
]
=
input_data
[
j
-
1
]
+
input_data
[
j
]
+
input_data
[
j
+
1
]
+
input_data
[
input_width
+
j
-
1
]
+
input_data
[
input_width
+
j
]
+
input_data
[
input_width
+
j
+
1
];
output_data
[
j
]
=
output_data
[
j
]
*
coef1
;
}
for
(
m
=
1
;
m
<
output_width
-
4
;
m
+=
4
)
{
float
*
output_ptr
=
output_data
+
(
output_height
-
1
)
*
output_width
+
m
;
float32x4_t
in0
,
in1
,
in2
,
in3
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
out0
;
in0
=
vld1q_f32
(
input_data
+
(
output_height
-
2
)
*
input_width
+
m
-
1
);
in1
=
vld1q_f32
(
input_data
+
(
output_height
-
2
)
*
input_width
+
m
+
3
);
in2
=
vld1q_f32
(
input_data
+
(
output_height
-
1
)
*
input_width
+
m
-
1
);
in3
=
vld1q_f32
(
input_data
+
(
output_height
-
1
)
*
input_width
+
m
+
3
);
tmp0
=
vextq_f32
(
in0
,
in1
,
1
);
tmp1
=
vextq_f32
(
in0
,
in1
,
2
);
tmp2
=
vextq_f32
(
in2
,
in3
,
1
);
tmp3
=
vextq_f32
(
in2
,
in3
,
2
);
out0
=
in0
;
out0
=
vaddq_f32
(
out0
,
tmp0
);
out0
=
vaddq_f32
(
out0
,
tmp1
);
out0
=
vaddq_f32
(
out0
,
in2
);
out0
=
vaddq_f32
(
out0
,
tmp2
);
out0
=
vaddq_f32
(
out0
,
tmp3
);
vst1q_f32
(
output_ptr
,
vmulq_f32
(
out0
,
v_coef1
));
}
for
(
m
=
1
;
(
m
+
3
)
<
output_width
-
1
;
m
=
m
+
4
)
{
}
for
(
int
j
=
m
;
j
<
output_width
-
1
;
j
++
)
{
output_data
[(
output_height
-
1
)
*
input_width
+
j
]
=
input_data
[(
output_height
-
2
)
*
input_width
+
j
-
1
]
+
input_data
[(
output_height
-
2
)
*
input_width
+
j
]
+
input_data
[(
output_height
-
2
)
*
input_width
+
j
+
1
]
+
input_data
[(
output_height
-
1
)
*
input_width
+
j
-
1
]
+
input_data
[(
output_height
-
1
)
*
input_width
+
j
]
+
input_data
[(
output_height
-
1
)
*
input_width
+
j
+
1
];
output_data
[(
output_height
-
1
)
*
output_width
+
j
]
=
output_data
[(
output_height
-
1
)
*
output_width
+
j
]
*
coef1
;
}
}
// input_data += inputdata_channel_stride;
// out_data += outputdata_channel_stride;
}
}
input_data
+=
input_batch_stride
;
out_data
+=
output_batch_stride
;
}
}
// const int batch_size = input->dims()[0];
//
// const int h_in = input->dims()[2];
//
// const int w_in = input->dims()[3];
//
// const int output_channels = output->dims()[1];
//
// const int h_out = output->dims()[2];
// const int w_out = output->dims()[3];
// const int outputdata_channel_stride = h_out * w_out;
// const int inputdata_channel_stride = h_in * w_in;
// const int input_batch_stride = output_channels * inputdata_channel_stride;
// const int output_batch_stride = output_channels *
// outputdata_channel_stride; float *out_data = output->data<float>(); const
// float *input_data = input->data<float>();
//
// const float coef = 1.0 / 9.0;
// for (int k = 0; k < batch_size; ++k) {
//#pragma omp parallel for
// for (int c = 0; c < output_channels; ++c) {
// const float *input_seg = input_data + c * inputdata_channel_stride;
