Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
d96ca3e9
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
338
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d96ca3e9
编写于
12月 04, 2018
作者:
Z
ZhenWang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/paddle-mobile
into add_pooling_int8
上级
07329c60
2c088e20
变更
31
显示空白变更内容
内联
并排
Showing
31 changed file
with
1955 addition
and
998 deletion
+1955
-998
src/common/types.cpp
src/common/types.cpp
+4
-0
src/common/types.h
src/common/types.h
+2
-0
src/fpga/V1/api.cpp
src/fpga/V1/api.cpp
+23
-5
src/fpga/V1/filter.cpp
src/fpga/V1/filter.cpp
+24
-19
src/fpga/V1/pe.cpp
src/fpga/V1/pe.cpp
+775
-12
src/fpga/common/driver.cpp
src/fpga/common/driver.cpp
+16
-2
src/fpga/common/driver.h
src/fpga/common/driver.h
+7
-2
src/fpga/common/fpga_common.h
src/fpga/common/fpga_common.h
+19
-12
src/framework/load_ops.h
src/framework/load_ops.h
+8
-0
src/io/ios_io/PaddleMobileCPU.mm
src/io/ios_io/PaddleMobileCPU.mm
+2
-1
src/operators/depthwise_conv_op.h
src/operators/depthwise_conv_op.h
+4
-7
src/operators/fusion_dequant_add_bn_op.cpp
src/operators/fusion_dequant_add_bn_op.cpp
+13
-13
src/operators/fusion_dequant_add_bn_op.h
src/operators/fusion_dequant_add_bn_op.h
+74
-0
src/operators/fusion_dequant_add_bn_relu_op.h
src/operators/fusion_dequant_add_bn_relu_op.h
+1
-1
src/operators/fusion_dequant_bn_relu_op.cpp
src/operators/fusion_dequant_bn_relu_op.cpp
+15
-16
src/operators/fusion_dequant_bn_relu_op.h
src/operators/fusion_dequant_bn_relu_op.h
+73
-0
src/operators/kernel/arm/conv_kernel.cpp
src/operators/kernel/arm/conv_kernel.cpp
+29
-23
src/operators/kernel/arm/dequant_add_bn_kernel.cpp
src/operators/kernel/arm/dequant_add_bn_kernel.cpp
+8
-13
src/operators/kernel/arm/dequant_bn_relu_kernel.cpp
src/operators/kernel/arm/dequant_bn_relu_kernel.cpp
+150
-0
src/operators/kernel/arm/quantize_kernel.cpp
src/operators/kernel/arm/quantize_kernel.cpp
+65
-673
src/operators/kernel/central-arm-func/conv_add_arm_func.h
src/operators/kernel/central-arm-func/conv_add_arm_func.h
+2
-2
src/operators/kernel/central-arm-func/conv_arm_func.h
src/operators/kernel/central-arm-func/conv_arm_func.h
+7
-17
src/operators/kernel/dequant_add_bn_kernel.h
src/operators/kernel/dequant_add_bn_kernel.h
+5
-5
src/operators/kernel/dequant_bn_relu_kernel.h
src/operators/kernel/dequant_bn_relu_kernel.h
+46
-0
src/operators/math/depthwise_conv3x3.cpp
src/operators/math/depthwise_conv3x3.cpp
+7
-4
src/operators/math/depthwise_conv3x3.h
src/operators/math/depthwise_conv3x3.h
+7
-4
src/operators/math/depthwise_conv3x3_int8.cpp
src/operators/math/depthwise_conv3x3_int8.cpp
+443
-89
src/operators/op_param.h
src/operators/op_param.h
+84
-19
test/fpga/test_resnet50.cpp
test/fpga/test_resnet50.cpp
+18
-13
test/operators/test_quantize_op.cpp
test/operators/test_quantize_op.cpp
+12
-44
tools/op.cmake
tools/op.cmake
+12
-2
未找到文件。
src/common/types.cpp
浏览文件 @
d96ca3e9
...
...
@@ -72,6 +72,8 @@ const char *G_OP_TYPE_SUM = "sum";
const
char
*
G_OP_TYPE_QUANTIZE
=
"quantize"
;
const
char
*
G_OP_TYPE_DEQUANTIZE
=
"dequantize"
;
const
char
*
G_OP_TYPE_FUSION_DEQUANT_ADD_BN
=
"fusion_dequant_add_bn"
;
const
char
*
G_OP_TYPE_FUSION_DEQUANT_BN_RELU
=
"fusion_dequant_bn_relu"
;
const
char
*
G_OP_TYPE_FUSION_DEQUANT_ADD_BN_RELU
=
"fusion_dequant_add_bn_relu"
;
const
char
*
G_OP_TYPE_TANH
=
"tanh"
;
...
...
@@ -138,6 +140,8 @@ std::unordered_map<
{
G_OP_TYPE_ELEMENTWISE_MUL
,
{{
"X"
,
"Y"
},
{
"Out"
}}},
{
G_OP_TYPE_QUANTIZE
,
{{
"X"
},
{
"Out"
,
"OutScale"
}}},
{
G_OP_TYPE_DEQUANTIZE
,
{{
"X"
,
"Scale"
},
{
"Out"
}}},
{
G_OP_TYPE_FUSION_DEQUANT_ADD_BN
,
{{
"X"
,
"Scale"
},
{
"Y"
}}},
{
G_OP_TYPE_FUSION_DEQUANT_BN_RELU
,
{{
"X"
,
"Scale"
},
{
"Out"
}}},
{
G_OP_TYPE_FUSION_DEQUANT_ADD_BN_RELU
,
{{
"X"
,
"Scale"
},
{
"Out"
}}},
{
G_OP_TYPE_TANH
,
{{
"X"
},
{
"Out"
}}},
{
G_OP_TYPE_FUSION_DECONV_RELU
,
{{
"Input"
},
{
"Out"
}}},
...
...
src/common/types.h
浏览文件 @
d96ca3e9
...
...
@@ -139,6 +139,8 @@ extern const char *G_OP_TYPE_ELEMENTWISE_MUL;
extern
const
char
*
G_OP_TYPE_QUANTIZE
;
extern
const
char
*
G_OP_TYPE_DEQUANTIZE
;
extern
const
char
*
G_OP_TYPE_FUSION_DEQUANT_ADD_BN
;
extern
const
char
*
G_OP_TYPE_FUSION_DEQUANT_BN_RELU
;
extern
const
char
*
G_OP_TYPE_FUSION_DEQUANT_ADD_BN_RELU
;
extern
const
char
*
G_OP_TYPE_TANH
;
...
...
src/fpga/V1/api.cpp
浏览文件 @
d96ca3e9
...
...
@@ -196,19 +196,35 @@ void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
arg
->
conv_arg
[
i
].
image
.
pad_height
=
(
uint32_t
)
padding_h
;
arg
->
conv_arg
[
i
].
image
.
pad_width
=
(
uint32_t
)
padding_w
;
arg
->
conv_arg
[
i
].
filter_scale_address
=
filter
->
scale
;
arg
->
conv_arg
[
i
].
filter_address
=
&
(
(
int8_t
*
)
filter_ptr
)[
i
*
element_num
*
filter_num_per_div
];
// NOLINT
arg
->
conv_arg
[
i
].
sb_address
=
&
bs_ptr
[
i
*
filter_num_per_div
*
2
];
// arg->conv_arg[i].filter_address = &(
// (int8_t *)filter_ptr)[i * element_num * filter_num_per_div]; //
// NOLINT
// arg->conv_arg[i].sb_address = &bs_ptr[i * filter_num_per_div * 2];
arg
->
conv_arg
[
i
].
filter_num
=
(
uint32_t
)(
i
==
n
-
1
?
channel
-
(
n
-
1
)
*
filter_num_per_div
// NOLINT
:
filter_num_per_div
);
size_t
filter_size
=
element_num
*
arg
->
conv_arg
[
i
].
filter_num
*
sizeof
(
int8_t
);
auto
filter_head
=
&
((
int8_t
*
)
filter_ptr
)[
i
*
element_num
*
filter_num_per_div
];
arg
->
conv_arg
[
i
].
filter_address
=
fpga_malloc
(
filter_size
);
memcpy
(
arg
->
conv_arg
[
i
].
filter_address
,
filter_head
,
filter_size
);
fpga_flush
(
arg
->
conv_arg
[
i
].
filter_address
,
filter_size
);
size_t
bs_size
=
2
*
arg
->
conv_arg
[
i
].
filter_num
*
sizeof
(
float
);
auto
bs_head
=
&
bs_ptr
[
i
*
filter_num_per_div
*
2
];
arg
->
conv_arg
[
i
].
sb_address
=
fpga_malloc
(
bs_size
);
memcpy
(
arg
->
conv_arg
[
i
].
sb_address
,
bs_head
,
bs_size
);
fpga_flush
(
arg
->
conv_arg
[
i
].
sb_address
,
bs_size
);
if
(
n
>
1
)
{
arg
->
conv_arg
[
i
].
output
.
scale_address
=
(
float
*
)
fpga_malloc
(
2
*
sizeof
(
float
));
// NOLINT
arg
->
conv_arg
[
i
].
output
.
address
=
fpga_malloc
(
inp
ut
->
dims
()[
2
]
*
align_to_x
(
inp
ut
->
dims
()[
3
]
*
arg
->
conv_arg
[
i
].
filter_num
,
fpga_malloc
(
o
ut
->
dims
()[
2
]
*
align_to_x
(
o
ut
->
dims
()[
3
]
*
arg
->
conv_arg
[
i
].
filter_num
,
IMAGE_ALIGNMENT
)
*
sizeof
(
half
));
}
else
{
...
...
@@ -221,6 +237,8 @@ void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
arg
->
concat_arg
.
scales_in
[
i
]
=
arg
->
conv_arg
[
i
].
output
.
scale_address
;
arg
->
concat_arg
.
channel_num
[
i
]
=
arg
->
conv_arg
[
i
].
filter_num
;
}
filter
->
reset_data_ptr
(
nullptr
);
fpga_free
(
bs_ptr
);
}
}
// namespace fpga
...
...
src/fpga/V1/filter.cpp
浏览文件 @
d96ca3e9
...
...
@@ -137,7 +137,7 @@ void align_num(char **data_in, int num_per_div_before_alignment, int num,
int
align_chw
=
align_to_x
(
chw
,
FILTER_ELEMENT_ALIGNMENT
);
int
num_per_div_after_alignment
=
align_to_x
(
num_per_div_before_alignment
,
FILTER_NUM_ALIGNMENT
);
if
(
num_per_div_after_alignment
!=
num_per_div_before_alignment
)
{
char
*
tmp
=
*
data_in
;
int
div_num
=
(
num
+
num_per_div_before_alignment
-
1
)
/
num_per_div_before_alignment
;
...
...
@@ -154,7 +154,6 @@ void align_num(char **data_in, int num_per_div_before_alignment, int num,
*
data_in
=
data_tmp
;
fpga_free
(
tmp
);
}
}
void
reorder
(
char
**
data_in
,
int
num_after_alignment
,
int
chw
)
{
...
...
@@ -223,7 +222,10 @@ void format_filter(float **data_in, int num, int channel, int height, int width,
char
**
quantize_data
=
(
char
**
)
data_in
;
// NOLINT
convert_to_hwc
(
quantize_data
,
num
,
channel
,
height
,
width
);
align_element
(
quantize_data
,
num
,
chw
);
if
(
num_after_alignment
!=
num
)
{
align_num
(
quantize_data
,
num_per_div_before_alignment
,
num
,
chw
);
}
reorder
(
quantize_data
,
num_after_alignment
,
chw
);
interleave
(
quantize_data
,
num_after_alignment
,
chw
);
fpga_flush
(
*
quantize_data
,
align_to_x
(
chw
,
FILTER_ELEMENT_ALIGNMENT
)
*
...
...
@@ -254,15 +256,18 @@ void format_fc_filter(float **data_in, int num, int channel, int height,
align_to_x
(
num_per_div_before_alignment
,
FILTER_NUM_ALIGNMENT
);
int
div_num
=
(
num
+
num_per_div_before_alignment
-
1
)
/
num_per_div_before_alignment
;
int
num_after_alignment
=
num_per_div_after_alignment
*
div_num
;
int
residual
=
num
%
num_per_div_before_alignment
;
int
num_after_alignment
=
num_per_div_after_alignment
*
((
residual
==
0
)
?
div_num
:
(
div_num
-
1
))
+
align_to_x
(
residual
,
FILTER_NUM_ALIGNMENT
);
quantize
(
data_in
,
data_size
,
max
);
char
**
quantize_data
=
(
char
**
)
data_in
;
// NOLINT
convert_fc_filter
(
quantize_data
,
num
,
chw
);
align_element
(
quantize_data
,
num
,
chw
);
if
(
num_after_alignment
!=
num
)
{
align_num
(
quantize_data
,
num_per_div_before_alignment
,
num
,
chw
);
}
reorder
(
quantize_data
,
num_after_alignment
,
chw
);
interleave
(
quantize_data
,
num_after_alignment
,
chw
);
fpga_flush
(
*
quantize_data
,
align_to_x
(
chw
,
FILTER_ELEMENT_ALIGNMENT
)
*
...
...
src/fpga/V1/pe.cpp
浏览文件 @
d96ca3e9
...
...
@@ -13,16 +13,172 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "fpga/common/pe.h"
#include <unistd.h>
#include <iomanip>
#include <iostream>
#include "common/types.h"
#include "fpga/V1/filter.h"
#include "fpga/V1/image.h"
#include "fpga/common/config.h"
#include "fpga/common/driver.h"
using
namespace
std
;
using
namespace
paddle_mobile
::
fpga
::
driver
;
// NOLINT
namespace
paddle_mobile
{
namespace
fpga
{
#define IMAGE_ALIGN 16
#define FILTER_ALIGN 16
#define FILTER_NUM_ALIGN 32
#define USE_RELU 1
#define USE_BIAS 2
// bypass cmd
#define CMD_FP16_TO_FP16 0
#define CMD_FP16_TO_FP32 1
#define CMD_FP32_TO_FP16 2
#define CMD_FP32_TO_FP32 3
// bypass macro
#define SIZE_FP16 2
#define SIZE_FP32 4
#define PE_IRQ_TIMEOUT 1000000
/* Interrupt bit-set offset*/
#define INTERRUPT_RSVD 0x0001
#define INTERRUPT_BYPASS 0x0002
#define INTERRUPT_CONV 0x0004
#define INTERRUPT_POOLING 0x0008
#define INTERRUPT_EW 0x0010
//#define INTERRUPT_RESIZE 0x0020
/* Register offset */
#define REG_INTERRUPT 0x000
#define REG_VERSION 0x008
#define REG_TEMPERATURE 0x010
#define REG_FPGA_RESET 0x018
#define REG_TEST_REGISTER 0x048
#define REG_HARDWARE_STATUS 0x050
#define REG_TIMER_COUNTER 0x070
#define REG_SCALE_PARAMETER 0x080
#define REG_FLASH_CMD 0x200
#define REG_FLASH_DATA 0x208
#define REG_FLASH_CONFIG 0x210
#define REG_FLASH_STATUS 0x218
#define REG_SN 0x220
//#define REG_READ_SCALE
//#define REG_WRITE_SCALE
/*bypass*/
#define REG_CONVERT_CMD 0x400
#define REG_CONVERT_SRC_ADDR 0x408
#define REG_CONVERT_DST_ADDR 0x410
#define REG_CONVERT_LENGTH 0x418
/*resize*/
#define REG_RESIZE_CMD 0x600
#define REG_RESIZE_CHANNEL_NUMBER 0x608
#define REG_RESIZE_INPUT_IMAGE_PIXEL 0x610
#define REG_RESIZE_OUTPUT_IMAGE_PIXEL 0x618
#define REG_RESIZE_INPUT_BASE_ADDR 0x620
#define REG_RESIZE_WEIGHT_BASE_ADDR 0x628
#define REG_RESIZE_SRC_POS_BASE_ADDR 0x630
#define REG_RESIZE_OUTPUT_BASE_ADDR 0x638
/*pooling*/
#define REG_POOLING_CMD 0x800
#define REG_POOLING_IMAGE_BASE_ADDR 0x808
#define REG_POOLING_RESULT_BASE_ADDR 0x810
#define REG_POOLING_IMAGE_PIXEL 0x818
#define REG_POOLING_WINDOW_SIZE 0x820
#define REG_POOLING_RESULT_PIXEL 0x828
#define REG_POOLING_PAD_PIXEL 0x830
#define REG_POOLING_STEP_PIXEL 0x838
#define REG_POOLING_CHANNEL_NUMBER 0x840
#define REG_POOLING_IMAGE_AMOUNT_PER_ROW 0x848
#define REG_POOLING_IMAGE_ONE_PAD_PER_ROW 0x850
#define REG_POOLING_IMAGE_TWO_PAD_PER_ROW 0x858
#define REG_POOLING_IMAGE_ROW_MUL_WINDOW_HEIGHT 0x860
#define REG_POOLING_IMAGE_ROW_MUL_PAD_HEIGHT 0x868
#define REG_POOLING_IMAGE_ROW_MUL_STEP_HEIGHT 0x870
#define REG_POOLING_RESULT_AMOUNT_ALIGN_32 0x878
#define REG_POOLING_RESULT_AMOUNT_ALIGN_64 0x880
#define REG_POOLING_IMAGE_CALCU_HEIGHT 0x888
#define REG_POOLING_IMAGE_PADLEFT_SKIPWINDOW 0x898
#define REG_POOLING_MODE_RECIPROCAL 0x890
/*conv*/
#define REG_CONV_CMD 0xC00
#define REG_CONV_IMAGE_BASE_ADDR 0xC08
#define REG_CONV_FILTER_BASE_ADDR 0xC10
#define REG_CONV_SB_BASE_ADDR 0xC18
#define REG_CONV_RESULT_BASE_ADDR 0xC20
#define REG_CONV_IMAGE_PIXEL 0xC28
#define REG_CONV_FILTER_PIXEL 0xC30
#define REG_CONV_RESULT_PIXEL 0xC38
#define REG_CONV_PAD_PIXEL 0xC40
#define REG_CONV_STEP_PIXEL 0xC48
#define REG_CONV_GROUP_NUMBER 0xC50
#define REG_CONV_FILTER_NUMBER 0xC58
#define REG_CONV_CHANNEL_NUMBER 0xC60
#define REG_CONV_FILTER_PER_GROUP 0xC68
#define REG_CONV_CHANNEL_PER_GROUP 0xC70
#define REG_CONV_IMAGE_AMOUNT_PER_ROW 0xC78
#define REG_CONV_IMAGE_ONE_PAD_PER_ROW 0xC80
#define REG_CONV_IMAGE_TWO_PAD_PER_ROW 0xC88
#define REG_CONV_FILTER_AMOUNT_ALL 0xC90
#define REG_CONV_RESULT_AMOUNT_PER_ROW 0xC98
#define REG_CONV_RESULT_LAST_VALID 0xCA0
#define REG_CONV_BLOCK_AMOUNT_PER_ROW 0xCA8
#define REG_CONV_FILTER_PAD_WIDTH_MUL_CH 0xCB0
#define REG_CONV_IMAGE_AMOUNT_PER_ROW_MUL_WIN_F 0xCB8
#define REG_CONV_IMAGE_AMOUNT_PER_ROW_MUL_WIN 0xCC0
#define REG_CONV_IMAGE_BLOCK_NUM 0xCC8
#define REG_CONV_IMAGE_BLOCK_LEN 0xCD0
#define REG_CONV_IMAGE_BLOCK_LEN_LAST 0xCD8
#define REG_CONV_IMAGE_WIN_CNT 0xCE0
#define REG_CONV_IMAGE_WIN_CNT_LAST 0xCE8
#define REG_CONV_RES_ROW_DATA_ALIGN4_PAD 0xCF8
#define REG_CONV_PROG_FULL_CNT 0xD08
#define REG_CONV_POST_PROG_FULL_CNT 0xD10
#define REG_CONV_FPGA_BIAS_SCALE_LEN 0xD20
#define REG_CONV_IMAGE_SCALE 0xD28
#define REG_CONV_FILTER_SCALE 0xD30
/*ew*/
#define REG_EW_CMD 0x0F00
#define REG_EW_IMAGE0_BASE_ADDR 0x0F08
#define REG_EW_IMAGE1_BASE_ADDR 0x0F10
#define REG_EW_RESULT_BASE_ADDR 0x0F18
#define REG_EW_DATA_LEN 0x0F20
#define REG_EW_COEFFICIENT 0x0F28
#define REG_EW_IMAGE_PIXEL 0x0F30
#define REG_EW_IMAGE_AMOUNT_PER_ROW 0x0F38
int
ComputeFpgaConv
(
const
struct
SplitConvArgs
&
args
)
{
ComputeBasicConv
(
args
.
conv_arg
[
0
]);
// ComputeBasicConv(args.conv_arg[0]);
#ifdef FPGA_PRINT_MODE
DLOG
<<
"=============ComputeFPGAConv==========="
;
DLOG
<<
" filter_num:"
<<
args
.
filter_num
<<
" group_num:"
<<
args
.
group_num
<<
" split_num:"
<<
args
.
split_num
;
#endif
int
split_num
=
args
.
split_num
;
for
(
int
i
=
0
;
i
<
split_num
;
i
++
)
{
ComputeBasicConv
(
args
.
conv_arg
[
i
]);
}
if
(
split_num
>
1
)
{
ComputeFPGAConcat
(
args
.
concat_arg
);
}
}
int
ComputeBasicConv
(
const
struct
ConvArgs
&
args
)
{
...
...
@@ -47,9 +203,237 @@ int ComputeBasicConv(const struct ConvArgs &args) {
DLOG
<<
" out_address:"
<<
args
.
output
.
address
<<
" out_scale_address:"
<<
args
.
output
.
scale_address
;
#endif
cout
<<
" relu_enabled:"
<<
args
.
relu_enabled
<<
" sb_address:"
<<
args
.
sb_address
<<
" filter_address:"
<<
args
.
filter_address
<<
" filter_num:"
<<
args
.
filter_num
<<
" group_num:"
<<
args
.
group_num
;
cout
<<
" image_address:"
<<
args
.
image
.
address
<<
" image_scale_address:"
<<
args
.
image
.
scale_address
<<
" image_channels:"
<<
args
.
image
.
channels
<<
" image_height:"
<<
args
.
image
.
height
<<
" image_width:"
<<
args
.
image
.
width
<<
" pad_height:"
<<
args
.
image
.
pad_height
<<
" pad_width:"
<<
args
.
image
.
pad_width
;
cout
<<
" kernel_height:"
<<
args
.
kernel
.
height
<<
" kernel_width:"
<<
args
.
kernel
.
width
<<
" stride_h:"
<<
args
.
kernel
.
stride_h
<<
" stride_w:"
<<
args
.
kernel
.
stride_w
;
cout
<<
" out_address:"
<<
args
.
output
.
address
<<
" out_scale_address:"
<<
args
.
output
.
scale_address
;
#ifndef PADDLE_MOBILE_ZU5
return
0
;
#ifdef PADDLE_MOBILE_ZU5
DLOG
<<
"Conv"
;
// return 0;
uint64_t
timer_cnt
;
uint64_t
output_scale
;
uint64_t
image_scale
;
uint64_t
filter_scale
;
uint64_t
image_address_phy
=
0
;
uint64_t
sb_address_phy
=
0
;
uint64_t
filter_address_phy
=
0
;
uint64_t
output_address_phy
=
0
;
int
ret
=
0
;
fpga_copy
(
&
image_scale
,
args
.
image
.
scale_address
,
2
*
sizeof
(
float
));
fpga_copy
(
&
filter_scale
,
args
.
filter_scale_address
,
2
*
sizeof
(
float
));
cout
<<
"image_scale :"
<<
hex
<<
(
image_scale
)
<<
endl
;
cout
<<
"filter_scale :"
<<
hex
<<
(
filter_scale
)
<<
endl
;
uint64_t
filterlen
=
(
uint64_t
)
args
.
kernel
.
width
*
(
uint64_t
)
args
.
kernel
.
height
*
(
uint64_t
)
args
.
image
.
channels
;
filterlen
=
align_to_x
(
filterlen
,
FILTER_ALIGN
);
filterlen
*=
align_to_x
((
uint64_t
)
args
.
filter_num
,
FILTER_NUM_ALIGN
);
uint64_t
fpga_bias_scale_len
=
align_to_x
(
args
.
filter_num
/
args
.
group_num
,
8
)
*
args
.
group_num
;
uint64_t
output_height
=
(
args
.
image
.
height
+
args
.
image
.
pad_height
*
2
-
args
.
kernel
.
height
)
/
args
.
kernel
.
stride_h
+
1
;
uint64_t
output_width
=
(
args
.
image
.
width
+
args
.
image
.
pad_width
*
2
-
args
.
kernel
.
width
)
/
args
.
kernel
.
stride_w
+
1
;
uint64_t
output_size
=
output_height
*
output_width
*
(
uint64_t
)
args
.
filter_num
;
uint64_t
filter_per_group
=
(
uint64_t
)(
args
.
filter_num
/
args
.
group_num
);
uint64_t
channel_per_group
=
(
uint64_t
)(
args
.
image
.
channels
/
args
.
group_num
);
uint64_t
image_row_count
=
((
uint64_t
)
args
.
image
.
width
)
*
((
uint64_t
)
args
.
image
.
channels
);
// without align
uint64_t
image_amount_per_row
=
align_to_x
(
image_row_count
,
IMAGE_ALIGN
);
uint64_t
image_one_pad_per_row
=
align_to_x
(
image_row_count
,
IMAGE_ALIGN
)
+
((
uint64_t
)
args
.
image
.
pad_width
)
*
((
uint64_t
)
args
.
image
.
channels
);
uint64_t
filter_amount_all
=
align_to_x
(((
uint64_t
)
args
.
kernel
.
height
)
*
((
uint64_t
)
args
.
kernel
.
width
)
*
channel_per_group
,
FILTER_ALIGN
);
uint64_t
output_amount_per_row
=
align_to_x
(
output_width
*
((
uint64_t
)
args
.
filter_num
),
IMAGE_ALIGN
);
// find the opt partition strategy
uint64_t
res_win
;
uint64_t
res_fit
=
0
;
for
(
res_win
=
1
;
res_win
<=
output_width
;
res_win
=
res_win
+
1
)
{
if
((
align_to_x
(
(
args
.
image
.
channels
*
(
args
.
kernel
.
width
+
(
res_win
-
1
)
*
args
.
kernel
.
stride_w
)),
IMAGE_ALIGN
)
/
16
+
1
)
*
args
.
kernel
.
height
>
2048
)
{
break
;
}
}
if
(
res_win
!=
output_width
)
{
res_win
-=
1
;
}
if
(((
res_win
%
2
)
!=
0
)
&&
(
res_win
!=
1
))
{
res_win
=
res_win
-
1
;
}
res_fit
=
res_win
;
uint64_t
block_num
=
(
output_width
+
res_fit
-
1
)
/
res_fit
;
uint64_t
block_len
=
res_fit
;
uint64_t
block_last
=
output_width
-
res_fit
*
(
block_num
-
1
);
uint64_t
res_amount_per_row
=
output_width
*
args
.
filter_num
;
uint64_t
res_amount_per_row_pad
=
output_amount_per_row
-
res_amount_per_row
;
uint64_t
image_block_amount_per_row
=
args
.
kernel
.
stride_w
*
(
res_fit
)
*
args
.
image
.
channels
;
uint64_t
filter_pad_width_mul_channel
=
args
.
image
.
pad_width
*
args
.
image
.
channels
;
uint64_t
image_amount_per_row_multi_win_first
=
image_amount_per_row
*
(
4
*
args
.
kernel
.
stride_h
-
args
.
image
.
pad_height
);
uint64_t
image_amount_per_row_multi_win
=
image_amount_per_row
*
(
4
*
args
.
kernel
.
stride_h
);
uint64_t
image_block_num
=
block_num
;
uint64_t
image_block_len
=
align_to_x
((
args
.
image
.
channels
*
(
args
.
kernel
.
width
+
(
block_len
-
1
)
*
args
.
kernel
.
stride_w
)),
IMAGE_ALIGN
)
/
16
+
1
;
uint64_t
image_block_len_last
=
align_to_x
(
(
args
.
image
.
channels
*
(
args
.
kernel
.
width
+
(
block_last
-
1
)
*
args
.
kernel
.
stride_w
)),
IMAGE_ALIGN
)
/
16
+
1
;
uint64_t
image_win_cnt
=
block_len
;
uint64_t
image_win_cnt_last
=
block_last
;
uint64_t
res_row_data_align4_pad
=
res_amount_per_row_pad
/
8
;
uint64_t
prog_full_cnt
=
2048
/
(
filter_amount_all
/
16
*
2
)
-
1
;
if
(
prog_full_cnt
==
1023
)
{
prog_full_cnt
--
;
}
uint64_t
post_prog_full_cnt
=
(
512
/
(
align_to_x
(
args
.
filter_num
,
4
)
/
4
*
2
)
>
2
)
?
(
512
/
(
align_to_x
(
args
.
filter_num
,
4
)
/
4
*
2
)
-
2
)
:
0
;
image_address_phy
=
vaddr_to_paddr
(
args
.
image
.
address
);
sb_address_phy
=
vaddr_to_paddr
(
args
.
sb_address
);
filter_address_phy
=
vaddr_to_paddr
(
args
.
filter_address
);
output_address_phy
=
vaddr_to_paddr
(
args
.
output
.
address
);
/*SDK刷Cache保证数据一致性*/
uint64_t
cmd
=
0UL
|
(
args
.
relu_enabled
?
USE_RELU
:
0
)
|
USE_BIAS
;
pthread_mutex_lock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
if
(
ERROR
==
g_fpgainfo
.
pe_data
->
pes
[
PE_IDX_CONV
]
->
status
)
{
ret
=
-
EIO
;
DLOG
<<
"Conv Status Error!"
;
pthread_mutex_unlock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
return
ret
;
}
/*restart scale*/
reg_writeq
(
output_scale
,
REG_SCALE_PARAMETER
);
reg_writeq
(
image_address_phy
,
REG_CONV_IMAGE_BASE_ADDR
);
reg_writeq
(
filter_address_phy
,
REG_CONV_FILTER_BASE_ADDR
);
reg_writeq
(
sb_address_phy
,
REG_CONV_SB_BASE_ADDR
);
reg_writeq
(
output_address_phy
,
REG_CONV_RESULT_BASE_ADDR
);
reg_writeq
(
((
uint64_t
)
args
.
image
.
height
)
|
(((
uint64_t
)
args
.
image
.
width
)
<<
32
),
REG_CONV_IMAGE_PIXEL
);
reg_writeq
(
((
uint64_t
)
args
.
kernel
.
height
)
|
(((
uint64_t
)
args
.
kernel
.
width
)
<<
32
),
REG_CONV_FILTER_PIXEL
);
reg_writeq
(
output_height
|
(
output_width
<<
32
),
REG_CONV_RESULT_PIXEL
);
reg_writeq
(((
uint64_t
)
args
.
image
.
pad_height
)
|
(((
uint64_t
)
args
.
image
.
pad_width
)
<<
32
),
REG_CONV_PAD_PIXEL
);
reg_writeq
(((
uint64_t
)
args
.
kernel
.
stride_h
)
|
(((
uint64_t
)
args
.
kernel
.
stride_w
)
<<
32
),
REG_CONV_STEP_PIXEL
);
reg_writeq
((
uint64_t
)
args
.
group_num
,
REG_CONV_GROUP_NUMBER
);
reg_writeq
((
uint64_t
)
args
.
filter_num
,
REG_CONV_FILTER_NUMBER
);
reg_writeq
((
uint64_t
)
args
.
image
.
channels
,
REG_CONV_CHANNEL_NUMBER
);
reg_writeq
(
filter_per_group
,
REG_CONV_FILTER_PER_GROUP
);
reg_writeq
(
channel_per_group
,
REG_CONV_CHANNEL_PER_GROUP
);
reg_writeq
(
image_amount_per_row
,
REG_CONV_IMAGE_AMOUNT_PER_ROW
);
reg_writeq
(
image_one_pad_per_row
,
REG_CONV_IMAGE_ONE_PAD_PER_ROW
);
reg_writeq
(
filter_amount_all
,
REG_CONV_FILTER_AMOUNT_ALL
);
reg_writeq
(
output_amount_per_row
,
REG_CONV_RESULT_AMOUNT_PER_ROW
);
reg_writeq
(
image_block_amount_per_row
,
0xca8
);
reg_writeq
(
filter_pad_width_mul_channel
,
0xcb0
);
reg_writeq
(
image_amount_per_row_multi_win_first
,
0xcb8
);
reg_writeq
(
image_amount_per_row_multi_win
,
0xcc0
);
reg_writeq
(
image_block_num
,
0xcc8
);
reg_writeq
(
image_block_len
,
0xcd0
);
reg_writeq
(
image_block_len_last
,
0xcd8
);
reg_writeq
(
image_win_cnt
,
0xce0
);
reg_writeq
(
image_win_cnt_last
,
0xce8
);
reg_writeq
(
res_row_data_align4_pad
,
0xcf8
);
reg_writeq
(
prog_full_cnt
,
0xd08
);
reg_writeq
(
post_prog_full_cnt
,
0xd10
);
reg_writeq
(
fpga_bias_scale_len
/
4
,
0xd20
);
/*write scale*/
reg_writeq
(
image_scale
,
REG_CONV_IMAGE_SCALE
);
reg_writeq
(
filter_scale
,
REG_CONV_FILTER_SCALE
);
reg_writeq
(
cmd
,
REG_CONV_CMD
);
DLOG
<<
"before reg poll"
;
if
(
0
!=
fpga_regpoll
(
REG_INTERRUPT
,
INTERRUPT_CONV
,
PE_IRQ_TIMEOUT
))
{
g_fpgainfo
.
pe_data
->
pes
[
PE_IDX_CONV
]
->
status
=
ERROR
;
ret
=
-
EIO
;
DLOG
<<
"Conv Wait Irq Timeout!"
;
}
DLOG
<<
"after reg poll"
;
usleep
(
40
);
/*SDK 无效 Cache保证数据一致性*/
output_scale
=
reg_readq
(
REG_SCALE_PARAMETER
);
output_scale
=
(
output_scale
<<
32
)
|
(
output_scale
>>
32
);
fpga_copy
(
args
.
output
.
scale_address
,
&
output_scale
,
sizeof
(
float
)
*
2
);
cout
<<
"output_scale :"
<<
hex
<<
(
output_scale
)
<<
endl
;
//*(args.output.scale_address) = output_scale;
pthread_mutex_unlock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
return
ret
;
#endif
return
0
;
...
...
@@ -74,8 +458,135 @@ int ComputeFpgaPool(const struct PoolingArgs &args) {
DLOG
<<
" out_address:"
<<
args
.
output
.
address
<<
" out_scale_address:"
<<
args
.
output
.
scale_address
;
#endif
#ifndef PADDLE_MOBILE_ZU5
return
0
;
#ifdef PADDLE_MOBILE_ZU5
DLOG
<<
"Polling"
;
// return 0;
uint64_t
output_scale
=
0
;
uint64_t
timer_cnt
=
0
;
int
ret
=
0
;
uint64_t
cmd
=
0
;
uint64_t
image_physical_address
=
0
;
uint64_t
output_physical_address
=
0
;
image_physical_address
=
vaddr_to_paddr
(
args
.
image
.
address
);
output_physical_address
=
vaddr_to_paddr
(
args
.
output
.
address
);
uint32_t
output_height
=
(
uint32_t
)(
(
args
.
image
.
height
+
args
.
image
.
pad_height
*
2
-
args
.
kernel
.
height
)
/
args
.
kernel
.
stride_h
+
1
);
uint32_t
output_width
=
(
uint32_t
)(
(
args
.
image
.
width
+
args
.
image
.
pad_width
*
2
-
args
.
kernel
.
width
)
/
args
.
kernel
.
stride_w
+
1
);
uint64_t
image_amount_per_row
=
align_to_x
(
(
uint64_t
)
args
.
image
.
width
*
(
uint64_t
)
args
.
image
.
channels
,
IMAGE_ALIGN
);
uint64_t
image_one_pad_per_row
=
align_to_x
((
uint64_t
)
args
.
image
.
width
*
(
uint64_t
)
args
.
image
.
channels
,
FILTER_ALIGN
)
+
(
uint64_t
)
args
.
image
.
pad_width
*
(
uint64_t
)
args
.
image
.
channels
;
uint64_t
image_two_pad_per_row
=
align_to_x
(
((
uint64_t
)
args
.
image
.
width
+
(
uint64_t
)
args
.
image
.
pad_width
*
2
)
*
(
uint64_t
)
args
.
image
.
channels
,
IMAGE_ALIGN
);
uint64_t
image_row_mul_pooling_hight
=
image_amount_per_row
*
(
uint64_t
)
args
.
kernel
.
height
;
uint64_t
image_row_mul_pad_hight
=
image_amount_per_row
*
(
uint64_t
)
args
.
image
.
pad_height
;
uint64_t
image_row_mul_step_hight
=
image_amount_per_row
*
(
uint64_t
)
args
.
kernel
.
stride_h
;
uint64_t
result_amount_align_32
=
align_to_x
(
(
uint64_t
)
output_width
*
(
uint64_t
)
args
.
image
.
channels
,
FILTER_ALIGN
);
uint64_t
result_amount_align_64
=
align_to_x
(
(
uint64_t
)
output_width
*
(
uint64_t
)
args
.
image
.
channels
,
IMAGE_ALIGN
);
uint64_t
image_calcu_height
=
(
uint64_t
)
args
.
kernel
.
height
+
((
uint64_t
)
output_height
-
1
)
*
(
uint64_t
)
args
.
kernel
.
stride_h
;
uint64_t
image_pad_left
=
args
.
image
.
channels
*
args
.
image
.
pad_width
;
uint64_t
image_skip_window
=
args
.
image
.
channels
*
args
.
kernel
.
stride_w
;
uint64_t
image_padleft_skipwindow
=
(
image_skip_window
<<
32
)
|
image_pad_left
;
uint64_t
mode_reciprocal
=
(
uint64_t
)
0
|
((
uint64_t
)
args
.
mode
)
<<
16
|
(((
uint64_t
)
args
.
kernel_reciprocal
));
pthread_mutex_lock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
if
(
ERROR
==
g_fpgainfo
.
pe_data
->
pes
[
PE_IDX_POOLING
]
->
status
)
{
ret
=
-
EIO
;
DLOG
<<
"Conv Status Error!"
;
pthread_mutex_unlock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
return
ret
;
}
/*restart scale*/
reg_writeq
(
output_scale
,
REG_SCALE_PARAMETER
);
reg_writeq
(
image_physical_address
,
REG_POOLING_IMAGE_BASE_ADDR
);
reg_writeq
(
output_physical_address
,
REG_POOLING_RESULT_BASE_ADDR
);
reg_writeq
(
((
uint64_t
)
args
.
image
.
height
)
|
(((
uint64_t
)
args
.
image
.
width
)
<<
32
),
REG_POOLING_IMAGE_PIXEL
);
reg_writeq
(
((
uint64_t
)
args
.
kernel
.
height
)
|
(((
uint64_t
)
args
.
kernel
.
width
)
<<
32
),
REG_POOLING_WINDOW_SIZE
);
reg_writeq
(((
uint64_t
)
output_height
)
|
(((
uint64_t
)
output_width
)
<<
32
),
REG_POOLING_RESULT_PIXEL
);
reg_writeq
(((
uint64_t
)
args
.
image
.
pad_height
)
|
(((
uint64_t
)
args
.
image
.
pad_width
)
<<
32
),
REG_POOLING_PAD_PIXEL
);
reg_writeq
(((
uint64_t
)
args
.
kernel
.
stride_h
)
|
(((
uint64_t
)
args
.
kernel
.
stride_w
)
<<
32
),
REG_POOLING_STEP_PIXEL
);
reg_writeq
((
uint64_t
)
args
.
image
.
channels
,
REG_POOLING_CHANNEL_NUMBER
);
reg_writeq
(
image_amount_per_row
,
REG_POOLING_IMAGE_AMOUNT_PER_ROW
);
reg_writeq
(
image_one_pad_per_row
,
REG_POOLING_IMAGE_ONE_PAD_PER_ROW
);
reg_writeq
(
image_two_pad_per_row
,
REG_POOLING_IMAGE_TWO_PAD_PER_ROW
);
reg_writeq
(
image_row_mul_pooling_hight
,
REG_POOLING_IMAGE_ROW_MUL_WINDOW_HEIGHT
);
reg_writeq
(
image_row_mul_pad_hight
,
REG_POOLING_IMAGE_ROW_MUL_PAD_HEIGHT
);
reg_writeq
(
image_row_mul_step_hight
,
REG_POOLING_IMAGE_ROW_MUL_STEP_HEIGHT
);
reg_writeq
(
result_amount_align_32
,
REG_POOLING_RESULT_AMOUNT_ALIGN_32
);
reg_writeq
(
result_amount_align_64
,
REG_POOLING_RESULT_AMOUNT_ALIGN_64
);
reg_writeq
(
image_calcu_height
,
REG_POOLING_IMAGE_CALCU_HEIGHT
);
reg_writeq
(
image_padleft_skipwindow
,
REG_POOLING_IMAGE_PADLEFT_SKIPWINDOW
);
reg_writeq
(
mode_reciprocal
,
REG_POOLING_MODE_RECIPROCAL
);
/*SDK刷Cache保证数据一致性*/
reg_writeq
(
cmd
,
REG_POOLING_CMD
);
DLOG
<<
"before reg poll"
;
if
(
0
!=
fpga_regpoll
(
REG_INTERRUPT
,
INTERRUPT_POOLING
,
PE_IRQ_TIMEOUT
))
{
g_fpgainfo
.
pe_data
->
pes
[
PE_IDX_POOLING
]
->
status
=
ERROR
;
ret
=
-
EIO
;
DLOG
<<
"Pooling Wait Irq Timeout!"
;
}
DLOG
<<
"after reg poll"
;
usleep
(
40
);
/*SDK 无效 Cache保证数据一致性*/
// *(args.output.scale_address) = reg_readq(REG_SCALE_PARAMETER);
output_scale
=
reg_readq
(
REG_SCALE_PARAMETER
);
output_scale
=
(
output_scale
<<
32
)
|
(
output_scale
>>
32
);
fpga_copy
(
args
.
output
.
scale_address
,
&
output_scale
,
sizeof
(
float
)
*
2
);
//*(args.output.timer_cnt) = reg_readq(REG_TIMER_COUNTER);
pthread_mutex_unlock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
return
ret
;
#endif
return
0
;
}
...
...
@@ -103,8 +614,73 @@ int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
DLOG
<<
" out_address:"
<<
args
.
output
.
address
<<
" out_scale_address:"
<<
args
.
output
.
scale_address
;
#endif
#ifndef PADDLE_MOBILE_ZU5
return
0
;
#ifdef PADDLE_MOBILE_ZU5
DLOG
<<
"Conv"
;
// return 0;
int
ret
=
0
;
uint64_t
output_scale
=
0
;
uint64_t
timer_cnt
=
0
;
uint64_t
image0_address_phy
=
0
;
uint64_t
image1_address_phy
=
0
;
uint64_t
output_address_phy
=
0
;
uint64_t
cmd
=
args
.
relu_enabled
?
USE_RELU
:
0
;
uint64_t
datalen
=
(
uint64_t
)
args
.
image0
.
width
*
(
uint64_t
)
args
.
image0
.
height
*
(
uint64_t
)
args
.
image0
.
channels
;
uint64_t
coefficient
=
(
uint64_t
)
args
.
const0
<<
32
|
(
uint64_t
)
args
.
const1
;
pthread_mutex_lock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
if
(
ERROR
==
g_fpgainfo
.
pe_data
->
pes
[
PE_IDX_POOLING
]
->
status
)
{
ret
=
-
EIO
;
DLOG
<<
"Conv Status Error!"