// float *output_seg = out_data + c * outputdata_channel_stride;
// // four corner point
// output_seg[0] = (input_seg[0] + input_seg[1] + input_seg[w_in] +
// input_seg[w_in + 1]) *
// coef;
// output_seg[w_out - 1] =
// (input_seg[w_in - 2] + input_seg[w_in - 1] + input_seg[w_in * 2 -
// 2] +
// input_seg[2 * w_in - 1]) *
// coef;
// output_seg[(h_out - 1) * w_out] =
// (input_seg[(h_in - 2) * w_in] + input_seg[(h_in - 2) * w_in + 1] +
// input_seg[(h_in - 1) * w_in] + input_seg[(h_in - 1) * w_in + 1])
// *
// coef;
// output_seg[h_out * w_out - 1] =
// (input_seg[h_in * w_in - 1] + input_seg[h_in * w_in - 2] +
// input_seg[(h_in - 1) * w_in - 1] +
// input_seg[(h_in - 1) * w_in - 2]) *
// coef;
// // left side & right side
// for (int i = 1; i < h_in - 1; ++i) {
// output_seg[i * w_out] =
// (input_seg[i * w_in - w_in] + input_seg[i * w_in - w_in + 1] +
// input_seg[i * w_in] + input_seg[i * w_in + 1] +
// input_seg[i * w_in + w_in] + input_seg[i * w_in + w_in + 1]) *
// coef;
// output_seg[i * w_out + w_out - 1] =
// (input_seg[i * w_in - w_in + w_in - 2] +
// input_seg[i * w_in - w_in + 1 + w_in - 2] +
// input_seg[i * w_in + w_in - 2] +
// input_seg[i * w_in + 1 + w_in - 2] +
// input_seg[i * w_in + w_in + w_in - 2] +
// input_seg[i * w_in + w_in + 1 + w_in - 2]) *
// coef;
// }
// // top 1 row & bottom 1 row
// const float *input_tmp = input_seg;
//
// float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1, tmp2,
// tmp3, tmp4, tmp5, sum, out0;
// float32x4_t v_coef = vdupq_n_f32(coef);
// in0 = vld1q_f32(input_tmp);
// in2 = vld1q_f32(input_tmp + w_in);
// const float *input_tmp_end = input_tmp + (h_in - 2) * w_in;
// in4 = vld1q_f32(input_tmp_end);
// in6 = vld1q_f32(input_tmp_end + w_in);
// int c_mid = w_out - 2;
// auto output_ptr = output_seg + 1;
// for (; c_mid > 3; c_mid -= 4) {
// in1 = vld1q_f32(input_tmp + 4);
// in3 = vld1q_f32(input_tmp + w_in + 4);
//
// tmp0 = vextq_f32(in0, in1, 1);
// tmp1 = vextq_f32(in0, in1, 2);
//
// tmp2 = vextq_f32(in2, in3, 1);
// tmp3 = vextq_f32(in2, in3, 2);
//
// sum = vaddq_f32(in0, tmp0);
// sum = vaddq_f32(sum, tmp1);
// sum = vaddq_f32(sum, in2);
// sum = vaddq_f32(sum, tmp2);
// sum = vaddq_f32(sum, tmp3);
//
// vst1q_f32(output_ptr, vmulq_f32(sum, v_coef));
//
// in5 = vld1q_f32(input_tmp_end + 4);
// in7 = vld1q_f32(input_tmp_end + w_in + 4);
//
// tmp0 = vextq_f32(in4, in5, 1);
// tmp1 = vextq_f32(in4, in5, 2);
// tmp2 = vextq_f32(in6, in7, 1);
// tmp3 = vextq_f32(in6, in7, 2);
//
// sum = vaddq_f32(in0, tmp0);
// sum = vaddq_f32(sum, tmp1);
// sum = vaddq_f32(sum, in2);
// sum = vaddq_f32(sum, tmp2);
// sum = vaddq_f32(sum, tmp3);
//
// vst1q_f32(output_ptr + (h_out - 1) * w_out, vmulq_f32(sum, v_coef));
//
// // can optimize to each 8 stride.
// input_tmp += 4;
// input_tmp_end += 4;
// output_ptr += 4;
// in0 = in1;
// in2 = in3;
// in4 = in5;
// in6 = in7;
// }
// // top right remain
// float32x4_t pad0 = vdupq_n_f32(input_seg[w_in - 1]);
// float32x4_t pad1 = vdupq_n_f32(input_seg[2 * w_in - 1]);
//
// tmp0 = vextq_f32(in0, pad0, 1);
// tmp1 = vextq_f32(in0, pad0, 2);
// tmp2 = vextq_f32(in2, pad1, 2);
// tmp3 = vextq_f32(in2, pad1, 2);
//
// sum = vaddq_f32(in0, tmp0);
// sum = vaddq_f32(sum, tmp1);
// sum = vaddq_f32(sum, in2);
// sum = vaddq_f32(sum, tmp2);
// sum = vaddq_f32(sum, tmp3);
// out0 = vmulq_f32(sum, v_coef);
//
// for (int i = 0; i < c_mid; ++i) {
// if (i == 0) {
// vst1q_lane_f32(output_ptr + i, out0, 0);
// }
// if (i == 1) {
// vst1q_lane_f32(output_ptr + i, out0, 1);
// }
// if (i == 2) {
// vst1q_lane_f32(output_ptr + i, out0, 2);
// }
// }
//
// // bottom_right remain
// float32x4_t pad2 = vdupq_n_f32(input_seg[(h_in - 1) * w_in - 1]);
// float32x4_t pad3 = vdupq_n_f32(input_seg[h_in * w_in - 1]);
//
// tmp0 = vextq_f32(in4, pad2, 1);
// tmp1 = vextq_f32(in4, pad2, 2);
// tmp2 = vextq_f32(in6, pad3, 2);
// tmp3 = vextq_f32(in6, pad3, 2);
//
// sum = vaddq_f32(in4, tmp0);
// sum = vaddq_f32(sum, tmp1);
// sum = vaddq_f32(sum, in6);
// sum = vaddq_f32(sum, tmp2);
// sum = vaddq_f32(sum, tmp3);
// out0 = vmulq_f32(sum, v_coef);
//
// for (int i = 0; i < c_mid; ++i) {
// if (i == 0) {
// vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, out0, 0);
// }
// if (i == 1) {
// vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, out0, 1);
// }
// if (i == 2) {
// vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, out0, 2);
// }
// }
// // mid
// for (int j = 0; j < h_out - 2; ++j) {
// output_ptr = output_seg + w_out * (j + 1) + 1;
// input_tmp = input_seg + j * w_in;
//
// in0 = vld1q_f32(input_tmp);
// in2 = vld1q_f32(input_tmp + w_in);
// in4 = vld1q_f32(input_tmp + 2 * w_in);
// c_mid = w_out - 2;
// for (; c_mid > 3; c_mid -= 4) {
// in1 = vld1q_f32(input_tmp + 4);
// in3 = vld1q_f32(input_tmp + w_in + 4);
// in5 = vld1q_f32(input_tmp + 2 * w_in + 4);
//
// tmp0 = vextq_f32(in0, in1, 1);
// tmp1 = vextq_f32(in0, in1, 2);
// tmp2 = vextq_f32(in2, in3, 1);
// tmp3 = vextq_f32(in2, in3, 2);
// tmp4 = vextq_f32(in4, in5, 1);
// tmp5 = vextq_f32(in4, in5, 2);
//
// sum = vaddq_f32(in0, tmp0);
// sum = vaddq_f32(sum, tmp1);
// sum = vaddq_f32(sum, in2);
// sum = vaddq_f32(sum, tmp2);
// sum = vaddq_f32(sum, tmp3);
// sum = vaddq_f32(sum, in4);
// sum = vaddq_f32(sum, tmp4);
// sum = vaddq_f32(sum, tmp5);
//
// out0 = vmulq_f32(sum, v_coef);
// vst1q_f32(output_ptr, out0);
// output_ptr += 4;
// input_tmp += 4;
// in0 = in1;
// in2 = in3;
// in4 = in5;
// }
// // mid remain
// float32x4_t pad0 = vdupq_n_f32(input_seg[(j + 1) * w_in - 1]);
// float32x4_t pad1 = vdupq_n_f32(input_seg[(j + 2) * w_in - 1]);
// float32x4_t pad2 = vdupq_n_f32(input_seg[(j + 2) * w_in - 1]);