;
pthread_mutex_unlock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
return
ret
;
}
image0_address_phy
=
vaddr_to_paddr
(
args
.
image0
.
address
);
image1_address_phy
=
vaddr_to_paddr
(
args
.
image1
.
address
);
output_address_phy
=
vaddr_to_paddr
(
args
.
output
.
address
);
uint64_t
image_amount_per_row
=
align_to_x
((
uint64_t
)
args
.
image0
.
width
*
(
uint64_t
)
args
.
image0
.
channels
,
IMAGE_ALIGN
);
uint64_t
image_image_pixel
=
((
uint64_t
)
args
.
image0
.
channels
<<
32
)
|
((
uint64_t
)
args
.
image0
.
width
<<
16
)
|
(
uint64_t
)
args
.
image0
.
height
;
/*SDK刷Cache保证数据一致性*/
/*restart scale*/
reg_writeq
(
output_scale
,
REG_SCALE_PARAMETER
);
reg_writeq
(
image0_address_phy
,
REG_EW_IMAGE0_BASE_ADDR
);
reg_writeq
(
image1_address_phy
,
REG_EW_IMAGE1_BASE_ADDR
);
reg_writeq
(
datalen
,
REG_EW_DATA_LEN
);
reg_writeq
(
image_image_pixel
,
REG_EW_IMAGE_PIXEL
);
reg_writeq
(
image_amount_per_row
,
REG_EW_IMAGE_AMOUNT_PER_ROW
);
reg_writeq
(
output_address_phy
,
REG_EW_RESULT_BASE_ADDR
);
reg_writeq
(
coefficient
,
REG_EW_COEFFICIENT
);
reg_writeq
(
cmd
,
REG_EW_CMD
);
if
(
0
!=
fpga_regpoll
(
REG_INTERRUPT
,
INTERRUPT_POOLING
,
PE_IRQ_TIMEOUT
))
{
g_fpgainfo
.
pe_data
->
pes
[
PE_IDX_POOLING
]
->
status
=
ERROR
;
ret
=
-
EIO
;
DLOG
<<
"EW Wait Irq Timeout!"
;
}
usleep
(
40
);
/*SDK 无效 Cache保证数据一致性*/
output_scale
=
reg_readq
(
REG_SCALE_PARAMETER
);
output_scale
=
(
output_scale
<<
32
)
|
(
output_scale
>>
32
);
fpga_copy
(
args
.
output
.
scale_address
,
&
output_scale
,
sizeof
(
float
)
*
2
);
//*(args.output.scale_address) = reg_readq(REG_SCALE_PARAMETER);
//*(args.output.timer_cnt) = reg_readq(REG_TIMER_COUNTER);
pthread_mutex_unlock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
return
ret
;
#endif
return
0
;
}
...
...
@@ -126,8 +702,117 @@ int PerformBypass(const struct BypassArgs &args) {
DLOG
<<
" out_address:"
<<
args
.
output
.
address
<<
" out_scale_address:"
<<
args
.
output
.
scale_address
;
#endif
#ifndef PADDLE_MOBILE_ZU5
return
0
;
#ifdef PADDLE_MOBILE_ZU5
DLOG
<<
"Bypass"
;
// return 0;
struct
fpga_pe
*
pe
;
uint64_t
output_scale
=
0
;
uint64_t
timer_cnt
=
0
;
uint64_t
cmd
=
0
;
uint64_t
datalen
=
0
;
uint64_t
input_address_phy
=
0
;
uint64_t
output_address_phy
=
0
;
uint8_t
data_cell_in
=
0
;
uint8_t
data_cell_out
=
0
;
int
ret
=
0
;
datalen
=
(
uint64_t
)
args
.
image
.
width
*
(
uint64_t
)
args
.
image
.
height
*
(
uint64_t
)
args
.
image
.
channels
;
datalen
=
align_to_x
(
datalen
,
16
);
input_address_phy
=
vaddr_to_paddr
(
args
.
image
.
address
);
output_address_phy
=
vaddr_to_paddr
(
args
.
output
.
address
);
DLOG
<<
"input_phy:"
<<
input_address_phy
;
DLOG
<<
"output_phy:"
<<
output_address_phy
;
switch
(
args
.
input_data_type
)
{
case
DATA_TYPE_FP16
:
{
switch
(
args
.
output_data_type
)
{
case
DATA_TYPE_FP16
:
data_cell_in
=
SIZE_FP16
;
data_cell_out
=
SIZE_FP16
;
cmd
=
CMD_FP16_TO_FP16
;
break
;
case
DATA_TYPE_FP32
:
data_cell_in
=
SIZE_FP16
;
data_cell_out
=
SIZE_FP32
;
cmd
=
CMD_FP16_TO_FP32
;
break
;
default:
break
;
}
}
break
;
case
DATA_TYPE_FP32
:
{
switch
(
args
.
output_data_type
)
{
case
DATA_TYPE_FP16
:
data_cell_in
=
SIZE_FP32
;
data_cell_out
=
SIZE_FP16
;
cmd
=
CMD_FP32_TO_FP16
;
break
;
case
DATA_TYPE_FP32
:
data_cell_in
=
SIZE_FP32
;
data_cell_out
=
SIZE_FP32
;
cmd
=
CMD_FP32_TO_FP32
;
break
;
default:
break
;
}
}
break
;
default:
break
;
}
if
(
cmd
!=
CMD_FP16_TO_FP16
&&
cmd
!=
CMD_FP16_TO_FP32
&&
cmd
!=
CMD_FP32_TO_FP16
&&
cmd
!=
CMD_FP32_TO_FP32
)
{
return
-
EFAULT
;
}
if
((
data_cell_in
!=
SIZE_FP16
&&
data_cell_in
!=
SIZE_FP32
)
||
(
data_cell_out
!=
SIZE_FP16
&&
data_cell_out
!=
SIZE_FP32
))
{
return
-
EFAULT
;
}
pthread_mutex_lock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
if
(
ERROR
==
g_fpgainfo
.
pe_data
->
pes
[
PE_IDX_BYPASS
]
->
status
)
{
ret
=
-
EIO
;
DLOG
<<
"Bypass Status Error!"
;
pthread_mutex_unlock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
return
ret
;
}
/*restart scale*/
reg_writeq
(
output_scale
,
REG_SCALE_PARAMETER
);
reg_writeq
(
input_address_phy
,
REG_CONVERT_SRC_ADDR
);
reg_writeq
(
output_address_phy
,
REG_CONVERT_DST_ADDR
);
reg_writeq
(
datalen
,
REG_CONVERT_LENGTH
);
/*SDK刷Cache保证数据一致性*/
reg_writeq
(
cmd
,
REG_CONVERT_CMD
);
DLOG
<<
"before reg poll"
;
if
(
0
!=
fpga_regpoll
(
REG_INTERRUPT
,
INTERRUPT_BYPASS
,
PE_IRQ_TIMEOUT
))
{
g_fpgainfo
.
pe_data
->
pes
[
PE_IDX_BYPASS
]
->
status
=
ERROR
;
ret
=
-
EIO
;
DLOG
<<
"BYPASS Wait Irq Timeout!"
;
}
DLOG
<<
"after reg poll"
;
usleep
(
40
);
/*SDK 无效 Cache保证数据一致性*/
output_scale
=
reg_readq
(
REG_SCALE_PARAMETER
);
output_scale
=
(
output_scale
<<
32
)
|
(
output_scale
>>
32
);
fpga_copy
(
args
.
output
.
scale_address
,
&
output_scale
,
sizeof
(
float
)
*
2
);
//*(args.output.scale_address) = reg_readq(REG_SCALE_PARAMETER);
//*(args.output.timer_cnt) = reg_readq(REG_TIMER_COUNTER);
pthread_mutex_unlock
(
&
g_fpgainfo
.
pe_data
->
mutex
);
return
ret
;
#endif
return
0
;
...
...
@@ -138,11 +823,14 @@ int ComputeFPGAConcat(const struct ConcatArgs &args) {
DLOG
<<
"=============ComputeFpgaConcat==========="
;
DLOG
<<
" Image_num: "
<<
args
.
image_num
<<
" out_address:"
<<
args
.
image_out
<<
" out_scale_address:"
<<
args
.
scale_out
;
<<
" out_scale_address:"
<<
args
.
scale_out
<<
" out_channel:"
<<
args
.
out_channel
;
DLOG
<<
" image_height:"
<<
args
.
height
<<
" image_width:"
<<
args
.
width
;
for
(
int
i
=
0
;
i
<
args
.
image_num
;
i
++
)
{
DLOG
<<
" "
<<
i
<<
"th: "
;
DLOG
<<
" channel_num:"
<<
args
.
channel_num
[
i
]
DLOG
<<
" channel_num:"
<<
args
.
channel_num
[
i
]
// << " aligned_channel_num:" << args.aligned_channel_num[i]
<<
" image_address:"
<<
args
.
images_in
[
i
]
<<
" image_scale_address:"
<<
args
.
scales_in
[
i
];
}
...
...
@@ -154,6 +842,82 @@ int ComputeFPGAConcat(const struct ConcatArgs &args) {
return
0
;
}
void
deconv_post_process
(
half
**
data_in
,
int
sub_conv_n
,
int
num
,
int
channel
,
int
sub_height
,
int
sub_width
,
int
omit_size
)
{
int
origin_h
=
sub_height
*
sub_conv_n
;
int
origin_w
=
sub_width
*
sub_conv_n
;
int
align_origin_w
=
align_to_x
(
origin_w
*
channel
,
16
);
int
deconv_h
=
origin_h
-
2
*
omit_size
;
int
deconv_w
=
origin_w
-
2
*
omit_size
;
int
deconv_row_len
=
deconv_w
*
channel
;
int
align_deconv_row_len
=
align_to_x
(
deconv_row_len
,
16
);
half
*
ptr_tmp
=
*
data_in
;
half
*
ptr_deconv
=
(
half
*
)
fpga_malloc
(
num
*
align_deconv_row_len
*
deconv_h
*
sizeof
(
half
));
memset
(
ptr_deconv
,
0
,
num
*
align_deconv_row_len
*
deconv_h
*
sizeof
(
half
));
int
deconv_idx
=
0
;
for
(
int
nn
=
0
;
nn
<
num
;
++
nn
)
{
for
(
int
hh
=
0
;
hh
<
origin_h
;
++
hh
)
{
int
hx
=
(
hh
%
sub_conv_n
);
half
*
sub_t
=
ptr_tmp
+
hx
*
sub_height
*
align_origin_w
;
// sub(hx,:);
int
hi
=
(
hh
/
sub_conv_n
);
if
((
hh
<
omit_size
)
||
(
hh
>=
(
origin_h
-
omit_size
)))
continue
;
// for (int ww = 0; ww < origin_w; ++ww){
// if((ww < omit_size) )// || (ww >= (origin_w-omit_size))
// continue;
int
sidx
=
(
nn
*
origin_h
*
align_origin_w
+
hi
*
align_origin_w
+
omit_size
*
channel
);
fpga_copy
(
ptr_deconv
+
deconv_idx
,
sub_t
+
sidx
,
sizeof
(
half
)
*
deconv_row_len
);
deconv_idx
+=
align_deconv_row_len
;
//}
}
}
*
data_in
=
ptr_deconv
;
fpga_free
(
ptr_tmp
);
}
int
ComputeFpgaDeconv
(
const
struct
DeconvArgs
&
args
)
{
#ifdef FPGA_TEST_MODE
DLOG
<<
"=============ComputeFPGADeConv==========="
;
DLOG
<<
" filter_num:"
<<
args
.
filter_num
<<
" group_num:"
<<
args
.
group_num
<<
" sub_conv_num:"
<<
args
.
sub_conv_num
;
#endif
int
sub_conv_num
=
args
.
sub_conv_num
;
for
(
int
i
=
0
;
i
<
sub_conv_num
;
i
++
)
{
//#if CPU_SIMULATE
//#else
ComputeBasicConv
(
args
.
conv_args
[
i
]);
//#endif
}
if
(
sub_conv_num
>
1
)
{
float
max_scale
=
-
1.0
;
for
(
int
i
=
0
;
i
<
sub_conv_num
;
i
++
)
{
float
ptr_scale
=
(
args
.
conv_args
[
i
].
output
.
scale_address
)[
0
];
if
(
ptr_scale
>
max_scale
)
{
args
.
output
.
scale_address
[
0
]
=
ptr_scale
;
args
.
output
.
scale_address
[
1
]
=
(
args
.
conv_args
[
i
].
output
.
scale_address
)[
1
];
}
}
deconv_post_process
((
half
**
)(
&
(
args
.
output
.
address
)),
args
.
sub_conv_num
,
1
,
args
.
filter_num
,
(
args
.
sub_output_height
),
(
args
.
sub_output_width
),
args
.
omit_size
);
}
return
0
;
}
int
ComputeFPGASplit
(
const
struct
SplitArgs
&
args
)
{
#ifdef FPGA_PRINT_MODE
DLOG
<<
"=============ComputeFpgaSplit==========="
;
...
...
@@ -173,6 +937,5 @@ int ComputeFPGASplit(const struct SplitArgs &args) {
args
.
height
,
args
.
width
);
return
0
;
}
}
// namespace fpga
}
// namespace paddle_mobile
src/fpga/common/driver.cpp
浏览文件 @
d96ca3e9
...
...
@@ -137,11 +137,13 @@ int fpga_regpoll(uint64_t reg, uint64_t val, int time) {
for
(
i
=
0
;
i
<
timeout
;
i
++
)
{
if
(
val
==
reg_readq
(
reg
))
{
std
::
cout
<<
"fpga_regpoll:"
<<
i
<<
"val:"
<<
val
<<
"reg:"
<<
reg
<<
std
::
endl
;
break
;
}
}
if
(
i
<
=
timeout
)
{
if
(
i
<
timeout
)
{
return
0
;
}
else
{
return
-
1
;
...
...
@@ -153,6 +155,12 @@ int memory_request(struct fpga_memory *memory, size_t size, uint64_t *addr) {
uint64_t
_nr
=
DIV_ROUND_UP
(
size
,
FPGA_PAGE_SIZE
);
unsigned
int
nr
=
(
unsigned
int
)
_nr
;
int
ret
=
0
;
DLOG
<<
size
;
DLOG
<<
_nr
;
DLOG
<<
nr
;
uint64_t
a_size
=
FPGA_PAGE_SIZE
*
nr
;
DLOG
<<
a_size
;
pthread_mutex_lock
(
&
memory
->
mutex
);
...
...
@@ -166,6 +174,7 @@ int memory_request(struct fpga_memory *memory, size_t size, uint64_t *addr) {
*
addr
=
address_ofset
;
}
else
{
DLOG
<<
"memory request failed!"
;
ret
=
-
ENOMEM
;
}
...
...
@@ -282,7 +291,7 @@ uint64_t vaddr_to_paddr(void *address) {
if
(
iter
!=
g_fpgainfo
.
fpga_vaddr2paddr_map
.
end
())
{
paddr
=
iter
->
second
;
}
else
{
DLOG
<<
"Invalid pointer
"
;
DLOG
<<
"Invalid pointer
: "
<<
address
;
}
return
paddr
;
...
...
@@ -348,6 +357,11 @@ void fpga_free_driver(void *ptr) {
fpga_bitmap
::
bitmap_clear
(
g_fpgainfo
.
memory_info
->
bitmap
,
pos
,
g_fpgainfo
.
memory_info
->
nr
[
pos
]);
pthread_mutex_unlock
(
&
g_fpgainfo
.
memory_info
->
mutex
);
auto
iter
=
g_fpgainfo
.
fpga_vaddr2paddr_map
.
find
(
ptr
);
if
(
iter
!=
g_fpgainfo
.
fpga_vaddr2paddr_map
.
end
())
{
g_fpgainfo
.
fpga_vaddr2paddr_map
.
erase
(
iter
);
}
}
else
{
DLOG
<<
"Invalid pointer"
;
}
...
...
src/fpga/common/driver.h
浏览文件 @
d96ca3e9
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <cstring>
#include <map>
...
...
@@ -44,7 +45,7 @@ const int PE_IDX_POOLING = 1;
const
int
PE_IDX_EW
=
2
;
const
int
PE_IDX_BYPASS
=
3
;
enum
pe_status
{
IDLE
=
0
,
BUSY
=
1
};
enum
pe_status
{
IDLE
=
0
,
BUSY
=
1
,
ERROR
=
2
};
struct
MemoryCacheArgs
{
void
*
offset
;
...
...
@@ -58,7 +59,7 @@ struct MemoryCacheArgs {
struct
fpga_pe
{
char
type_name
[
MAX_TYPE_NAME_LENTH
+
1
];
struct
pe_data_s
*
outer
;
pe_status
status
;
// 0=idle 1=busy -1=fail
pe_status
status
;
uint64_t
interrupt_cnt
;
};
...
...
@@ -106,6 +107,8 @@ inline uint64_t reg_readq(uint32_t offset) {
uint64_t
value
=
*
(
volatile
uint64_t
*
)((
uint8_t
*
)
g_fpgainfo
.
FpgaRegVirAddr
+
// NOLINT
offset
);
// NOLINT
// DLOG << "read end";
usleep
(
10
);
return
value
;
}
...
...
@@ -114,6 +117,8 @@ inline void reg_writeq(uint64_t value, uint32_t offset) {
// DLOG << "offset : " << offset << ", value : " << value;
*
(
volatile
uint64_t
*
)((
uint8_t
*
)
g_fpgainfo
.
FpgaRegVirAddr
+
// NOLINT
offset
)
=
value
;
// DLOG << "write end";
usleep
(
10
);
}
int
open_device_driver
();
...
...
src/fpga/common/fpga_common.h
浏览文件 @
d96ca3e9
...
...
@@ -74,12 +74,21 @@ struct ConcatArgs {
void
*
image_out
;
float
*
scale_out
;
uint32_t
*
channel_num
;
//
uint32_t* aligned_channel_num;
//
uint32_t out_channel;
uint32_t
*
aligned_channel_num
;
uint32_t
out_channel
;
uint32_t
height
;
uint32_t
width
;
};
struct
SplitConvArgs
{
uint32_t
split_num
;
uint32_t
group_num
;
uint32_t
filter_num
;
struct
ImageOutputArgs
output
;
struct
ConvArgs
*
conv_arg
;
struct
ConcatArgs
concat_arg
;
};
struct
SplitArgs
{
uint32_t
image_num
;
int16_t
*
image_in
;
...
...
@@ -91,15 +100,6 @@ struct SplitArgs {
uint32_t
width
;
};
struct
SplitConvArgs
{
uint32_t
split_num
;
uint32_t
group_num
;
uint32_t
filter_num
;
struct
ImageOutputArgs
output
;
struct
ConvArgs
*
conv_arg
;
struct
ConcatArgs
concat_arg
;
};
struct
PoolingArgs
{
int16_t
mode
;
// mode: 0:max, 1:avg
int16_t
kernel_reciprocal
;
...
...
@@ -127,7 +127,14 @@ struct BypassArgs {
};
struct
DeconvArgs
{
struct
ConvArgs
conv_arg
;
uint32_t
sub_conv_num
;
uint32_t
group_num
;
uint32_t
filter_num
;
uint32_t
omit_size
;
uint32_t
sub_output_width
;
uint32_t
sub_output_height
;
struct
ImageOutputArgs
output
;
struct
ConvArgs
*
conv_args
;
};
static
inline
int
align_to_x
(
int
num
,
int
x
)
{
return
(
num
+
x
-
1
)
/
x
*
x
;
}
...
...
src/framework/load_ops.h
浏览文件 @
d96ca3e9
...
...
@@ -233,6 +233,14 @@ LOAD_OP1(quantize, CPU);
#ifdef DEQUANT_OP
LOAD_OP1
(
dequantize
,
CPU
);
#endif
#ifdef FUSION_DEQUANT_ADD_BN_OP
LOAD_OP1
(
fusion_dequant_add_bn
,
CPU
);
LOAD_FUSION_MATCHER
(
fusion_dequant_add_bn
);
#endif
#ifdef FUSION_DEQUANT_BN_RELU_OP
LOAD_OP1
(
fusion_dequant_bn_relu
,
CPU
);
LOAD_FUSION_MATCHER
(
fusion_dequant_bn_relu
);
#endif
#ifdef FUSION_DEQUANT_ADD_BN_RELU_OP
LOAD_OP1
(
fusion_dequant_add_bn_relu
,
CPU
);
LOAD_FUSION_MATCHER
(
fusion_dequant_add_bn_relu
);
...
...
src/io/ios_io/PaddleMobileCPU.mm
浏览文件 @
d96ca3e9
...
...
@@ -95,7 +95,8 @@ static std::mutex shared_mutex;
andModelParamsLen
:(
size_t
)
combinedParamsLen
andCombinedParamsBuf
:(
const
uint8_t
*
)
combinedParamsBuf
{
pam_
->
SetThreadNum
(
2
);
return
loaded_
=
pam_
->
LoadCombinedMemory
(
modelLen
,
modelBuf
,
combinedParamsLen
,
combinedParamsBuf
);
return
loaded_
=
pam_
->
LoadCombinedMemory
(
modelLen
,
modelBuf
,
combinedParamsLen
,
const_cast
<
uint8_t
*>
(
combinedParamsBuf
));
}
-
(
BOOL
)
load
:(
NSString
*
)
modelAndWeightPath
{
...
...
src/operators/depthwise_conv_op.h
浏览文件 @
d96ca3e9
...
...