//
// tmp0 = vextq_f32(in0, pad0, 1);
// tmp1 = vextq_f32(in0, pad0, 2);
// tmp2 = vextq_f32(in2, pad1, 1);
// tmp3 = vextq_f32(in2, pad1, 2);
// tmp4 = vextq_f32(in4, pad2, 1);
// tmp5 = vextq_f32(in4, pad2, 2);
//
// sum = vaddq_f32(in0, tmp0);
// sum = vaddq_f32(sum, tmp1);
// sum = vaddq_f32(sum, in2);
// sum = vaddq_f32(sum, tmp2);
// sum = vaddq_f32(sum, tmp3);
// sum = vaddq_f32(sum, in4);
// sum = vaddq_f32(sum, tmp4);
// sum = vaddq_f32(sum, tmp5);
// out0 = vmulq_f32(sum, v_coef);
//
// for (int i = 0; i < c_mid; ++i) {
// if (i == 0) {
// vst1q_lane_f32(output_ptr + i, out0, 0);
// }
// if (i == 1) {
// vst1q_lane_f32(output_ptr + i, out0, 1);
// }
// if (i == 2) {
// vst1q_lane_f32(output_ptr + i, out0, 2);
// }
// }
// }
// // input_data += inputdata_channel_stride;
// // out_data += outputdata_channel_stride;
// }
// input_data += input_batch_stride;
// out_data += output_batch_stride;
// }
#endif
#endif
}
}
...
@@ -662,6 +839,7 @@ void Pool3x3Avg(vector<int> strides, vector<int> paddings, const Tensor *input,
...
@@ -662,6 +839,7 @@ void Pool3x3Avg(vector<int> strides, vector<int> paddings, const Tensor *input,
wstart
=
max
(
wstart
,
0
);
wstart
=
max
(
wstart
,
0
);
hend
=
min
(
hend
,
input_height
);
hend
=
min
(
hend
,
input_height
);
wend
=
min
(
wend
,
input_width
);
wend
=
min
(
wend
,
input_width
);
const
float
*
pos1
=
input_seg
+
hstart
*
input_width
+
wstart
;
const
float
*
pos1
=
input_seg
+
hstart
*
input_width
+
wstart
;
const
float
*
pos2
=
input_seg
+
(
hstart
+
1
)
*
input_width
+
wstart
;
const
float
*
pos2
=
input_seg
+
(
hstart
+
1
)
*
input_width
+
wstart
;
const
float
*
pos3
=
input_seg
+
(
hstart
+
2
)
*
input_width
+
wstart
;
const
float
*
pos3
=
input_seg
+
(
hstart
+
2
)
*
input_width
+
wstart
;
...
@@ -674,7 +852,8 @@ void Pool3x3Avg(vector<int> strides, vector<int> paddings, const Tensor *input,
...
@@ -674,7 +852,8 @@ void Pool3x3Avg(vector<int> strides, vector<int> paddings, const Tensor *input,
sum
+=
input_seg
[
h
*
input_width
+
w
];
sum
+=
input_seg
[
h
*
input_width
+
w
];
}
}
}
}
output_seg
[
ph
*
output_width
+
pw
]
=
sum
/
9.0
;
output_seg
[
ph
*
output_width
+
pw
]
=
sum
/
((
hend
-
hstart
)
*
(
wend
-
wstart
)
*
1.0
);
}
else
{
}
else
{
#if __aarch64__
#if __aarch64__
#else
#else
...
...
src/operators/op_param.h
浏览文件 @
dee0175f
...
@@ -795,7 +795,7 @@ class SoftmaxParam : public OpParam {
...
@@ -795,7 +795,7 @@ class SoftmaxParam : public OpParam {
fpga
::
BypassArgs
fpga_bypass_args
;
fpga
::
BypassArgs
fpga_bypass_args
;
public:
public:
RType
*
FloatInput
()
{
RType
*
FloatInput
()
const
{
return
float_input_x_
==
nullptr
?
input_x_
:
float_input_x_
.
get
();
return
float_input_x_
==
nullptr
?
input_x_
:
float_input_x_
.
get
();
}
}
void
SetFloatInput
(
Tensor
*
input
)
{
float_input_x_
.
reset
(
input
);
}
void
SetFloatInput
(
Tensor
*
input
)
{
float_input_x_
.
reset
(
input
);
}
...