@@ -18,7 +18,7 @@ limitations under the License. */
#include <string>
#include "framework/operator.h"
#include "operators/kernel/
depthwise_
conv_kernel.h"
#include "operators/kernel/conv_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -26,19 +26,16 @@ namespace operators {
template
<
typename
DeviceType
,
typename
T
>
class
DepthwiseConvOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
,
ConvParam
<
DeviceType
>
,
operators
::
Depthwise
ConvKernel
<
DeviceType
,
T
>>
{
operators
::
ConvKernel
<
DeviceType
,
T
>>
{
public:
DepthwiseConvOp
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
,
ConvParam
<
DeviceType
>
,
operators
::
DepthwiseConvKernel
<
DeviceType
,
T
>>
(
:
framework
::
OperatorWithKernel
<
DeviceType
,
ConvParam
<
DeviceType
>
,
operators
::
ConvKernel
<
DeviceType
,
T
>>
(
type
,
inputs
,
outputs
,
attrs
,
scope
)
{}
void
InferShape
()
const
override
;
private:
};
}
// namespace operators
...
...
src/operators/
kernel/arm/depthwise_conv_kernel
.cpp
→
src/operators/
fusion_dequant_add_bn_op
.cpp
浏览文件 @
d96ca3e9
...
...
@@ -12,27 +12,27 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef
DEPTHWISECONV
_OP
#ifdef
FUSION_DEQUANT_ADD_BN
_OP
#include "operators/kernel/depthwise_conv_kernel.h"
#include "operators/kernel/central-arm-func/depthwise_conv_arm_func.h"
#include "operators/fusion_dequant_add_bn_op.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
DepthwiseConvKernel
<
CPU
,
float
>::
Init
(
ConvParam
<
CPU
>
*
param
)
{
return
true
;
template
<
typename
Dtype
,
typename
T
>
void
FusionDequantAddBNOp
<
Dtype
,
T
>::
InferShape
()
const
{
const
auto
&
input_dims
=
this
->
param_
.
input_
->
dims
();
this
->
param_
.
output_
->
Resize
(
input_dims
);
}
template
<
>
void
DepthwiseConvKernel
<
CPU
,
float
>::
Compute
(
const
ConvParam
<
CPU
>
&
param
)
{
DepthwiseConvCompute
<
float
>
(
param
);
}
template
class
DepthwiseConvKernel
<
CPU
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
namespace
ops
=
paddle_mobile
::
operators
;
REGISTER_FUSION_MATCHER
(
fusion_dequant_add_bn
,
ops
::
FusionDequantAddBNMatcher
);
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU
(
fusion_dequant_add_bn
,
ops
::
FusionDequantAddBNOp
);
#endif
#endif
src/operators/fusion_dequant_add_bn_op.h
0 → 100644
浏览文件 @
d96ca3e9
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DEQUANT_ADD_BN_OP
#pragma once
#include <string>
#include <vector>
#include "framework/operator.h"
#include "framework/program/program-optimize/fusion_op_register.h"
#include "operators/kernel/dequant_add_bn_kernel.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
class
FusionDequantAddBNMatcher
:
public
framework
::
FusionOpMatcher
{
public:
FusionDequantAddBNMatcher
()
{
node_
=
framework
::
Node
(
G_OP_TYPE_DEQUANTIZE
);
node_
>
std
::
make_shared
<
framework
::
Node
>
(
G_OP_TYPE_ELEMENTWISE_ADD
)
>
std
::
make_shared
<
framework
::
Node
>
(
G_OP_TYPE_BATCHNORM
);
}
void
FolderNodes
(
framework
::
Node
*
node
,
std
::
vector
<
std
::
shared_ptr
<
framework
::
Node
>>
*
removed_nodes
)
{
node
->
Folder
(
node_
.
Depth
(),
Type
(),
{{
G_OP_TYPE_ELEMENTWISE_ADD
,
{{
"Y"
,
"Y"
}}},
{
G_OP_TYPE_BATCHNORM
,
{{
"Scale"
,
"BNScale"
},
{
"Mean"
,
"BNMean"
},
{
"Bias"
,
"BNBias"
},
{
"Variance"
,
"BNVariance"
}}}},
removed_nodes
);
}
std
::
string
Type
()
{
return
G_OP_TYPE_FUSION_DEQUANT_ADD_BN
;
}
};
template
<
typename
DeviceType
,
typename
T
>
class
FusionDequantAddBNOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
,
FusionDequantAddBNParam
<
DeviceType
>
,
operators
::
FusionDequantAddBNKernel
<
DeviceType
,
T
>>
{
public:
FusionDequantAddBNOp
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
,
FusionDequantAddBNParam
<
DeviceType
>
,
operators
::
FusionDequantAddBNKernel
<
DeviceType
,
T
>>
(
type
,
inputs
,
outputs
,
attrs
,
scope
)
{}
// inference output shape
void
InferShape
()
const
override
;
};
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/fusion_dequant_add_bn_relu_op.h
浏览文件 @
d96ca3e9
...
...
@@ -20,7 +20,7 @@ limitations under the License. */
#include <vector>
#include "framework/operator.h"
#include "framework/program/program-optimize/fusion_op_register.h"
#include "operators/kernel/dequant_
add_
bn_relu_kernel.h"
#include "operators/kernel/dequant_bn_relu_kernel.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
...
...
src/operators/
kernel/depthwise_conv_kernel.h
→
src/operators/
fusion_dequant_bn_relu_op.cpp
浏览文件 @
d96ca3e9
...
...
@@ -12,29 +12,28 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef
DEPTHWISECONV
_OP
#ifdef
FUSION_DEQUANT_BN_RELU
_OP
#pragma once
#include "framework/operator.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/vol2col.h"
#include "operators/op_param.h"
#include "operators/fusion_dequant_bn_relu_op.h"
namespace
paddle_mobile
{
namespace
operators
{
using
framework
::
OpKernelBase
;
template
<
typename
Dtype
,
typename
T
>
void
FusionDequantBNReluOp
<
Dtype
,
T
>::
InferShape
()
const
{
const
auto
&
input_dims
=
this
->
param_
.
input_
->
dims
();
this
->
param_
.
output_
->
Resize
(
input_dims
);
}
template
<
typename
DeviceType
,
typename
T
>
class
DepthwiseConvKernel
:
public
OpKernelBase
<
DeviceType
,
ConvParam
<
DeviceType
>>
{
public:
void
Compute
(
const
ConvParam
<
DeviceType
>
&
param
);
bool
Init
(
ConvParam
<
DeviceType
>
*
param
);
};
}
// namespace operators
}
// namespace paddle_mobile
namespace
ops
=
paddle_mobile
::
operators
;
REGISTER_FUSION_MATCHER
(
fusion_dequant_bn_relu
,
ops
::
FusionDequantBNReluMatcher
);
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU
(
fusion_dequant_bn_relu
,
ops
::
FusionDequantBNReluOp
);
#endif
#endif
src/operators/fusion_dequant_bn_relu_op.h
0 → 100644
浏览文件 @
d96ca3e9
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DEQUANT_BN_RELU_OP
#pragma once
#include <string>
#include <vector>
#include "framework/operator.h"
#include "framework/program/program-optimize/fusion_op_register.h"
#include "operators/kernel/dequant_bn_relu_kernel.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
class
FusionDequantBNReluMatcher
:
public
framework
::
FusionOpMatcher
{
public:
FusionDequantBNReluMatcher
()
{
node_
=
framework
::
Node
(
G_OP_TYPE_DEQUANTIZE
);
node_
>
std
::
make_shared
<
framework
::
Node
>
(
G_OP_TYPE_BATCHNORM
)
>
std
::
make_shared
<
framework
::
Node
>
(
G_OP_TYPE_RELU
);
}
void
FolderNodes
(
framework
::
Node
*
node
,
std
::
vector
<
std
::
shared_ptr
<
framework
::
Node
>>
*
removed_nodes
)
{
node
->
Folder
(
node_
.
Depth
(),
Type
(),
{{
G_OP_TYPE_BATCHNORM
,
{{
"Scale"
,
"BNScale"
},
{
"Mean"
,
"BNMean"
},
{
"Bias"
,
"BNBias"
},
{
"Variance"
,
"BNVariance"
}}}},
removed_nodes
);
}
std
::
string
Type
()
{
return
G_OP_TYPE_FUSION_DEQUANT_BN_RELU
;
}
};
template
<
typename
DeviceType
,
typename
T
>
class
FusionDequantBNReluOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
,
FusionDequantBNReluParam
<
DeviceType
>
,
operators
::
FusionDequantBNReluKernel
<
DeviceType
,
T
>>
{
public:
FusionDequantBNReluOp
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
,
FusionDequantBNReluParam
<
DeviceType
>
,
operators
::
FusionDequantBNReluKernel
<
DeviceType
,
T
>>
(
type
,
inputs
,
outputs
,
attrs
,
scope
)
{}
// inference output shape
void
InferShape
()
const
override
;
};
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/arm/conv_kernel.cpp
浏览文件 @
d96ca3e9
...
...
@@ -22,41 +22,43 @@ namespace operators {
template
<
>
bool
ConvKernel
<
CPU
,
float
>::
Init
(
ConvParam
<
CPU
>
*
param
)
{
bool
conv3x3
=
param
->
Filter
()
->
dims
()[
2
]
==
param
->
Filter
()
->
dims
()[
3
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
;
bool
depth3x3
=
conv3x3
&&
param
->
Groups
()
==
param
->
Input
()
->
dims
()[
1
]
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
];
if
(
param
->
Filter
()
->
type
()
==
typeid
(
int8_t
))
{
if
(
param
->
Groups
()
==
param
->
Input
()
->
dims
()[
1
]
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
param
->
Filter
()
->
dims
()[
3
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
&&
param
->
Strides
()[
0
]
<
3
&&
if
(
depth3x3
&&
param
->
Strides
()[
0
]
<
3
&&
param
->
Strides
()[
0
]
==
param
->
Strides
()[
1
])
{
param
->
ExecMode
()
=
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3_INT8
;
}
else
{
param
->
ExecMode
()
=
ConvParam
<
CPU
>::
EXEC_GEMM_INT8
;
}
}
else
{
if
(
param
->
Groups
()
==
param
->
Input
()
->
dims
()[
1
]
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
param
->
Filter
()
->
dims
()[
3
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
&&
param
->
Strides
()[
0
]
==
1
)
{
if
(
depth3x3
&&
param
->
Strides
()[
0
]
==
param
->
Strides
()[
1
]
&&
param
->
Strides
()[
0
]
==
1
&&
param
->
Paddings
()[
0
]
==
1
&&
param
->
Paddings
()[
0
]
==
param
->
Paddings
()[
1
])
{
param
->
ExecMode
()
=
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3S1P1_FLOAT
;
}
else
if
(
param
->
Groups
()
==
param
->
Input
()
->
dims
()[
1
]
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
param
->
Filter
()
->
dims
()[
3
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
)
{
param
->
ExecMode
()
=
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3_FLOAT
;
}
else
if
(
depth3x3
&&
param
->
Strides
()[
0
]
==
param
->
Strides
()[
1
]
&&
param
->
Strides
()[
0
]
==
2
&&
param
->
Paddings
()[
0
]
==
0
&&
param
->
Paddings
()[
0
]
==
param
->
Paddings
()[
1
])
{
param
->
ExecMode
()
=
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3S2P0_FLOAT
;
}
else
if
(
depth3x3
&&
param
->
Strides
()[
0
]
==
param
->
Strides
()[
1
]
&&
param
->
Strides
()[
0
]
==
2
&&
param
->
Paddings
()[
0
]
==
1
&&
param
->
Paddings
()[
0
]
==
param
->
Paddings
()[
1
])
{
param
->
ExecMode
()
=
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3S2P1_FLOAT
;
#ifndef __aarch64__
}
else
if
(
param
->
Filter
()
->
dims
()[
2
]
==
param
->
Filter
()
->
dims
()[
3
]
&&
param
->
Strides
()[
0
]
==
param
->
Strides
()[
1
]
&&
}
else
if
(
conv3x3
&&
param
->
Strides
()[
0
]
==
param
->
Strides
()[
1
]
&&
param
->
Dilations
()[
0
]
==
param
->
Dilations
()[
1
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
&&
param
->
Stride
s
()[
0
]
==
1
&&
param
->
Dilations
()[
0
]
==
1
&&
param
->
Output
()
->
dims
()[
1
]
>=
16
&&
param
->
Strides
()[
0
]
==
1
&&
param
->
Dilation
s
()[
0
]
==
1
&&
param
->
Output
()
->
dims
()[
1
]
>=
16
&&
param
->
Input
()
->
dims
()[
1
]
>=
16
&&
param
->
Input
()
->
dims
()[
2
]
<=
140
/* refered from ncnn */
)
{
param
->
ExecMode
()
=
ConvParam
<
CPU
>::
EXEC_WINOGRAD3X3_FLOAT
;
// transform weight
framework
::
Tensor
*
transformed_weight
=
new
framework
::
Tensor
;
framework
::
Tensor
transformed_weight
;
operators
::
math
::
winograd_transform_weight
<
8
,
3
>
(
*
param
->
Filter
(),
transformed_weight
);
param
->
Filter
()
=
transformed_weight
;
&
transformed_weight
);
framework
::
TensorCopy
(
transformed_weight
,
param
->
Filter
())
;
#endif
}
else
{
param
->
ExecMode
()
=
ConvParam
<
CPU
>::
EXEC_GEMM_FLOAT
;
...
...
@@ -78,9 +80,13 @@ void ConvKernel<CPU, float>::Compute(const ConvParam<CPU> ¶m) {
math
::
DepthwiseConv3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
nullptr
,
false
);
break
;
case
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3_FLOAT
:
math
::
DepthwiseConv3x3
(
param
.
Input
(),
param
.
Strides
(),
param
.
Paddings
(),
param
.
Filter
(),
nullptr
,
param
.
Output
(),
false
);
case
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3S2P1_FLOAT
:
math
::
DepthwiseConv3x3s2p1v2
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
nullptr
,
false
);
break
;
case
ConvParam
<
CPU
>::
EXEC_DEPTHWISE3x3S2P0_FLOAT
:
math
::
DepthwiseConv3x3s2p0
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
nullptr
,
false
);
break
;
case
ConvParam
<
CPU
>::
EXEC_WINOGRAD3X3_FLOAT
:
WinogradConv3x3
<
8
,
3
>
(
param
);
...
...
src/operators/kernel/arm/dequant_add_bn_
relu_
kernel.cpp
→
src/operators/kernel/arm/dequant_add_bn_kernel.cpp
浏览文件 @
d96ca3e9
...
...
@@ -12,9 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DEQUANT_ADD_BN_
RELU_
OP
#ifdef FUSION_DEQUANT_ADD_BN_OP
#include "operators/kernel/dequant_add_bn_
relu_
kernel.h"
#include "operators/kernel/dequant_add_bn_kernel.h"
#include <cmath>
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
...
...
@@ -24,8 +24,8 @@ namespace paddle_mobile {
namespace
operators
{
template
<
>
bool
FusionDequantAddBN
Relu
Kernel
<
CPU
,
float
>::
Init
(
FusionDequantAddBN
Relu
Param
<
CPU
>
*
param
)
{
bool
FusionDequantAddBNKernel
<
CPU
,
float
>::
Init
(
FusionDequantAddBNParam
<
CPU
>
*
param
)
{
// elementwise add params
const
Tensor
*
bias
=
param
->
bias_
;
// batch norm params
...
...
@@ -49,8 +49,8 @@ bool FusionDequantAddBNReluKernel<CPU, float>::Init(
}
template
<
>
void
FusionDequantAddBN
Relu
Kernel
<
CPU
,
float
>::
Compute
(
const
FusionDequantAddBN
Relu
Param
<
CPU
>
&
param
)
{
void
FusionDequantAddBNKernel
<
CPU
,
float
>::
Compute
(
const
FusionDequantAddBNParam
<
CPU
>
&
param
)
{
const
int32_t
*
input
=
param
.
input_
->
data
<
int32_t
>
();
const
float
*
bn_scale
=
param
.
bn_scale_
->
data
<
float
>
();
const
float
*
bn_bias
=
param
.
bn_bias_
->
data
<
float
>
();
...
...
@@ -78,7 +78,6 @@ void FusionDequantAddBNReluKernel<CPU, float>::Compute(
remain
=
spatial_size
&
0xF
;
float32x4_t
__scale
=
vdupq_n_f32
(
scale
);
float32x4_t
__bias
=
vdupq_n_f32
(
bias
);
float32x4_t
__zero
=
vdupq_n_f32
(
0.
f
);
for
(
int
k
=
0
;
k
<
loop
;
++
k
,
x
+=
16
,
y
+=
16
)
{
int32x4_t
r0
=
vld1q_s32
(
x
);
...
...
@@ -93,10 +92,6 @@ void FusionDequantAddBNReluKernel<CPU, float>::Compute(
f1
=
vmlaq_f32
(
__bias
,
__scale
,
f1
);
f2
=
vmlaq_f32
(
__bias
,
__scale
,
f2
);
f3
=
vmlaq_f32
(
__bias
,
__scale
,
f3
);
f0
=
vmaxq_f32
(
__zero
,
f0
);
f1
=
vmaxq_f32
(
__zero
,
f1
);
f2
=
vmaxq_f32
(
__zero
,
f2
);
f3
=
vmaxq_f32
(
__zero
,
f3
);
vst1q_f32
(
y
,
f0
);
vst1q_f32
(
y
+
4
,
f1
);
vst1q_f32
(
y
+
8
,
f2
);
...
...
@@ -104,7 +99,7 @@ void FusionDequantAddBNReluKernel<CPU, float>::Compute(
}
#endif // __ARM_NEON__
for
(
int
k
=
0
;
k
<
remain
;
++
k
)
{
y
[
k
]
=
s
td
::
max
(
scale
*
x
[
k
]
+
bias
,
0.
f
)
;
y
[
k
]
=
s
cale
*
x
[
k
]
+
bias
;
}
}
}
...
...
@@ -113,4 +108,4 @@ void FusionDequantAddBNReluKernel<CPU, float>::Compute(
}
// namespace operators
}
// namespace paddle_mobile
#endif // FUSION_DEQUANT_ADD_BN_
RELU_
OP
#endif // FUSION_DEQUANT_ADD_BN_OP
src/operators/kernel/arm/dequant_bn_relu_kernel.cpp
0 → 100644
浏览文件 @
d96ca3e9
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/kernel/dequant_bn_relu_kernel.h"
#include <cmath>
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
#endif
namespace
paddle_mobile
{
namespace
operators
{
#if defined(FUSION_DEQUANT_BN_RELU_OP) || defined(FUSION_DEQUANT_ADD_BN_RELU_OP)
void
DequantBNReluCompute
(
const
FusionDequantBNParam
<
CPU
>
*
param
)
{
const
int32_t
*
input
=
param
->
input_
->
data
<
int32_t
>
();
const
float
*
bn_scale
=
param
->
bn_scale_
->
data
<
float
>
();
const
float
*
bn_bias
=
param
->
bn_bias_
->
data
<
float
>
();
// dequantize params
const
float
activation_scale
=
param
->
activation_scale_
->
data
<
float
>
()[
0
];
const
float
weight_scale
=
param
->
weight_scale_
;
const
float
dequant_scale
=
activation_scale
/
weight_scale
;
float
*
output
=
param
->
output_
->
mutable_data
<
float
>
();
int
batch_size
=
param
->
input_
->
dims
()[
0
];
int
channels
=
param
->
input_
->
dims
()[
1
];
size_t
spatial_size
=
param
->
input_
->
dims
()[
2
]
*
param
->
input_
->
dims
()[
3
];
#pragma omp parallel for collapse(2)
for
(
int
batch
=
0
;
batch
<
batch_size
;
++
batch
)
{
for
(
int
c
=
0
;
c
<
channels
;
++
c
)
{
float
scale
=
bn_scale
[
c
]
*
dequant_scale
;
float
bias
=
bn_bias
[
c
];
size_t
offset
=
(
batch
*
channels
+
c
)
*
spatial_size
;
const
int32_t
*
x
=
input
+
offset
;
float
*
y
=
output
+
offset
;
size_t
remain
=
spatial_size
;
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
int
loop
=
spatial_size
>>
4
;
remain
=
spatial_size
&
0xF
;
float32x4_t
__scale
=
vdupq_n_f32
(
scale
);
float32x4_t
__bias
=
vdupq_n_f32
(
bias
);
float32x4_t
__zero
=
vdupq_n_f32
(
0.
f
);
for
(
int
k
=
0
;
k
<
loop
;
++
k
,
x
+=
16
,
y
+=
16
)
{
int32x4_t
r0
=
vld1q_s32
(
x
);
int32x4_t
r1
=
vld1q_s32
(
x
+
4
);
int32x4_t
r2
=
vld1q_s32
(
x
+
8
);
int32x4_t
r3
=
vld1q_s32
(
x
+
12
);
float32x4_t
f0
=
vcvtq_f32_s32
(
r0
);
float32x4_t
f1
=
vcvtq_f32_s32
(
r1
);
float32x4_t
f2
=
vcvtq_f32_s32
(
r2
);
float32x4_t
f3
=
vcvtq_f32_s32
(
r3
);
f0
=
vmlaq_f32
(
__bias
,
__scale
,
f0
);
f1
=
vmlaq_f32
(
__bias
,
__scale
,
f1
);
f2
=
vmlaq_f32
(
__bias
,
__scale
,
f2
);
f3
=
vmlaq_f32
(
__bias
,
__scale
,
f3
);
f0
=
vmaxq_f32
(
__zero
,
f0
);
f1
=
vmaxq_f32
(
__zero
,
f1
);
f2
=
vmaxq_f32
(
__zero
,
f2
);
f3
=
vmaxq_f32
(
__zero
,
f3
);
vst1q_f32
(
y
,
f0
);
vst1q_f32
(
y
+
4
,
f1
);
vst1q_f32
(
y
+
8
,
f2
);
vst1q_f32
(
y
+
12
,
f3
);
}
#endif // __ARM_NEON__
for
(
int
k
=
0
;
k
<
remain
;
++
k
)
{
y
[
k
]
=
std
::
max
(
scale
*
x
[
k
]
+
bias
,
0.
f
);
}
}
}
}
#endif
#ifdef FUSION_DEQUANT_BN_RELU_OP
template
<
>
bool
FusionDequantBNReluKernel
<
CPU
,
float
>::
Init
(
FusionDequantBNReluParam
<
CPU
>
*
param
)
{
// batch norm params
const
Tensor
*
bn_mean
=
param
->
bn_mean_
;
const
Tensor
*
bn_variance
=
param
->
bn_variance_
;
Tensor
*
bn_scale
=
param
->
bn_scale_
;
Tensor
*
bn_bias
=
param
->
bn_bias_
;
const
float
epsilon
=
param
->
epsilon_
;
const
float
*
mean_ptr
=
bn_mean
->
data
<
float
>
();
const
float
*
var_ptr
=
bn_variance
->
data
<
float
>
();
float
*
bn_scale_ptr
=
bn_scale
->
mutable_data
<
float
>
();
float
*
bn_bias_ptr
=
bn_bias
->
mutable_data
<
float
>
();
for
(
int
c
=
0
;
c
<
bn_scale
->
numel
();
++
c
)
{
float
inv_scale
=
bn_scale_ptr
[
c
]
/
(
std
::
sqrt
(
var_ptr
[
c
]
+
epsilon
));
bn_scale_ptr
[
c
]
=
inv_scale
;
bn_bias_ptr
[
c
]
=
bn_bias_ptr
[
c
]
-
inv_scale
*
mean_ptr
[
c
];
}
return
true
;
}
template
<
>
void
FusionDequantBNReluKernel
<
CPU
,
float
>::
Compute
(
const
FusionDequantBNReluParam
<
CPU
>
&
param
)
{
DequantBNReluCompute
(
&
param
);
}
#endif // FUSION_DEQUANT_BN_RELU_OP
#ifdef FUSION_DEQUANT_ADD_BN_RELU_OP
template
<
>
bool
FusionDequantAddBNReluKernel
<
CPU
,
float
>::
Init
(
FusionDequantAddBNReluParam
<
CPU
>
*
param
)
{
// elementwise add params
const
Tensor
*
bias
=
param
->
bias_
;
// batch norm params
const
Tensor
*
bn_mean
=
param
->
bn_mean_
;
const
Tensor
*
bn_variance
=
param
->
bn_variance_
;
Tensor
*
bn_scale
=
param
->
bn_scale_
;
Tensor
*
bn_bias
=
param
->
bn_bias_
;
const
float
epsilon
=
param
->
epsilon_
;
const
float
*
bias_ptr
=
bias
->
data
<
float
>
();
const
float
*
mean_ptr
=
bn_mean
->
data
<
float
>
();
const
float
*
var_ptr
=
bn_variance
->
data
<
float
>
();
float
*
bn_scale_ptr
=
bn_scale
->
mutable_data
<
float
>
();
float
*
bn_bias_ptr
=
bn_bias
->
mutable_data
<
float
>
();
for
(
int
c
=
0
;
c
<
bn_scale
->
numel
();
++
c
)
{
float
inv_scale
=
bn_scale_ptr
[
c
]
/
(
std
::
sqrt
(
var_ptr
[
c
]
+
epsilon
));
bn_scale_ptr
[
c
]
=
inv_scale
;
bn_bias_ptr
[
c
]
=
inv_scale
*
(
bias_ptr
[
c
]
-
mean_ptr
[
c
])
+
bn_bias_ptr
[
c
];
}
return
true
;
}
template
<
>
void
FusionDequantAddBNReluKernel
<
CPU
,
float
>::
Compute
(
const
FusionDequantAddBNReluParam
<
CPU
>
&
param
)
{
DequantBNReluCompute
(
&
param
);
}
#endif // FUSION_DEQUANT_ADD_BN_RELU_OP
}
// namespace operators
}
// namespace paddle_mobile
src/operators/kernel/arm/quantize_kernel.cpp
浏览文件 @
d96ca3e9
...
...
@@ -20,6 +20,9 @@ limitations under the License. */
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
namespace
paddle_mobile
{
namespace
operators
{
#ifndef __aarch64__
inline
float32_t
vmaxvq_f32
(
float32x4_t
r
)
{
float32x2_t
v
=
vmax_f32
(
vget_high_f32
(
r
),
vget_low_f32
(
r
));
...
...
@@ -27,9 +30,13 @@ inline float32_t vmaxvq_f32(float32x4_t r) {
}
#endif
inline
int32x4_t
vrnd_towards_zero
(
float32x4_t
r
)
{
return
vcvtq_s32_f32
(
r
);
}
template
<
RoundType
R
=
ROUND_NEAREST_TOWARDS_ZERO
>
inline
int32x4_t
vround_f32
(
float32x4_t
r
)
{
return
vcvtq_s32_f32
(
r
);
}
inline
int32x4_t
vrnd_away_zero
(
float32x4_t
r
)
{
template
<
>
inline
int32x4_t
vround_f32
<
ROUND_NEAREST_AWAY_ZERO
>
(
float32x4_t
r
)
{
float32x4_t
plus
=
vdupq_n_f32
(
0.5
);
float32x4_t
minus
=
vdupq_n_f32
(
-
0.5
);
float32x4_t
zero
=
vdupq_n_f32
(
0
);
...
...
@@ -40,31 +47,13 @@ inline int32x4_t vrnd_away_zero(float32x4_t r) {
return
ret
;
}
inline
int32x4_t
vrnd_to_even
(
float32x4_t
r
)
{
#if 0
int32x4_t ret;
float value[4];
vst1q_f32(value, r);
for (int i = 0; i < 4; ++i) {
float v = round(value[i]);
int32_t q = (int32_t)v;
if (abs(abs(v - value[i]) - 0.5) > 0) {
ret[i] = q;
} else {
if (abs(q) % 2 == 0) {
ret[i] = q;
} else {
ret[i] = q + ((q > 0) ? -1 : 1);
}
}
}
return ret;
#else
template
<
>
inline
int32x4_t
vround_f32
<
ROUND_NEAREST_TO_EVEN
>
(
float32x4_t
r
)
{
float32x4_t
point5
=
vdupq_n_f32
(
0.5
);
int32x4_t
one
=
vdupq_n_s32
(
1
);
int32x4_t
zero
=
vdupq_n_s32
(
0
);
int32x4_t
rnd
=
vr
nd_away_zero
(
r
);
int32x4_t
rnd
=
vr
ound_f32
<
ROUND_NEAREST_AWAY_ZERO
>
(
r
);
float32x4_t
frnd
=
vcvtq_f32_s32
(
rnd
);
frnd
=
vsubq_f32
(
frnd
,
r
);
frnd
=
vabsq_f32
(
frnd
);
...
...
@@ -82,115 +71,39 @@ inline int32x4_t vrnd_to_even(float32x4_t r) {
smask
=
vsubq_s32
(
smask
,
one
);
rnd
=
vaddq_s32
(
rnd
,
smask
);
return
rnd
;
#endif
}
namespace
paddle_mobile
{
namespace
operators
{
static
float
find_abs_max
(
const
Tensor
*
input
)
{
float
max_abs
=
0.
f
;
const
float
*
x
=
input
->
data
<
const
float
>
();
size_t
size
=
input
->
numel
();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
size_t
loop
=
size
>>
4
;
size_t
remain
=
size
&
0xF
;
for
(
size_t
i
=
0
;
i
<
loop
;
++
i
)
{
float32x4_t
max
;
float32x4_t
r0
=
vld1q_f32
(
x
);
float32x4_t
r1
=
vld1q_f32
(
x
+
4
);
float32x4_t
r2
=
vld1q_f32
(
x
+
8
);
float32x4_t
r3
=
vld1q_f32
(
x
+
12
);
r0
=
vabsq_f32
(
r0
);
r1
=
vabsq_f32
(
r1
);
r2
=
vabsq_f32
(
r2
);
r3
=
vabsq_f32
(
r3
);
max
[
0
]
=
vmaxvq_f32
(
r0
);
max
[
1
]
=
vmaxvq_f32
(
r1
);
max
[
2
]
=
vmaxvq_f32
(
r2
);
max
[
3
]
=
vmaxvq_f32
(
r3
);
max
[
0
]
=
vmaxvq_f32
(
max
);
if
(
max
[
0
]
>
max_abs
)
{
max_abs
=
max
[
0
];
}
x
+=
16
;
}
size
=
remain
;
#endif
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
float
value
=
std
::
abs
(
x
[
i
]);
if
(
value
>
max_abs
)
{
max_abs
=
value
;
}
}
return
max_abs
;
template
<
RoundType
R
=
ROUND_NEAREST_TOWARDS_ZERO
>
inline
int8_t
Round
(
const
float
&
x
)
{
return
static_cast
<
int8_t
>
(
x
);
}
#ifdef __aarch64__
static
void
quantize_round_to_even
(
const
Tensor
*
input
,
const
float
scale
,
Tensor
*
output
)
{
const
float
*
x
=
input
->
data
<
const
float
>
();
int8_t
*
y
=
output
->
mutable_data
<
int8_t
>
();
size_t
size
=
input
->
numel
();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
size_t
loop
=
size
>>
4
;
size_t
remain
=
size
&
0xF
;
template
<
>
inline
int8_t
Round
<
ROUND_NEAREST_AWAY_ZERO
>
(
const
float
&
x
)
{
return
std
::
round
(
x
);
}
#pragma omp parallel for
for
(
size_t
i
=
0
;
i
<
loop
;
++
i
)
{
const
float
*
local_x
=
x
+
(
i
<<
4
);
int8_t
*
local_y
=
y
+
(
i
<<
4
);
float32x4_t
r0
=
vld1q_f32
(
local_x
);
float32x4_t
r1
=
vld1q_f32
(
local_x
+
4
);
float32x4_t
r2
=
vld1q_f32
(
local_x
+
8
);
float32x4_t
r3
=
vld1q_f32
(
local_x
+
12
);
r0
=
vmulq_n_f32
(
r0
,
scale
);
r1
=
vmulq_n_f32
(
r1
,
scale
);
r2
=
vmulq_n_f32
(
r2
,
scale
);
r3
=
vmulq_n_f32
(
r3
,
scale
);
int32x4_t
q0
=
vrnd_to_even
(
r0
);
int32x4_t
q1
=
vrnd_to_even
(
r1
);
int32x4_t
q2
=
vrnd_to_even
(
r2
);
int32x4_t
q3
=
vrnd_to_even
(
r3
);
int16x4_t
d0
=
vmovn_s32
(
q0
);
int16x4_t
d1
=
vmovn_s32
(
q1
);
int16x4_t
d2
=
vmovn_s32
(
q2
);
int16x4_t
d3
=
vmovn_s32
(
q3
);
int16x8_t
q5
=
vcombine_s16
(
d0
,
d1
);
int16x8_t
q6
=
vcombine_s16
(
d2
,
d3
);
int8x8_t
d5
=
vmovn_s16
(
q5
);
int8x8_t
d6
=
vmovn_s16
(
q6
);
vst1_s8
(
local_y
,
d5
);
vst1_s8
(
local_y
+
8
,
d6
);
}
size
=
remain
;
x
+=
(
loop
<<
4
);
y
+=
(
loop
<<
4
);
#endif
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
float
value
=
x
[
i
]
*
scale
;
float
v
=
round
(
value
);
int32_t
q
=
(
int32_t
)
v
;
if
(
abs
(
abs
(
q
-
value
)
-
0.5
)
>
0
)
{
y
[
i
]
=
q
;
}
else
{
if
(
abs
(
q
)
%
2
==
0
)
{
y
[
i
]
=
q
;
}
else
{
y
[
i
]
=
q
+
((
q
>
0
)
?
-
1
:
1
);
}
template
<
>
inline
int8_t
Round
<
ROUND_NEAREST_TO_EVEN
>
(
const
float
&
x
)
{
float
v
=
std
::
round
(
x
);
int32_t
q
=
static_cast
<
int32_t
>
(
v
);
if
(
std
::
abs
(
std
::
abs
(
q
-
v
)
-
0.5
)
<=
0
)
{
if
(
std
::
abs
(
q
)
%
2
!=
0
)
{
q
=
q
+
((
q
>
0
)
?
-
1
:
1
);
}
}
return
static_cast
<
int8_t
>
(
q
);
}
static
void
quantize_round_to_zero
(
const
Tensor
*
input
,
const
float
scale
,
Tensor
*
output
)
{
template
<
RoundType
R
>
static
void
Quantize
(
const
Tensor
*
input
,
const
float
scale
,
Tensor
*
output
)
{
const
float
*
x
=
input
->
data
<
const
float
>
();
int8_t
*
y
=
output
->
mutable_data
<
int8_t
>
();
size_t
size
=
input
->
numel
();
size_t
remain
=
input
->
numel
();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
size_t
loop
=
size
>>
4
;
size_t
remain
=
size
&
0xF
;
size_t
loop
=
remain
>>
4
;
remain
=
remain
&
0xF
;
#pragma omp parallel for
for
(
size_t
i
=
0
;
i
<
loop
;
++
i
)
{
...
...
@@ -204,10 +117,10 @@ static void quantize_round_to_zero(const Tensor *input, const float scale,
r1
=
vmulq_n_f32
(
r1
,
scale
);
r2
=
vmulq_n_f32
(
r2
,
scale
);
r3
=
vmulq_n_f32
(
r3
,
scale
);
int32x4_t
q0
=
vr
nd_towards_zero
(
r0
);
int32x4_t
q1
=
vr
nd_towards_zero
(
r1
);
int32x4_t
q2
=
vr
nd_towards_zero
(
r2
);
int32x4_t
q3
=
vr
nd_towards_zero
(
r3
);
int32x4_t
q0
=
vr
ound_f32
<
R
>
(
r0
);
int32x4_t
q1
=
vr
ound_f32
<
R
>
(
r1
);
int32x4_t
q2
=
vr
ound_f32
<
R
>
(
r2
);
int32x4_t
q3
=
vr
ound_f32
<
R
>
(
r3
);
int16x4_t
d0
=
vmovn_s32
(
q0
);
int16x4_t
d1
=
vmovn_s32
(
q1
);
int16x4_t
d2
=
vmovn_s32
(
q2
);
...
...
@@ -219,561 +132,44 @@ static void quantize_round_to_zero(const Tensor *input, const float scale,
vst1_s8
(
local_y
,
d5
);
vst1_s8
(
local_y
+
8
,
d6
);
}
size
=
remain
;
x
+=
(
loop
<<
4
);
y
+=
(
loop
<<
4
);
#endif
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
y
[
i
]
=
static_cast
<
int8_t
>
(
x
[
i
]
*
scale
);
for
(
size_t
i
=
0
;
i
<
remain
;
++
i
)
{
y
[
i
]
=
Round
<
R
>
(
x
[
i
]
*
scale
);
}
}
static
void
quantize_round_to_nearest
(
const
Tensor
*
input
,
const
float
scale
,
Tensor
*
output
)
{
float
find_abs_max
(
const
Tensor
*
input
)
{
float
max_abs
=
0.
f
;
const
float
*
x
=
input
->
data
<
const
float
>
();
int8_t
*
y
=
output
->
mutable_data
<
int8_t
>
();
size_t
size
=
input
->
numel
();
size_t
remain
=
input
->
numel
();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
size_t
loop
=
size
>>
4
;
size_t
remain
=
size
&
0xF
;
size_t
loop
=
remain
>>
4
;
remain
=
remain
&
0xF
;
float32x4_t
__max
=
{
0.
f
,
0.
f
,
0.
f
,
0.
f
};
#pragma omp parallel for
for
(
size_t
i
=
0
;
i
<
loop
;
++
i
)
{
const
float
*
local_x
=
x
+
(
i
<<
4
);
int8_t
*
local_y
=
y
+
(
i
<<
4
);
float32x4_t
r0
=
vld1q_f32
(
local_x
);
float32x4_t
r1
=
vld1q_f32
(
local_x
+
4
);
float32x4_t
r2
=
vld1q_f32
(
local_x
+
8
);
float32x4_t
r3
=
vld1q_f32
(
local_x
+
12
);
r0
=
vmulq_n_f32
(
r0
,
scale
);
r1
=
vmulq_n_f32
(
r1
,
scale
);
r2
=
vmulq_n_f32
(
r2
,
scale
);
r3
=
vmulq_n_f32
(
r3
,
scale
);
int32x4_t
q0
=
vrnd_away_zero
(
r0
);
int32x4_t
q1
=
vrnd_away_zero
(
r1
);
int32x4_t
q2
=
vrnd_away_zero
(
r2
);
int32x4_t
q3
=
vrnd_away_zero
(
r3
);
int16x4_t
d0
=
vmovn_s32
(
q0
);
int16x4_t
d1
=
vmovn_s32
(
q1
);
int16x4_t
d2
=
vmovn_s32
(
q2
);
int16x4_t
d3
=
vmovn_s32
(
q3
);
int16x8_t
q5
=
vcombine_s16
(
d0
,
d1
);
int16x8_t
q6
=
vcombine_s16
(
d2
,
d3
);
int8x8_t
d5
=
vmovn_s16
(
q5
);
int8x8_t
d6
=
vmovn_s16
(
q6
);
vst1_s8
(
local_y
,
d5
);
vst1_s8
(
local_y
+
8
,
d6
);
for
(
size_t
i
=
0
;
i
<
loop
;
++
i
,
x
+=
16
)
{
float32x4_t
r0
=
vld1q_f32
(
x
);
float32x4_t
r1
=
vld1q_f32
(
x
+
4
);
float32x4_t
r2
=
vld1q_f32
(
x
+
8
);
float32x4_t
r3
=
vld1q_f32
(
x
+
12
);
r0
=
vabsq_f32
(
r0
);
r1
=
vabsq_f32
(
r1
);
r2
=
vabsq_f32
(
r2
);
r3
=
vabsq_f32
(
r3
);
r0
=
vmaxq_f32
(
r0
,
r1
);
r1
=
vmaxq_f32
(
r2
,
r3
);
r0
=
vmaxq_f32
(
r0
,
r1
);
__max
=
vmaxq_f32
(
r0
,
__max
);
}
size
=
remain
;
x
+=
(
loop
<<
4
);
y
+=
(
loop
<<
4
);
max_abs
=
vmaxvq_f32
(
__max
);
#endif
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
y
[
i
]
=
round
(
x
[
i
]
*
scale
);
}
}
#else // __aarch64__
static
void
quantize_round_to_even
(
const
Tensor
*
input
,
const
float
scale
,
const
std
::
vector
<
int
>
&
paddings
,
const
int8_t
padding_val
,
Tensor
*
output
)
{}
static
void
quantize_round_to_nearest
(
const
Tensor
*
input
,
const
float
scale
,
const
std
::
vector
<
int
>
&
paddings
,
const
int8_t
padding_val
,
Tensor
*
output
)
{}
static
void
quantize_round_to_zero
(
const
Tensor
*
input
,
const
float
scale
,
const
std
::
vector
<
int
>
&
paddings
,
const
int8_t
padding_val
,
Tensor
*
output
)
{
int
channels
=
input
->
dims
()[
1
];
int
input_h
=
input
->
dims
()[
2
];
int
input_w
=
input
->
dims
()[
3
];
int
output_h
=
output
->
dims
()[
2
];
int
output_w
=
output
->
dims
()[
3
];
int
input_spatial_size
=
input_h
*
input_w
;
int
output_spatial_size
=
output_h
*
output_w
;
const
float
*
x
=
input
->
data
<
float
>
();
int8_t
*
y
=
output
->
mutable_data
<
int8_t
>
();
// valid area start
int
start
=
paddings
[
0
]
*
output_w
+
paddings
[
1
];
for
(
int
batch
=
0
;
batch
<
input
->
dims
()[
0
];
++
batch
)
{
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
channels
-
3
;
c
+=
4
)
{
const
float
*
input0
=
x
+
(
batch
*
channels
+
c
)
*
input_spatial_size
;
const
float
*
input1
=
input0
+
input_spatial_size
;
const
float
*
input2
=
input1
+
input_spatial_size
;
const
float
*
input3
=
input2
+
input_spatial_size
;
size_t
offset
=
(
batch
*
channels
+
c
)
*
output_spatial_size
;
for
(
int
h
=
0
;
h
<
2
;
++
h
)
{
int8_t
*
y0
=
y
+
offset
+
h
*
((
input_h
+
paddings
[
0
])
*
output_w
-
paddings
[
1
]);
int8_t
*
y1
=
y0
+
output_spatial_size
;
int8_t
*
y2
=
y1
+
output_spatial_size
;
int8_t
*
y3
=
y2
+
output_spatial_size
;
int
loop
=
start
>>
4
;
int
remain
=
start
&
0xF
;
asm
volatile
(
"vdup.s8 q0, %[val]
\n
"
"cmp %[loop], #0
\n
"
"ble start_remain_%=
\n
"
"store_16w_%=:
\n
"
"vst1.32 {q0}, [%[y0]]!
\n
"
"vst1.32 {q0}, [%[y1]]!
\n
"
"vst1.32 {q0}, [%[y2]]!
\n
"
"vst1.32 {q0}, [%[y3]]!
\n
"
"subs %[loop], #1
\n
"
"bne store_16w_%=
\n
"
"start_remain_%=:
\n
"
"cmp %[remain], #8
\n
"
"blt store_4w_%=
\n
"
"vst1.32 {d0}, [%[y0]]!
\n
"
"vst1.32 {d0}, [%[y1]]!
\n
"
"vst1.32 {d0}, [%[y2]]!
\n
"
"vst1.32 {d0}, [%[y3]]!
\n
"
"sub %[remain], #8
\n
"
"store_4w_%=:
\n
"
"cmp %[remain], #4
\n
"
"blt store_2w_%=
\n
"
"vst1.32 {d0[0]}, [%[y0]]!
\n
"
"vst1.32 {d0[0]}, [%[y1]]!
\n
"
"vst1.32 {d0[0]}, [%[y2]]!
\n
"
"vst1.32 {d0[0]}, [%[y3]]!
\n
"
"sub %[remain], #4
\n
"
"store_2w_%=:
\n
"
"cmp %[remain], #4
\n
"
"blt store_1w_%=
\n
"
"vst1.16 {d0[0]}, [%[y0]]!