...
test/fpga/test_format_data.cpp
浏览文件 @
dee0175f
...
@@ -22,7 +22,7 @@ namespace fpga = paddle_mobile::fpga;
...
@@ -22,7 +22,7 @@ namespace fpga = paddle_mobile::fpga;
using
std
::
cout
;
using
std
::
cout
;
using
std
::
endl
;
using
std
::
endl
;
int
main
()
{
void
test_format_image
()
{
std
::
vector
<
int
>
dims
{
1
,
1
,
3
,
3
};
std
::
vector
<
int
>
dims
{
1
,
1
,
3
,
3
};
std
::
vector
<
float
>
elements
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
};
std
::
vector
<
float
>
elements
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
};
frame
::
DDim
ddim
=
frame
::
make_ddim
(
dims
);
frame
::
DDim
ddim
=
frame
::
make_ddim
(
dims
);
...
@@ -44,6 +44,50 @@ int main() {
...
@@ -44,6 +44,50 @@ int main() {
cout
<<
endl
;
cout
<<
endl
;
auto
dd
=
image
.
dims
();
auto
dd
=
image
.
dims
();
cout
<<
dims
[
0
]
<<
dims
[
1
]
<<
dims
[
2
]
<<
dims
[
3
]
<<
endl
;
cout
<<
dims
[
0
]
<<
dims
[
1
]
<<
dims
[
2
]
<<
dims
[
3
]
<<
endl
;
}
void
test_fill_conv_arg
()
{
Tensor
input
,
out
,
filter
;
DLOG
<<
"Setup input"
;
SetupTensor
<
int16_t
>
(
&
input
,
{
1
,
250
,
32
,
30
},
static_cast
<
int16_t
>
(
0
),
static_cast
<
int16_t
>
(
1
));
DLOG
<<
"Setup filter"
;
SetupTensor
<
float
>
(
&
filter
,
{
1001
,
250
,
3
,
3
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
DLOG
<<
"Setup output"
;
SetupTensor
<
int16_t
>
(
&
out
,
{
1
,
1001
,
32
,
30
},
static_cast
<
int16_t
>
(
0
),
static_cast
<
int16_t
>
(
1
));
auto
bs_ptr
=
(
float
*
)
fpga
::
fpga_malloc
(
2
*
1001
*
sizeof
(
float
));
DLOG
<<
"find max"
;
float
max_value
=
fpga
::
filter_find_max
(
&
filter
);
DLOG
<<
"format filter"
;
fpga
::
format_filter
(
&
filter
,
max_value
,
1
);
DLOG
<<
"format bs_ptr"
;
int
element_num_per_div
=
fpga
::
get_filter_num_per_div
(
&
filter
,
1
);
fpga
::
format_bias_scale_array
(
&
bs_ptr
,
element_num_per_div
,
1001
);
DLOG
<<
"format ofm"
;
fpga
::
format_ofm
(
&
out
);
DLOG
<<
"Build arg"
;
fpga
::
WrapperConvArgs
arg
;
fpga
::
fill_conv_arg
(
&
arg
,
&
input
,
&
out
,
&
filter
,
true
,
1
,
1
,
1
,
1
,
1
,
bs_ptr
);
DLOG
<<
"splitNum: "
<<
arg
.
split_num
<<
" group_num:"
<<
arg
.
group_num
<<
" filter_num:"
<<
arg
.
filter_num
;
for
(
int
i
=
0
;
i
<
arg
.
split_num
;
i
++
)
{
DLOG
<<
arg
.
conv_args
[
i
].
filter_num
<<
" "
<<
arg
.
conv_args
[
i
].
sb_address
<<
" "
<<
arg
.
conv_args
[
i
].
filter_address
<<
" "
<<
arg
.
conv_args
[
i
].
filter_scale_address
;
}
}
int
main
()
{
test_format_image
();
test_fill_conv_arg
();
return
0
;
return
0
;
}
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录