\n
"
"vst1.16 {d0[0]}, [%[y1]]!
\n
"
"vst1.16 {d0[0]}, [%[y2]]!
\n
"
"vst1.16 {d0[0]}, [%[y3]]!
\n
"
"sub %[remain], #2
\n
"
"store_1w_%=:
\n
"
"cmp %[remain], #1
\n
"
"blt end_%=
\n
"
"vst1.8 {d0[0]}, [%[y0]]!
\n
"
"vst1.8 {d0[0]}, [%[y1]]!
\n
"
"vst1.8 {d0[0]}, [%[y2]]!
\n
"
"vst1.8 {d0[0]}, [%[y3]]!
\n
"
"end_%=:
\n
"
:
[
y0
]
"+r"
(
y0
),
[
y1
]
"+r"
(
y1
),
[
y2
]
"+r"
(
y2
),
[
y3
]
"+r"
(
y3
),
[
loop
]
"+r"
(
loop
),
[
remain
]
"+r"
(
remain
)
:
[
val
]
"r"
(
padding_val
)
:
"cc"
,
"memory"
,
"q0"
);
}
// quantize valid area
int8_t
*
y0
=
y
+
offset
+
start
;
int8_t
*
y1
=
y0
+
output_spatial_size
;
int8_t
*
y2
=
y1
+
output_spatial_size
;
int8_t
*
y3
=
y2
+
output_spatial_size
;
for
(
int
h
=
0
;
h
<
input_h
;
++
h
)
{
const
float
*
x0
=
input0
+
h
*
input_w
;
const
float
*
x1
=
input1
+
h
*
input_w
;
const
float
*
x2
=
input2
+
h
*
input_w
;
const
float
*
x3
=
input3
+
h
*
input_w
;
int
loop
=
input_w
>>
4
;
int
remain
=
input_w
&
0xF
;
int
pad_loop
=
paddings
[
1
]
>>
1
;
// (paddings[1] << 1) >> 2
int
pad_remain
=
(
paddings
[
1
]
<<
1
)
&
0x3
;
int
remain_steps
=
remain
;
asm
volatile
(
"vdup.f32 q0, %[scale]
\n
"
"cmp %[loop], #0
\n
"
"ble quantize_remain_%=
\n
"
"loop_quantize_%=:
\n
"
"vld1.32 {q1, q2}, [%[x0]]!
\n
"
"vld1.32 {q3, q4}, [%[x1]]!
\n
"
"vld1.32 {q5, q6}, [%[x2]]!
\n
"
"vld1.32 {q7, q8}, [%[x3]]!
\n
"
"vmul.f32 q1, q1, q0
\n
"
"vmul.f32 q2, q2, q0
\n
"
"vmul.f32 q3, q3, q0
\n
"
"vmul.f32 q4, q4, q0
\n
"
"vmul.f32 q5, q5, q0
\n
"
"vmul.f32 q6, q6, q0
\n
"
"vmul.f32 q7, q7, q0
\n
"
"vmul.f32 q8, q8, q0
\n
"
"vcvt.s32.f32 q1, q1
\n
"
"vcvt.s32.f32 q2, q2
\n
"
"vcvt.s32.f32 q3, q3
\n
"
"vcvt.s32.f32 q4, q4
\n
"
"vcvt.s32.f32 q5, q5
\n
"
"vcvt.s32.f32 q6, q6
\n
"
"vcvt.s32.f32 q7, q7
\n
"
"vcvt.s32.f32 q8, q8
\n
"
"vmovn.s32 d2, q1
\n
"
"vmovn.s32 d3, q2
\n
"
"vmovn.s32 d4, q3
\n
"
"vmovn.s32 d5, q4
\n
"
"vmovn.s32 d6, q5
\n
"
"vmovn.s32 d7, q6
\n
"
"vmovn.s32 d8, q7
\n
"
"vmovn.s32 d9, q8
\n
"
"vmovn.s16 d18, q1
\n
"
"vmovn.s16 d20, q2
\n
"
"vmovn.s16 d22, q3
\n
"
"vmovn.s16 d24, q4
\n
"
"vld1.32 {q1, q2}, [%[x0]]!
\n
"
"vld1.32 {q3, q4}, [%[x1]]!
\n
"
"vld1.32 {q5, q6}, [%[x2]]!
\n
"
"vld1.32 {q7, q8}, [%[x3]]!
\n
"
"vmul.f32 q1, q1, q0
\n
"
"vmul.f32 q2, q2, q0
\n
"
"vmul.f32 q3, q3, q0
\n
"
"vmul.f32 q4, q4, q0
\n
"
"vmul.f32 q5, q5, q0
\n
"
"vmul.f32 q6, q6, q0
\n
"
"vmul.f32 q7, q7, q0
\n
"
"vmul.f32 q8, q8, q0
\n
"
"vcvt.s32.f32 q1, q1
\n
"
"vcvt.s32.f32 q2, q2
\n
"
"vcvt.s32.f32 q3, q3
\n
"
"vcvt.s32.f32 q4, q4
\n
"
"vcvt.s32.f32 q5, q5
\n
"
"vcvt.s32.f32 q6, q6
\n
"
"vcvt.s32.f32 q7, q7
\n
"
"vcvt.s32.f32 q8, q8
\n
"
"vmovn.s32 d2, q1
\n
"
"vmovn.s32 d3, q2
\n
"
"vmovn.s32 d4, q3
\n
"
"vmovn.s32 d5, q4
\n
"
"vmovn.s32 d6, q5
\n
"
"vmovn.s32 d7, q6
\n
"
"vmovn.s32 d8, q7
\n
"
"vmovn.s32 d9, q8
\n
"
"vmovn.s16 d19, q1
\n
"
"vmovn.s16 d21, q2
\n
"
"vmovn.s16 d23, q3
\n
"
"vmovn.s16 d25, q4
\n
"
"vst1.32 {q9}, [%[y0]]!
\n
"
"vst1.32 {q10}, [%[y1]]!
\n
"
"vst1.32 {q11}, [%[y2]]!
\n
"
"vst1.32 {q12}, [%[y3]]!
\n
"
"subs %[loop], #1
\n
"
"bne loop_quantize_%=
\n
"
"quantize_remain_%=:
\n
"
"cmp %[remain], #0
\n
"
"ble end_%=
\n
"
"vld1.32 {q1, q2}, [%[x0]]!
\n
"
"vld1.32 {q3, q4}, [%[x1]]!
\n
"
"vld1.32 {q5, q6}, [%[x2]]!
\n
"
"vld1.32 {q7, q8}, [%[x3]]!
\n
"
"vmul.f32 q1, q1, q0
\n
"
"vmul.f32 q2, q2, q0
\n
"
"vmul.f32 q3, q3, q0
\n
"
"vmul.f32 q4, q4, q0
\n
"
"vmul.f32 q5, q5, q0
\n
"
"vmul.f32 q6, q6, q0
\n
"
"vmul.f32 q7, q7, q0
\n
"
"vmul.f32 q8, q8, q0
\n
"
"vcvt.s32.f32 q1, q1
\n
"
"vcvt.s32.f32 q2, q2
\n
"
"vcvt.s32.f32 q3, q3
\n
"
"vcvt.s32.f32 q4, q4
\n
"
"vcvt.s32.f32 q5, q5
\n
"
"vcvt.s32.f32 q6, q6
\n
"
"vcvt.s32.f32 q7, q7
\n
"
"vcvt.s32.f32 q8, q8
\n
"
"vmovn.s32 d2, q1
\n
"
"vmovn.s32 d3, q2
\n
"
"vmovn.s32 d4, q3
\n
"
"vmovn.s32 d5, q4
\n
"
"vmovn.s32 d6, q5
\n
"
"vmovn.s32 d7, q6
\n
"
"vmovn.s32 d8, q7
\n
"
"vmovn.s32 d9, q8
\n
"
"vmovn.s16 d18, q1
\n
"
"vmovn.s16 d20, q2
\n
"
"vmovn.s16 d22, q3
\n
"
"vmovn.s16 d24, q4
\n
"
"vld1.32 {q1, q2}, [%[x0]]
\n
"
"vld1.32 {q3, q4}, [%[x1]]
\n
"
"vld1.32 {q5, q6}, [%[x2]]
\n
"
"vld1.32 {q7, q8}, [%[x3]]
\n
"
"vmul.f32 q1, q1, q0
\n
"
"vmul.f32 q2, q2, q0
\n
"
"vmul.f32 q3, q3, q0
\n
"
"vmul.f32 q4, q4, q0
\n
"
"vmul.f32 q5, q5, q0
\n
"
"vmul.f32 q6, q6, q0
\n
"
"vmul.f32 q7, q7, q0
\n
"
"vmul.f32 q8, q8, q0
\n
"
"vcvt.s32.f32 q1, q1
\n
"
"vcvt.s32.f32 q2, q2
\n
"
"vcvt.s32.f32 q3, q3
\n
"
"vcvt.s32.f32 q4, q4
\n
"
"vcvt.s32.f32 q5, q5
\n
"
"vcvt.s32.f32 q6, q6
\n
"
"vcvt.s32.f32 q7, q7
\n
"
"vcvt.s32.f32 q8, q8
\n
"
"vmovn.s32 d2, q1
\n
"
"vmovn.s32 d3, q2
\n
"
"vmovn.s32 d4, q3
\n
"
"vmovn.s32 d5, q4
\n
"
"vmovn.s32 d6, q5
\n
"
"vmovn.s32 d7, q6
\n
"
"vmovn.s32 d8, q7
\n
"
"vmovn.s32 d9, q8
\n
"
"vmovn.s16 d19, q1
\n
"
"vmovn.s16 d21, q2
\n
"
"vmovn.s16 d23, q3
\n
"
"vmovn.s16 d25, q4
\n
"
"cmp %[remain], #8
\n
"
"blt store_4w_%=
\n
"
"vst1.32 {d18}, [%[y0]]!
\n
"
"vst1.32 {d20}, [%[y1]]!
\n
"
"vst1.32 {d22}, [%[y2]]!
\n
"
"vst1.32 {d24}, [%[y3]]!
\n
"
"vmov.32 d18, d19
\n
"
"vmov.32 d20, d21
\n
"
"vmov.32 d22, d23
\n
"
"vmov.32 d24, d25
\n
"
"sub %[remain], #8
\n
"
"store_4w_%=:
\n
"
"cmp %[remain], #4
\n
"
"blt store_2w_%=
\n
"
"vst1.32 {d18[0]}, [%[y0]]!
\n
"
"vst1.32 {d20[0]}, [%[y1]]!
\n
"
"vst1.32 {d22[0]}, [%[y2]]!
\n
"
"vst1.32 {d24[0]}, [%[y3]]!
\n
"
"vext.32 d18, d18, d18, #1
\n
"
"vext.32 d20, d20, d20, #1
\n
"
"vext.32 d22, d22, d22, #1
\n
"
"vext.32 d24, d24, d24, #1
\n
"
"sub %[remain], #4
\n
"
"store_2w_%=:
\n
"
"cmp %[remain], #2
\n
"
"blt store_1w_%=
\n
"
"vst1.16 {d18[0]}, [%[y0]]!
\n
"
"vst1.16 {d20[0]}, [%[y1]]!
\n
"
"vst1.16 {d22[0]}, [%[y2]]!
\n
"
"vst1.16 {d24[0]}, [%[y3]]!
\n
"
"vext.16 d18, d18, d18, #1
\n
"
"vext.16 d20, d20, d20, #1
\n
"
"vext.16 d22, d22, d22, #1
\n
"
"vext.16 d24, d24, d24, #1
\n
"
"sub %[remain], #2
\n
"
"store_1w_%=:"
"cmp %[remain], #1
\n
"
"blt end_%=
\n
"
"vst1.8 {d18[0]}, [%[y0]]!
\n
"
"vst1.8 {d20[0]}, [%[y1]]!
\n
"
"vst1.8 {d22[0]}, [%[y2]]!
\n
"
"vst1.8 {d24[0]}, [%[y3]]!
\n
"
"end_%=:
\n
"
:
[
x0
]
"+r"
(
x0
),
[
x1
]
"+r"
(
x1
),
[
x2
]
"+r"
(
x2
),
[
x3
]
"+r"
(
x3
),
[
y0
]
"+r"
(
y0
),
[
y1
]
"+r"
(
y1
),
[
y2
]
"+r"
(
y2
),
[
y3
]
"+r"
(
y3
),
[
loop
]
"+r"
(
loop
),
[
remain
]
"+r"
(
remain
)
:
[
scale
]
"r"
(
scale
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
);
asm
volatile
(
"vdup.s8 d0, %[val]
\n
"
"cmp %[pad_loop], #0
\n
"
"ble store_pad_2w_%=
\n
"
"loop_pad_4w_%=:
\n
"
"vst1.32 {d0[0]}, [%[y0]]!
\n
"
"vst1.32 {d0[0]}, [%[y1]]!
\n
"
"vst1.32 {d0[0]}, [%[y2]]!
\n
"
"vst1.32 {d0[0]}, [%[y3]]!
\n
"
"subs %[pad_loop], #1
\n
"
"bne loop_pad_4w_%=
\n
"
"store_pad_2w_%=:
\n
"
"cmp %[pad_remain], #2
\n
"
"blt store_pad_1w_%=
\n
"
"vst1.16 {d0[0]}, [%[y0]]!
\n
"
"vst1.16 {d0[0]}, [%[y1]]!
\n
"
"vst1.16 {d0[0]}, [%[y2]]!
\n
"
"vst1.16 {d0[0]}, [%[y3]]!
\n
"
"sub %[pad_remain], #2
\n
"
"store_pad_1w_%=:
\n
"
"cmp %[pad_remain], #1
\n
"
"blt end_%=
\n
"
"vst1.8 {d0[0]}, [%[y0]]!
\n
"
"vst1.8 {d0[0]}, [%[y1]]!
\n
"
"vst1.8 {d0[0]}, [%[y2]]!
\n
"
"vst1.8 {d0[0]}, [%[y3]]!
\n
"
"end_%=:
\n
"
:
[
y0
]
"+r"
(
y0
),
[
y1
]
"+r"
(
y1
),
[
y2
]
"+r"
(
y2
),
[
y3
]
"+r"
(
y3
),
[
pad_loop
]
"+r"
(
pad_loop
),
[
pad_remain
]
"+r"
(
pad_remain
)
:
[
val
]
"r"
(
padding_val
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
);
}
}
for
(
int
c
=
(
channels
&
0xFFFC
);
c
<
channels
;
++
c
)
{
const
float
*
input0
=
x
+
(
batch
*
channels
+
c
)
*
input_spatial_size
;
size_t
offset
=
(
batch
*
channels
+
c
)
*
output_spatial_size
;
for
(
int
h
=
0
;
h
<
2
;
++
h
)
{
int8_t
*
y0
=
y
+
offset
+
h
*
((
input_h
+
paddings
[
0
])
*
output_w
-
paddings
[
1
]);
int
loop
=
start
>>
4
;
int
remain
=
start
&
0xF
;
asm
volatile
(
"vdup.s8 q0, %[val]
\n
"
"cmp %[loop], #0
\n
"
"ble start_remain_%=
\n
"
"store_16w_%=:
\n
"
"vst1.32 {q0}, [%[y0]]!
\n
"
"subs %[loop], #1
\n
"
"bne store_16w_%=
\n
"
"start_remain_%=:
\n
"
"cmp %[remain], #8
\n
"
"blt store_4w_%=
\n
"
"vst1.32 {d0}, [%[y0]]!
\n
"
"sub %[remain], #8
\n
"
"store_4w_%=:
\n
"
"cmp %[remain], #4
\n
"
"blt store_2w_%=
\n
"
"vst1.32 {d0[0]}, [%[y0]]!
\n
"
"sub %[remain], #4
\n
"
"store_2w_%=:
\n
"
"cmp %[remain], #4
\n
"
"blt store_1w_%=
\n
"
"vst1.16 {d0[0]}, [%[y0]]!
\n
"
"sub %[remain], #2
\n
"
"store_1w_%=:
\n
"
"cmp %[remain], #1
\n
"
"blt end_%=
\n
"
"vst1.8 {d0[0]}, [%[y0]]!
\n
"
"end_%=:
\n
"
:
[
y0
]
"+r"
(
y0
),
[
loop
]
"+r"
(
loop
),
[
remain
]
"+r"
(
remain
)
:
[
val
]
"r"
(
padding_val
)
:
"cc"
,
"memory"
,
"q0"
);
}
// quantize valid area
int8_t
*
y0
=
y
+
offset
+
start
;
for
(
int
h
=
0
;
h
<
input_h
;
++
h
)
{
const
float
*
x0
=
input0
+
h
*
input_w
;
int
loop
=
input_w
>>
4
;
int
remain
=
input_w
&
0xF
;
int
pad_loop
=
paddings
[
1
]
>>
1
;
// (paddings[1] << 1) >> 2
int
pad_remain
=
(
paddings
[
1
]
<<
1
)
&
0x3
;
asm
volatile
(
"vdup.f32 q0, %[scale]
\n
"
"cmp %[loop], #0
\n
"
"ble quantize_remain_%=
\n
"
"loop_quantize_%=:
\n
"
"vld1.32 {q1, q2}, [%[x0]]!
\n
"
"vmul.f32 q1, q1, q0
\n
"
"vmul.f32 q2, q2, q0
\n
"
"vcvt.s32.f32 q1, q1
\n
"
"vcvt.s32.f32 q2, q2
\n
"
"vmovn.s32 d2, q1
\n
"
"vmovn.s32 d3, q2
\n
"
"vmovn.s16 d18, q1
\n
"
"vld1.32 {q1, q2}, [%[x0]]!
\n
"
"vmul.f32 q1, q1, q0
\n
"
"vmul.f32 q2, q2, q0
\n
"
"vcvt.s32.f32 q1, q1
\n
"
"vcvt.s32.f32 q2, q2
\n
"
"vmovn.s32 d2, q1
\n
"
"vmovn.s32 d3, q2
\n
"
"vmovn.s16 d19, q1
\n
"
"vst1.32 {q9}, [%[y0]]!
\n
"
"subs %[loop], #1
\n
"
"bne loop_quantize_%=
\n
"
"quantize_remain_%=:
\n
"
"cmp %[remain], #0
\n
"
"ble start_pad_%=
\n
"
"vldm %[x0], {d2-d9}
\n
"
"vmul.f32 q1, q1, q0
\n
"
"vmul.f32 q2, q2, q0
\n
"
"vcvt.s32.f32 q1, q1
\n
"
"vcvt.s32.f32 q2, q2
\n
"
"vmovn.s32 d2, q1
\n
"
"vmovn.s32 d3, q2
\n
"
"vmovn.s16 d18, q1
\n
"
"vmul.f32 q3, q3, q0
\n
"
"vmul.f32 q4, q4, q0
\n
"
"vcvt.s32.f32 q1, q3
\n
"
"vcvt.s32.f32 q2, q4
\n
"
"vmovn.s32 d2, q1
\n
"
"vmovn.s32 d3, q2
\n
"
"vmovn.s16 d19, q1
\n
"
"cmp %[remain], #8
\n
"
"blt store_4w_%=
\n
"
"vst1.32 {d18}, [%[y0]]!
\n
"
"vmov.32 d18, d19
\n
"
"sub %[remain], #8
\n
"
"store_4w_%=:
\n
"
"cmp %[remain], #4
\n
"
"blt store_2w_%=
\n
"
"vst1.32 {d18[0]}, [%[y0]]!
\n
"
"vext.32 d18, d18, d18, #1
\n
"
"sub %[remain], #4
\n
"
"store_2w_%=:
\n
"
"cmp %[remain], #2
\n
"
"blt store_1w_%=
\n
"
"vst1.16 {d18[0]}, [%[y0]]!
\n
"
"vext.16 d18, d18, d18, #1
\n
"
"sub %[remain], #2
\n
"
"store_1w_%=:"
"cmp %[remain], #1
\n
"
"blt start_pad_%=
\n
"
"vst1.8 {d18[0]}, [%[y0]]!
\n
"
"start_pad_%=:
\n
"
"vdup.s8 d0, %[val]
\n
"
"cmp %[pad_loop], #0
\n
"
"ble pad_remain_%=
\n
"
"loop_pad_4w_%=:
\n
"
"vst1.32 {d0[0]}, [%[y0]]!
\n
"
"subs %[pad_loop], #1
\n
"
"bne loop_pad_4w_%=
\n
"
"pad_remain_%=:
\n
"
"cmp %[pad_remain], #2
\n
"
"blt store_pad_1w_%=
\n
"
"vst1.16 {d0[0]}, [%[y0]]!
\n
"
"sub %[pad_remain], #2
\n
"
"store_pad_1w_%=:
\n
"
"cmp %[pad_remain], #1
\n
"
"blt end_%=
\n
"
"vst1.8 {d0[0]}, [%[y0]]!
\n
"
"end_%=:
\n
"
:
[
x0
]
"+r"
(
x0
),
[
y0
]
"+r"
(
y0
),
[
loop
]
"+r"
(
loop
),
[
remain
]
"+r"
(
remain
),
[
pad_loop
]
"+r"
(
pad_loop
),
[
pad_remain
]
"+r"
(
pad_remain
)
:
[
scale
]
"r"
(
scale
),
[
val
]
"r"
(
padding_val
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q9"
);
}
}
for
(
size_t
i
=
0
;
i
<
remain
;
++
i
)
{
max_abs
=
std
::
max
(
max_abs
,
std
::
abs
(
x
[
i
]));
}
return
max_abs
;
}
#endif // __aarch64__
#endif // ARM_NEON
template
<
>
bool
QuantizeKernel
<
CPU
,
float
>::
Init
(
QuantizeParam
<
CPU
>
*
param
)
{
...
...
@@ -795,19 +191,15 @@ void QuantizeKernel<CPU, float>::Compute(const QuantizeParam<CPU> ¶m) {
// only support int8 currently
float
scale
=
127
/
max_abs
;
param
.
online_scale_
->
mutable_data
<
float
>
()[
0
]
=
max_abs
;
const
auto
&
paddings
=
param
.
paddings_
;
// std::vector<int> paddings = {0, 0};
// const auto padding_val = param.padding_val_;
int8_t
padding_val
=
0
;
switch
(
param
.
round_type_
)
{
case
ROUND_NEAREST_TO_EVEN
:
quantize_round_to_even
(
input
,
scale
,
paddings
,
padding_val
,
output
);
Quantize
<
ROUND_NEAREST_TO_EVEN
>
(
input
,
scale
,
output
);
break
;
case
ROUND_NEAREST_TOWARDS_ZERO
:
quantize_round_to_zero
(
input
,
scale
,
paddings
,
padding_val
,
output
);
Quantize
<
ROUND_NEAREST_TOWARDS_ZERO
>
(
input
,
scale
,
output
);
break
;
case
ROUND_NEAREST_AWAY_ZERO
:
quantize_round_to_nearest
(
input
,
scale
,
paddings
,
padding_val
,
output
);
Quantize
<
ROUND_NEAREST_AWAY_ZERO
>
(
input
,
scale
,
output
);
break
;
default:
LOG
(
kLOG_ERROR
)
<<
"round type is not supported."
;
...
...
src/operators/kernel/central-arm-func/conv_add_arm_func.h
浏览文件 @
d96ca3e9
...
...
@@ -132,10 +132,10 @@ void ConvAddCompute(const FusionConvAddParam<CPU> ¶m) {
// param.Output(), false);
if
(
param
.
Paddings
()[
0
]
==
0
)
{
math
::
DepthwiseConv3x3s2p0
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
*
param
.
Bias
(),
true
);
param
.
Bias
(),
true
);
}
else
{
math
::
DepthwiseConv3x3s2p1v2
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
*
param
.
Bias
(),
true
);
param
.
Output
(),
param
.
Bias
(),
true
);
}
}
else
{
ConvAddBasic
(
param
);
...
...
src/operators/kernel/central-arm-func/conv_arm_func.h
浏览文件 @
d96ca3e9
...
...
@@ -163,31 +163,21 @@ template <typename Itype, typename Otype>
inline
void
DepthwiseConv3x3
(
const
ConvParam
<
CPU
>
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
const
Tensor
*
filter
=
param
.
Filter
();
const
std
::
vector
<
int
>
&
paddings
=
param
.
Paddings
();
const
std
::
vector
<
int
>
&
strides
=
param
.
Strides
();
const
int
batch_size
=
input
->
dims
()[
0
];
Tensor
*
output
=
param
.
Output
();
output
->
mutable_data
<
Otype
>
();
const
std
::
vector
<
int
>
&
paddings
=
param
.
Paddings
();
const
std
::
vector
<
int
>
&
strides
=
param
.
Strides
();
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
Tensor
input_pad
;
math
::
PadFunctor
<
CPU
,
Itype
>
pad
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
);
if
(
paddings
[
0
]
||
paddings
[
1
])
{
framework
::
DDim
pad_shape
=
in_batch
.
dims
();
pad_shape
[
2
]
+=
2
*
paddings
[
0
];
pad_shape
[
3
]
+=
2
*
paddings
[
1
];
input_pad
.
mutable_data
<
float
>
(
pad_shape
);
pad
(
in_batch
,
paddings
[
0
],
paddings
[
0
],
paddings
[
1
],
paddings
[
1
],
&
input_pad
);
}
else
{
input_pad
=
in_batch
;
}
if
(
strides
[
0
]
==
1
)
{
math
::
DepthwiseConv3x3s1
<
Itype
,
Otype
>
(
input_pad
,
*
filter
,
&
out_batch
);
math
::
DepthwiseConv3x3S1
<
Itype
,
Otype
>
(
in_batch
,
*
filter
,
paddings
,
&
out_batch
);
}
else
if
(
strides
[
0
]
==
2
)
{
math
::
DepthwiseConv3x3s2
<
Itype
,
Otype
>
(
input_pad
,
*
filter
,
&
out_batch
);
math
::
DepthwiseConv3x3S2
<
Itype
,
Otype
>
(
in_batch
,
*
filter
,
paddings
,
&
out_batch
);
}
else
{
// math::DepthwiseConv3x3<Itype, Otype>(input_pad, *filter,
// &out_batch);
...
...
src/operators/kernel/dequant_add_bn_
relu_
kernel.h
→
src/operators/kernel/dequant_add_bn_kernel.h
浏览文件 @
d96ca3e9
...
...
@@ -14,7 +14,7 @@ limitations under the License. */
#pragma once
#ifdef FUSION_DEQUANT_ADD_BN_
RELU_
OP
#ifdef FUSION_DEQUANT_ADD_BN_OP
#include "framework/operator.h"
#include "operators/op_param.h"
...
...
@@ -23,12 +23,12 @@ namespace paddle_mobile {
namespace
operators
{
template
<
typename
DeviceType
,
typename
T
>
class
FusionDequantAddBN
Relu
Kernel
class
FusionDequantAddBNKernel
:
public
framework
::
OpKernelBase
<
DeviceType
,
FusionDequantAddBN
Relu
Param
<
DeviceType
>>
{
FusionDequantAddBNParam
<
DeviceType
>>
{
public:
void
Compute
(
const
FusionDequantAddBN
Relu
Param
<
DeviceType
>
&
param
);
bool
Init
(
FusionDequantAddBN
Relu
Param
<
DeviceType
>
*
param
);
void
Compute
(
const
FusionDequantAddBNParam
<
DeviceType
>
&
param
);
bool
Init
(
FusionDequantAddBNParam
<
DeviceType
>
*
param
);
};
}
// namespace operators
...
...
src/operators/kernel/
central-arm-func/depthwise_conv_arm_func
.h
→
src/operators/kernel/
dequant_bn_relu_kernel
.h
浏览文件 @
d96ca3e9
...
...
@@ -12,42 +12,35 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef DEPTHWISECONV_OP
#pragma once
#include <vector>
#include "operators/kernel/central-arm-func/conv_arm_func.h"
#include "operators/math/depthwise_conv3x3.h"
#include "framework/operator.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
P
>
void
DepthwiseConvCompute
(
const
ConvParam
<
CPU
>
&
param
)
{
Tensor
Bias
;
Bias
.
mutable_data
<
float
>
({
param
.
Groups
()});
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
math
::
DepthwiseConv3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
&
Bias
,
false
);
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
// math::DepthwiseConv3x3(param.Input(), param.Strides(),
// param.Paddings(),
// param.Filter(), &Bias, param.Output(), false);
math
::
DepthwiseConv3x3s2p1v2
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
Bias
,
false
);
}
else
{
GemmConv
<
float
,
float
>
(
param
);
}
}
#ifdef FUSION_DEQUANT_BN_RELU_OP
template
<
typename
DeviceType
,
typename
T
>
class
FusionDequantBNReluKernel
:
public
framework
::
OpKernelBase
<
DeviceType
,
FusionDequantBNReluParam
<
DeviceType
>>
{
public:
void
Compute
(
const
FusionDequantBNReluParam
<
DeviceType
>
&
param
);
bool
Init
(
FusionDequantBNReluParam
<
DeviceType
>
*
param
);
};
#endif
#ifdef FUSION_DEQUANT_ADD_BN_RELU_OP
template
<
typename
DeviceType
,
typename
T
>
class
FusionDequantAddBNReluKernel
:
public
framework
::
OpKernelBase
<
DeviceType
,
FusionDequantAddBNReluParam
<
DeviceType
>>
{
public:
void
Compute
(
const
FusionDequantAddBNReluParam
<
DeviceType
>
&
param
);
bool
Init
(
FusionDequantAddBNReluParam
<
DeviceType
>
*
param
);
};
#endif
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/math/depthwise_conv3x3.cpp
浏览文件 @
d96ca3e9
...
...
@@ -1272,13 +1272,16 @@ void DepthwiseConvAddBNRelu3x3s2p1(const framework::Tensor *input,
void
DepthwiseConv3x3s2p1v2
(
const
framework
::
Tensor
*
input
,
const
framework
::
Tensor
*
filter
,
framework
::
Tensor
*
output
,
framework
::
Tensor
bias
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
bias
,
bool
if_bias
)
{
#if __ARM_NEON
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
const
float
*
bias_data
=
bias
.
data
<
float
>
();
const
float
*
bias_data
;
if
(
if_bias
)
{
bias_data
=
bias
->
data
<
float
>
();
}
const
int
in_h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
in_w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
...
...
@@ -1905,7 +1908,7 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const framework::Tensor *input,
void
DepthwiseConv3x3s2p0
(
const
framework
::
Tensor
*
input
,
const
framework
::
Tensor
*
filter
,
framework
::
Tensor
*
output
,
framework
::
Tensor
bias
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
bias
,
bool
if_bias
)
{
#if __ARM_NEON
...
...
@@ -1925,7 +1928,7 @@ void DepthwiseConv3x3s2p0(const framework::Tensor *input,
for
(
int
c
=
0
;
c
<
input_channel
;
c
++
)
{
const
float
*
filter_data
=
filter
->
data
<
float
>
()
+
c
*
9
;
const
float
*
input_data
=
input
->
data
<
float
>
()
+
c
*
inhxw
;
const
float
*
bias_data
=
bias
.
data
<
float
>
()
+
c
;
const
float
*
bias_data
=
bias
->
data
<
float
>
()
+
c
;
float
*
output_data
=
output
->
data
<
float
>
()
+
c
*
outhxw
;
float
w00
=
filter_data
[
0
];
float
w01
=
filter_data
[
1
];
...
...
src/operators/math/depthwise_conv3x3.h
浏览文件 @
d96ca3e9
...
...
@@ -50,7 +50,7 @@ void DepthwiseConvAddBNRelu3x3s2p1(const framework::Tensor *input,
void
DepthwiseConv3x3s2p1v2
(
const
framework
::
Tensor
*
input
,
const
framework
::
Tensor
*
filter
,
framework
::
Tensor
*
output
,
framework
::
Tensor
bias
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
bias
,
bool
if_bias
);
void
DepthwiseConvAddBNRelu3x3s2p1v2
(
const
framework
::
Tensor
*
input
,
...
...
@@ -62,7 +62,7 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const framework::Tensor *input,
void
DepthwiseConv3x3s2p0
(
const
framework
::
Tensor
*
input
,
const
framework
::
Tensor
*
filter
,
framework
::
Tensor
*
output
,
framework
::
Tensor
bias
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
bias
,
bool
if_bias
);
// TODO(hjchen2) need to be implemented
...
...
@@ -70,16 +70,19 @@ void DepthwiseConv3x3s2p0(const framework::Tensor *input,
// void DepthwiseConv3x3(const framework::Tensor *input,
// const framework::Tensor *filter,
// const std::vector<int> &strides,
// const std::vector<int> &paddings,
// framework::Tensor *output);
template
<
typename
Itype
,
typename
Otype
>
void
DepthwiseConv3x3
s
1
(
const
framework
::
Tensor
&
input
,
void
DepthwiseConv3x3
S
1
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
filter
,
const
std
::
vector
<
int
>
&
paddings
,
framework
::
Tensor
*
output
);
template
<
typename
Itype
,
typename
Otype
>
void
DepthwiseConv3x3
s
2
(
const
framework
::
Tensor
&
input
,
void
DepthwiseConv3x3
S
2
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
filter
,
const
std
::
vector
<
int
>
&
paddings
,
framework
::
Tensor
*
output
);
}
// namespace math
...
...
src/operators/math/depthwise_conv3x3_int8.cpp
浏览文件 @
d96ca3e9
...
...
@@ -12,12 +12,300 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#if defined(__ARM_NEON__) && !defined(__aarch64__)
#include "operators/math/depthwise_conv3x3.h"
#ifdef __ARM_NEON__
#include <arm_neon.h>
#endif
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
template
<
int
Stride
>
inline
void
Depth3x3ValidColLoadInput
(
const
int8_t
*
input
,
const
int
input_w
,
const
int
valid_cols
,
int16x8_t
*
y0
,
int16x8_t
*
y1
,
int16x8_t
*
y2
)
{
PADDLE_MOBILE_THROW_EXCEPTION
(
"Stride %d is not supported."
,
Stride
);
}
template
<
>
inline
void
Depth3x3ValidColLoadInput
<
1
>
(
const
int8_t
*
input
,
const
int
input_w
,
const
int
valid_cols
,
int16x8_t
*
y0
,
int16x8_t
*
y1
,
int16x8_t
*
y2
)
{
int8_t
fake_input
[
3
][
8
];
if
(
valid_cols
==
1
)
{
for
(
int
i
=
0
;
i
<
8
;
++
i
,
input
+=
input_w
)
{
fake_input
[
0
][
i
]
=
input
[
0
];
}
}
else
if
(
valid_cols
==
2
)
{
for
(
int
i
=
0
;
i
<
8
;
++
i
,
input
+=
input_w
)
{
fake_input
[
0
][
i
]
=
input
[
0
];
fake_input
[
1
][
i
]
=
input
[
1
];
}
}
else
{
for
(
int
i
=
0
;
i
<
8
;
++
i
,
input
+=
input_w
)
{
fake_input
[
0
][
i
]
=
input
[
0
];
fake_input
[
1
][
i
]
=
input
[
1
];
fake_input
[
2
][
i
]
=
input
[
2
];
}
}
int8x8_t
input0
=
vld1_s8
(
fake_input
[
0
]);
int8x8_t
input1
=
vld1_s8
(
fake_input
[
1
]);
int8x8_t
input2
=
vld1_s8
(
fake_input
[
2
]);
y0
[
0
]
=
vmovl_s8
(
input0
);
y1
[
0
]
=
vmovl_s8
(
input1
);
y2
[
0
]
=
vmovl_s8
(
input2
);
y0
[
1
]
=
vextq_s16
(
y0
[
0
],
y0
[
0
],
1
);
y0
[
2
]
=
vextq_s16
(
y0
[
0
],
y0
[
0
],
2
);
y1
[
1
]
=
vextq_s16
(
y1
[
0
],
y1
[
0
],
1
);
y1
[
2
]
=
vextq_s16
(
y1
[
0
],
y1
[
0
],
2
);
y2
[
1
]
=
vextq_s16
(
y2
[
0
],
y2
[
0
],
1
);
y2
[
2
]
=
vextq_s16
(
y2
[
0
],
y2
[
0
],
2
);
}
template
<
>
inline
void
Depth3x3ValidColLoadInput
<
2
>
(
const
int8_t
*
input
,
const
int
input_w
,
const
int
valid_cols
,
int16x8_t
*
y0
,
int16x8_t
*
y1
,
int16x8_t
*
y2
)
{
int8_t
fake_input
[
3
][
13
];
if
(
valid_cols
==
1
)
{
for
(
int
i
=
0
;
i
<
13
;
++
i
,
input
+=
input_w
)
{
fake_input
[
0
][
i
]
=
input
[
0
];
}
}
else
if
(
valid_cols
==
2
)
{
for
(
int
i
=
0
;
i
<
13
;
++
i
,
input
+=
input_w
)
{
fake_input
[
0
][
i
]
=
input
[
0
];
fake_input
[
1
][
i
]
=
input
[
1
];
}
}
else
{
for
(
int
i
=
0
;
i
<
13
;
++
i
,
input
+=
input_w
)
{
fake_input
[
0
][
i
]
=
input
[
0
];
fake_input
[
1
][
i
]
=
input
[
1
];
fake_input
[
2
][
i
]
=
input
[
2
];
}
}
int8x8x2_t
input0
=
vld2_s8
(
fake_input
[
0
]);
int8x8x2_t
input1
=
vld2_s8
(
fake_input
[
1
]);
int8x8x2_t
input2
=
vld2_s8
(
fake_input
[
2
]);
y0
[
0
]
=
vmovl_s8
(
input0
.
val
[
0
]);
y0
[
1
]
=
vmovl_s8
(
input0
.
val
[
1
]);
y0
[
2
]
=
vextq_s16
(
y0
[
0
],
y0
[
0
],
1
);
y1
[
0
]
=
vmovl_s8
(
input1
.
val
[
0
]);
y1
[
1
]
=
vmovl_s8
(
input1
.
val
[
1
]);
y1
[
2
]
=
vextq_s16
(
y1
[
0
],
y1
[
0
],
1
);
y2
[
0
]
=
vmovl_s8
(
input2
.
val
[
0
]);
y2
[
1
]
=
vmovl_s8
(
input2
.
val
[
1
]);
y2
[
2
]
=
vextq_s16
(
y2
[
0
],
y2
[
0
],
1
);
}
template
<
int
Stride_h
,
int
Stride_w
>
inline
void
DepthwiseConv3x3ValidCol
(
const
int8_t
*
input
,
const
int8_t
*
filter
,
const
int
h_output
,
const
int
h_output_end
,
const
int
w_output
,
const
int
input_h
,
const
int
input_w
,
const
int
padding_h
,
const
int
padding_w
,
const
int
output_w
,
int32_t
*
output
)
{
const
int
w_in_start
=
-
padding_w
+
w_output
*
Stride_w
;
const
int
w_in_end
=
w_in_start
+
3
;
const
int
w_start
=
w_in_start
>
0
?
w_in_start
:
0
;
const
int
w_end
=
w_in_end
<
input_w
?
w_in_end
:
input_w
;
int
remain_start
=
h_output
;
#ifdef __ARM_NEON__
int
output_tiles
=
(
h_output_end
-
h_output
)
/
6
;
remain_start
=
h_output
+
output_tiles
*
6
;
int
input_h_start
=
h_output
*
Stride_h
-
padding_h
;
size_t
input_offset
=
input_h_start
*
input_w
+
w_start
;
size_t
output_offset
=
h_output
*
output_w
+
w_output
;
int16x8_t
_input
[
3
][
3
];
int16x4_t
_kernel
[
3
];
int32x4_t
_sum0
,
_sum1
;
const
int8_t
*
filter_ptr
=
filter
;
asm
volatile
(
"mov r0, #3
\n
"
"vld1.s8 d10, [%[filter]], r0
\n
"
"vld1.s8 d11, [%[filter]], r0
\n
"
"vld1.s8 d12, [%[filter]]
\n
"
"vtrn.8 d10, d11
\n
"
"vtrn.8 d12, d13
\n
"
"vtrn.16 d10, d12
\n
"
"vtrn.16 d11, d13
\n
"
"vmovl.s8 q7, d10
\n
"
"vmovl.s8 q8, d11
\n
"
"vmovl.s8 q9, d12
\n
"
"vmov.32 %[_kernel0], d14
\n
"
"vmov.32 %[_kernel1], d16
\n
"
"vmov.32 %[_kernel2], d18
\n
"
:
[
_kernel0
]
"+w"
(
_kernel
[
0
]),
[
_kernel1
]
"+w"
(
_kernel
[
1
]),
[
_kernel2
]
"+w"
(
_kernel
[
2
])
:
[
filter
]
"r"
(
filter_ptr
)
:
"memory"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"r0"
);
int
valid_cols
=
w_end
-
w_start
;
for
(
int
h
=
0
;
h
<
output_tiles
*
6
;
h
+=
6
)
{
int32_t
*
output0
=
output
+
output_offset
;
int32_t
*
output1
=
output0
+
output_w
;
int32_t
*
output2
=
output1
+
output_w
;
int32_t
*
output3
=
output2
+
output_w
;
int32_t
*
output4
=
output3
+
output_w
;
int32_t
*
output5
=
output4
+
output_w
;
Depth3x3ValidColLoadInput
<
Stride_w
>
(
input
+
input_offset
,
input_w
,
valid_cols
,
_input
[
0
],
_input
[
1
],
_input
[
2
]);
_sum0
=
veorq_s32
(
_sum0
,
_sum0
);
_sum1
=
veorq_s32
(
_sum1
,
_sum1
);
for
(
int
w_in
=
0
;
w_in
<
valid_cols
;
++
w_in
)
{
int
index
=
w_in
+
w_start
-
w_in_start
;
_sum0
=
vmlal_lane_s16
(
_sum0
,
vget_low_s16
(
_input
[
w_in
][
0
]),
_kernel
[
index
],
0
);
_sum0
=
vmlal_lane_s16
(
_sum0
,
vget_low_s16
(
_input
[
w_in
][
1
]),
_kernel
[
index
],
1
);
_sum0
=
vmlal_lane_s16
(
_sum0
,
vget_low_s16
(
_input
[
w_in
][
2
]),
_kernel
[
index
],
2
);
_sum1
=
vmlal_lane_s16
(
_sum1
,
vget_high_s16
(
_input
[
w_in
][
0
]),
_kernel
[
index
],
0
);
_sum1
=
vmlal_lane_s16
(
_sum1
,
vget_high_s16
(
_input
[
w_in
][
1
]),
_kernel
[
index
],
1
);
_sum1
=
vmlal_lane_s16
(
_sum1
,
vget_high_s16
(
_input
[
w_in
][
2
]),
_kernel
[
index
],
2
);
}
vst1q_lane_s32
(
output0
,
_sum0
,
0
);
vst1q_lane_s32
(
output1
,
_sum0
,
1
);
vst1q_lane_s32
(
output2
,
_sum0
,
2
);
vst1q_lane_s32
(
output3
,
_sum0
,
3
);
vst1q_lane_s32
(
output4
,
_sum1
,
0
);
vst1q_lane_s32
(
output5
,
_sum1
,
1
);
input_offset
+=
6
*
Stride_h
*
input_w
;
output_offset
+=
6
*
output_w
;
}
#endif
for
(
int
h
=
remain_start
;
h
<
h_output_end
;
++
h
)
{
int32_t
value
=
0
;
const
int
h_in_start
=
-
padding_h
+
h
*
Stride_h
;
for
(
int
i
=
0
;
i
<
3
;
++
i
)
{
for
(
int
w_in
=
w_start
;
w_in
<
w_end
;
++
w_in
)
{
value
+=
filter
[
i
*
3
+
(
w_in
-
w_in_start
)]
*
input
[(
h_in_start
+
i
)
*
input_w
+
w_in
];
}
}
output
[
h
*
output_w
+
w_output
]
=
value
;
}
}
#define DEPTHWISE_CONV_NORMAL_BORDER(start, end) \
for (int w = start; w < end; ++w) { \
const int w_in_start = -padding_w + w * Stride_w; \
const int w_in_end = w_in_start + 3; \
const int w_start = w_in_start > 0 ? w_in_start : 0; \
const int w_end = w_in_end < input_w ? w_in_end : input_w; \
int32_t value = 0; \
for (int h_in = h_start; h_in < h_end; ++h_in) { \
for (int w_in = w_start; w_in < w_end; ++w_in) { \
value += filter[(h_in - h_in_start) * 3 + (w_in - w_in_start)] * \
input[h_in * input_w + w_in]; \
} \
} \
output_ptr[w] = value; \
}
template
<
int
Stride
>
inline
void
Depth3x3NormalRowLoadInput
(
const
int8_t
*
input
,
int16x8_t
&
y0
,
// NOLINT
int16x8_t
&
y1
,
// NOLINT
int16x8_t
&
y2
)
{
// NOLINT
PADDLE_MOBILE_THROW_EXCEPTION
(
"Stride %d is not supported."
,
Stride
);
}
template
<
>
inline
void
Depth3x3NormalRowLoadInput
<
1
>
(
const
int8_t
*
input
,
int16x8_t
&
y0
,
// NOLINT
int16x8_t
&
y1
,
// NOLINT
int16x8_t
&
y2
)
{
// NOLINT
int8x8_t
x0
=
vld1_s8
(
input
);
y0
=
vmovl_s8
(
x0
);
y1
=
vextq_s16
(
y0
,
y0
,
1
);
y2
=
vextq_s16
(
y1
,
y1
,
1
);
}
template
<
>
inline
void
Depth3x3NormalRowLoadInput
<
2
>
(
const
int8_t
*
input
,
int16x8_t
&
y0
,
// NOLINT
int16x8_t
&
y1
,
// NOLINT
int16x8_t
&
y2
)
{
// NOLINT
int8x8x2_t
x0
=
vld2_s8
(
input
);
y0
=
vmovl_s8
(
x0
.
val
[
0
]);
y1
=
vmovl_s8
(
x0
.
val
[
1
]);
y2
=
vextq_s16
(
y0
,
y0
,
1
);
}
template
<
int
Stride_h
,
int
Stride_w
>
inline
void
DepthwiseConv3x3NormalRow
(
const
int8_t
*
input
,
const
int8_t
*
filter
,
const
int
h_output
,
const
int
input_h
,
const
int
input_w
,
const
int
padding_h
,
const
int
padding_w
,
const
int
output_w
,
int32_t
*
output
)
{
const
int
h_in_start
=
-
padding_h
+
h_output
*
Stride_h
;
const
int
h_in_end
=
h_in_start
+
3
;
const
int
h_start
=
h_in_start
>
0
?
h_in_start
:
0
;
const
int
h_end
=
h_in_end
<
input_h
?
h_in_end
:
input_h
;
int
valid_w_start
=
(
padding_w
+
Stride_w
-
1
)
/
Stride_w
;
int
valid_w_end
=
output_w
-
valid_w_start
;
int32_t
*
output_ptr
=
output
+
h_output
*
output_w
;
// border left
DEPTHWISE_CONV_NORMAL_BORDER
(
0
,
valid_w_start
)
// middle
int
remain_start
=
valid_w_start
;
#ifdef __ARM_NEON__
int
output_tiles
=
(
valid_w_end
-
valid_w_start
)
/
6
;
remain_start
=
valid_w_start
+
output_tiles
*
6
;
int32x4_t
_sum0
,
_sum1
;
int16x8_t
y0
,
y1
,
y2
;
int16x4_t
_kernel
[
3
];
for
(
int
h_in
=
h_start
;
h_in
<
h_end
;
++
h_in
)
{
int
index
=
h_in
-
h_in_start
;
int8x8_t
w0
=
vld1_s8
(
filter
+
index
*
3
);
int16x8_t
w1
=
vmovl_s8
(
w0
);
_kernel
[
index
]
=
vget_low_s16
(
w1
);
}
for
(
int
w
=
0
;
w
<
output_tiles
*
6
;
w
+=
6
)
{
_sum0
=
veorq_s32
(
_sum0
,
_sum0
);
_sum1
=
veorq_s32
(
_sum1
,
_sum1
);
int
output_offset
=
valid_w_start
+
w
;
int
input_w_offset
=
output_offset
*
Stride_w
-
padding_w
;
for
(
int
h_in
=
h_start
;
h_in
<
h_end
;
++
h_in
)
{
int
index
=
h_in
-
h_in_start
;
Depth3x3NormalRowLoadInput
<
Stride_w
>
(
input
+
h_in
*
input_w
+
input_w_offset
,
y0
,
y1
,
y2
);
_sum0
=
vmlal_lane_s16
(
_sum0
,
vget_low_s16
(
y0
),
_kernel
[
index
],
0
);
_sum0
=
vmlal_lane_s16
(
_sum0
,
vget_low_s16
(
y1
),
_kernel
[
index
],
1
);
_sum0
=
vmlal_lane_s16
(
_sum0
,
vget_low_s16
(
y2
),
_kernel
[
index
],
2
);
_sum1
=
vmlal_lane_s16
(
_sum1
,
vget_high_s16
(
y0
),
_kernel
[
index
],
0
);
_sum1
=
vmlal_lane_s16
(
_sum1
,
vget_high_s16
(
y1
),
_kernel
[
index
],
1
);
_sum1
=
vmlal_lane_s16
(
_sum1
,
vget_high_s16
(
y2
),
_kernel
[
index
],
2
);
}
vst1q_s32
(
output_ptr
+
output_offset
,
_sum0
);
vst1q_lane_s32
(
output_ptr
+
output_offset
+
4
,
_sum1
,
0
);
vst1q_lane_s32
(
output_ptr
+
output_offset
+
5
,
_sum1
,
1
);
}
#endif
for
(
int
w
=
remain_start
;
w
<
valid_w_end
;
++
w
)
{
int32_t
value
=
0
;
int
input_start
=
-
padding_w
+
w
*
Stride_w
;
for
(
int
h_in
=
h_start
;
h_in
<
h_end
;
++
h_in
)
{
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
value
+=
filter
[(
h_in
-
h_in_start
)
*
3
+
j
]
*
input
[
h_in
*
input_w
+
j
+
input_start
];
}
}
output_ptr
[
w
]
=
value
;
}
// border right
DEPTHWISE_CONV_NORMAL_BORDER
(
valid_w_end
,
output_w
)
}
// template<>
// void DepthwiseConv3x3<int8_t, int32_t>(
// const framework::Tensor *input, const framework::Tensor *filter,
...
...
@@ -27,43 +315,72 @@ namespace math {
// }
template
<
>
void
DepthwiseConv3x3
s
1
<
int8_t
,
int32_t
>
(
const
framework
::
Tensor
&
input
,
void
DepthwiseConv3x3
S
1
<
int8_t
,
int32_t
>
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
filter
,
const
std
::
vector
<
int
>
&
paddings
,
framework
::
Tensor
*
output
)
{
const
int8_t
*
input_data
=
input
.
data
<
int8_t
>
();
const
int8_t
*
filter_data
=
filter
.
data
<
int8_t
>
();
int32_t
*
out_data
=
output
->
mutable_data
<
int32_t
>
();
// make sure that batch size is 1
int
input_c
=
input
.
dims
()[
1
];
int
input_h
=
input
.
dims
()[
2
];
int
input_w
=
input
.
dims
()[
3
];
int
output_c
=
output
->
dims
()[
1
];
int
output_h
=
output
->
dims
()[
2
];
int
output_w
=
output
->
dims
()[
3
];
int
padding_h
=
paddings
[
0
];
int
padding_w
=
paddings
[
1
];
int
image_size
=
input_h
*
input_w
;
int
out_image_size
=
output_h
*
output_w
;
#if __aarch64__
// TODO(hjchen2)
#else
int
valid_h_start
=
padding_h
;
int
valid_h_end
=
output_h
-
valid_h_start
;
int
valid_h
=
valid_h_end
-
valid_h_start
;
int
valid_w_start
=
padding_w
;
int
valid_w_end
=
output_w
-
valid_w_start
;
int
valid_w
=
valid_w_end
-
valid_w_start
;
#pragma omp parallel for
for
(
int
g
=
0
;
g
<
input_c
;
++
g
)
{
const
int8_t
*
input_ptr
=
input_data
+
g
*
image_size
;
const
int8_t
*
filter_ptr
=
filter_data
+
g
*
9
;
int32_t
*
output_ptr
=
out_data
+
g
*
out_image_size
;
int
loops
=
(
input_w
-
2
)
/
6
;
int
remain
=
input_w
-
2
-
loops
*
6
;
for
(
int
h
=
0
;
h
<
input_h
-
5
/*(input_h - 2) - 3*/
;
h
+=
4
)
{
const
int8_t
*
input_ptr0
=
input_ptr
+
h
*
input_w
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
const
int8_t
*
input_ptr3
=
input_ptr2
+
input_w
;
const
int8_t
*
input_ptr4
=
input_ptr3
+
input_w
;
const
int8_t
*
input_ptr5
=
input_ptr4
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
h
*
output_w
;
int32_t
*
output_ptr1
=
output_ptr0
+
output_w
;
int32_t
*
output_ptr2
=
output_ptr1
+
output_w
;
int32_t
*
output_ptr3
=
output_ptr2
+
output_w
;
int
loop
=
loops
;
for
(
int
g
=
0
;
g
<
input
.
dims
()[
1
];
++
g
)
{
const
int8_t
*
input_ptr
=
input_data
+
g
*
image_size
;
const
int8_t
*
filter_ptr
=
filter_data
+
g
*
9
;
int32_t
*
output_ptr
=
out_data
+
g
*
out_image_size
;
// top
for
(
int
h
=
0
;
h
<
valid_h_start
;
++
h
)
{
DepthwiseConv3x3NormalRow
<
1
,
1
>
(
input_ptr
,
filter_ptr
,
h
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
// left
for
(
int
w
=
0
;
w
<
valid_w_start
;
++
w
)
{
DepthwiseConv3x3ValidCol
<
1
,
1
>
(
input_ptr
,
filter_ptr
,
valid_h_start
,
valid_h_end
,
w
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
// right
for
(
int
w
=
valid_w_end
;
w
<
output_w
;
++
w
)
{
DepthwiseConv3x3ValidCol
<
1
,
1
>
(
input_ptr
,
filter_ptr
,
valid_h_start
,
valid_h_end
,
w
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
// bottom
for
(
int
h
=
valid_h_end
;
h
<
output_h
;
++
h
)
{
DepthwiseConv3x3NormalRow
<
1
,
1
>
(
input_ptr
,
filter_ptr
,
h
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
// valid
int
output_w_tiles
=
valid_w
/
6
;
int
output_w_remain
=
valid_w
-
output_w_tiles
*
6
;
for
(
int
h
=
valid_h_start
;
h
<
valid_h_end
-
3
;
h
+=
4
)
{
const
int8_t
*
input_ptr0
=
input_ptr
+
(
h
-
padding_h
)
*
input_w
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
const
int8_t
*
input_ptr3
=
input_ptr2
+
input_w
;
const
int8_t
*
input_ptr4
=
input_ptr3
+
input_w
;
const
int8_t
*
input_ptr5
=
input_ptr4
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
h
*
output_w
+
valid_w_start
;
int32_t
*
output_ptr1
=
output_ptr0
+
output_w
;
int32_t
*
output_ptr2
=
output_ptr1
+
output_w
;
int32_t
*
output_ptr3
=
output_ptr2
+
output_w
;
int
loop
=
output_w_tiles
;
asm
volatile
(
"vld1.32 {q0}, [%[filter_ptr]]
\n
"
"vmovl.s8 q14, d0
\n
"
...
...
@@ -384,20 +701,20 @@ void DepthwiseConv3x3s1<int8_t, int32_t>(const framework::Tensor &input,
[
input_ptr2
]
"+r"
(
input_ptr2
),
[
input_ptr3
]
"+r"
(
input_ptr3
),
[
input_ptr4
]
"+r"
(
input_ptr4
),
[
input_ptr5
]
"+r"
(
input_ptr5
),
[
loop
]
"+r"
(
loop
)
:
[
remain
]
"r"
(
remain
)
:
[
remain
]
"r"
(
output_w_
remain
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
,
"q15"
,
"r0"
);
}
// remain height
int
start_h
=
(
input_h
-
2
)
&
0xFFFC
;
for
(
int
h
=
start_h
;
h
<
input_h
-
3
/*(input_h - 2) - 1*/
;
h
+=
2
)
{
const
int8_t
*
input_ptr0
=
input_ptr
+
h
*
input_w
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
const
int8_t
*
input_ptr3
=
input_ptr2
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
h
*
output_w
;
int32_t
*
output_ptr1
=
output_ptr0
+
output_w
;
int
loop
=
loop
s
;
int
start_h
=
valid_h_start
+
(
valid_h
&
0xFFFC
)
;
for
(
int
h
=
start_h
;
h
<
valid_h_end
-
1
;
h
+=
2
)
{
const
int8_t
*
input_ptr0
=
input_ptr
+
(
h
-
padding_h
)
*
input_w
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
const
int8_t
*
input_ptr3
=
input_ptr2
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
h
*
output_w
+
valid_w_start
;
int32_t
*
output_ptr1
=
output_ptr0
+
output_w
;
int
loop
=
output_w_tile
s
;
asm
volatile
(
"vld1.32 {q0}, [%[filter_ptr]]
\n
"
"vmovl.s8 q14, d0
\n
"
...
...
@@ -415,9 +732,9 @@ void DepthwiseConv3x3s1<int8_t, int32_t>(const framework::Tensor &input,
:
[
filter_ptr
]
"r"
(
filter_ptr
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q14"
,
"q15"
);
asm
volatile
(
"mov r0, #6
\n
"
"cmp %[loop], #0
\n
"
"ble start_remain_%=
\n
"
"mov r0, #6
\n
"
// loop 6 widths
"loop_2h6w_%=:
\n
"
"vld1.32 {d9}, [%[input_ptr0]], r0
\n
"
...
...
@@ -594,18 +911,18 @@ void DepthwiseConv3x3s1<int8_t, int32_t>(const framework::Tensor &input,
[
input_ptr0
]
"+r"
(
input_ptr0
),
[
input_ptr1
]
"+r"
(
input_ptr1
),
[
input_ptr2
]
"+r"
(
input_ptr2
),
[
input_ptr3
]
"+r"
(
input_ptr3
),
[
loop
]
"+r"
(
loop
)
:
[
remain
]
"r"
(
remain
)
:
[
remain
]
"r"
(
output_w_
remain
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"r0"
);
}
start_h
=
(
input_h
-
2
)
&
0xFFFE
;
if
(
start_h
<
input_h
-
2
)
{
const
int8_t
*
input_ptr0
=
input_ptr
+
start_h
*
input_w
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
start_h
*
output_w
;
int
loop
=
loop
s
;
start_h
=
valid_h_start
+
(
valid_h
&
0xFFFE
)
;
if
(
start_h
<
valid_h_end
)
{
const
int8_t
*
input_ptr0
=
input_ptr
+
(
start_h
-
padding_h
)
*
input_w
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
start_h
*
output_w
+
valid_w_start
;
int
loop
=
output_w_tile
s
;
asm
volatile
(
"vld1.32 {q0}, [%[filter_ptr]]
\n
"
"vmovl.s8 q14, d0
\n
"
...
...
@@ -623,9 +940,9 @@ void DepthwiseConv3x3s1<int8_t, int32_t>(const framework::Tensor &input,
:
[
filter_ptr
]
"r"
(
filter_ptr
)
:
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q14"
,
"q15"
);
asm
volatile
(
"mov r0, #6
\n
"
"cmp %[loop], #0
\n
"
"ble start_remain_%=
\n
"
"mov r0, #6
\n
"
// loop 6 widths
"loop_1h6w_%=:
\n
"
"vld1.32 {d9}, [%[input_ptr0]], r0
\n
"
...
...
@@ -740,52 +1057,87 @@ void DepthwiseConv3x3s1<int8_t, int32_t>(const framework::Tensor &input,
:
[
output_ptr0
]
"+r"
(
output_ptr0
),
[
input_ptr0
]
"+r"
(
input_ptr0
),
[
input_ptr1
]
"+r"
(
input_ptr1
),
[
input_ptr2
]
"+r"
(
input_ptr2
),
[
loop
]
"+r"
(
loop
)
:
[
remain
]
"r"
(
remain
)
:
[
remain
]
"r"
(
output_w_
remain
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"r0"
);
}
}
#endif // __aarch64__
}
template
<
>
void
DepthwiseConv3x3
s
2
<
int8_t
,
int32_t
>
(
const
framework
::
Tensor
&
input
,
void
DepthwiseConv3x3
S
2
<
int8_t
,
int32_t
>
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
filter
,
const
std
::
vector
<
int
>
&
paddings
,
framework
::
Tensor
*
output
)
{
const
int8_t
*
input_data
=
input
.
data
<
int8_t
>
();
const
int8_t
*
filter_data
=
filter
.
data
<
int8_t
>
();
int32_t
*
out_data
=
output
->
mutable_data
<
int32_t
>
();
// make sure that batch size is 1
int
input_c
=
input
.
dims
()[
1
];
int
input_h
=
input
.
dims
()[
2
];
int
input_w
=
input
.
dims
()[
3
];
int
output_c
=
output
->
dims
()[
1
];
int
output_h
=
output
->
dims
()[
2
];
int
output_w
=
output
->
dims
()[
3
];
int
padding_h
=
paddings
[
0
];
int
padding_w
=
paddings
[
1
];
int
image_size
=
input_h
*
input_w
;
int
out_image_size
=
output_h
*
output_w
;
#if __aarch64__
// TODO(hjchen2)
#else
int
valid_h_start
=
(
padding_h
+
1
)
/
2
;
int
valid_h_end
=
output_h
-
valid_h_start
;
int
valid_h
=
valid_h_end
-
valid_h_start
;
int
valid_w_start
=
(
padding_w
+
1
)
/
2
;
int
valid_w_end
=
output_w
-
valid_w_start
;
int
valid_w
=
valid_w_end
-
valid_w_start
;
// DLOG << "valid_h_start: " << valid_h_start;
// DLOG << "valid_h_end: " << valid_h_end;
// DLOG << "valid_w_start: " << valid_w_start;
// DLOG << "valid_w_end: " << valid_w_end;
#pragma omp parallel for
for
(
int
g
=
0
;
g
<
input_c
;
++
g
)
{
const
int8_t
*
input_ptr
=
input_data
+
g
*
image_size
;
const
int8_t
*
filter_ptr
=
filter_data
+
g
*
9
;
int32_t
*
output_ptr
=
out_data
+
g
*
out_image_size
;
int
loops
=
output_w
/
6
;
int
remain
=
output_w
-
loops
*
6
;
for
(
int
h
=
0
;
h
<
input_h
-
6
/*(input_h - 1) - 5*/
;
h
+=
6
)
{
const
int8_t
*
input_ptr0
=
input_ptr
+
h
*
input_w
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
const
int8_t
*
input_ptr3
=
input_ptr2
+
input_w
;
const
int8_t
*
input_ptr4
=
input_ptr3
+
input_w
;
const
int8_t
*
input_ptr5
=
input_ptr4
+
input_w
;
const
int8_t
*
input_ptr6
=
input_ptr5
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
(
h
>>
1
)
*
output_w
;
int32_t
*
output_ptr1
=
output_ptr0
+
output_w
;
int32_t
*
output_ptr2
=
output_ptr1
+
output_w
;
int
loop
=
loops
;
for
(
int
g
=
0
;
g
<
input
.
dims
()[
1
];
++
g
)
{
const
int8_t
*
input_ptr
=
input_data
+
g
*
image_size
;
const
int8_t
*
filter_ptr
=
filter_data
+
g
*
9
;
int32_t
*
output_ptr
=
out_data
+
g
*
out_image_size
;
// top
for
(
int
h
=
0
;
h
<
valid_h_start
;
++
h
)
{
DepthwiseConv3x3NormalRow
<
2
,
2
>
(
input_ptr
,
filter_ptr
,
h
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
// left
for
(
int
w
=
0
;
w
<
valid_w_start
;
++
w
)
{
DepthwiseConv3x3ValidCol
<
2
,
2
>
(
input_ptr
,
filter_ptr
,
valid_h_start
,
valid_h_end
,
w
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
// right
for
(
int
w
=
valid_w_end
;
w
<
output_w
;
++
w
)
{
DepthwiseConv3x3ValidCol
<
2
,
2
>
(
input_ptr
,
filter_ptr
,
valid_h_start
,
valid_h_end
,
w
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
// bottom
for
(
int
h
=
valid_h_end
;
h
<
output_h
;
++
h
)
{
DepthwiseConv3x3NormalRow
<
2
,
2
>
(
input_ptr
,
filter_ptr
,
h
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
// valid
int
input_w_start
=
2
*
valid_w_start
-
padding_w
;
int
output_w_tiles
=
valid_w
/
6
;
int
output_w_remain
=
valid_w
-
output_w_tiles
*
6
;
for
(
int
h
=
valid_h_start
;
h
<
valid_h_end
-
2
;
h
+=
3
)
{
size_t
offset
=
(
2
*
h
-
padding_h
)
*
input_w
+
input_w_start
;
const
int8_t
*
input_ptr0
=
input_ptr
+
offset
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
const
int8_t
*
input_ptr3
=
input_ptr2
+
input_w
;
const
int8_t
*
input_ptr4
=
input_ptr3
+
input_w
;
const
int8_t
*
input_ptr5
=
input_ptr4
+
input_w
;
const
int8_t
*
input_ptr6
=
input_ptr5
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
h
*
output_w
+
valid_w_start
;
int32_t
*
output_ptr1
=
output_ptr0
+
output_w
;
int32_t
*
output_ptr2
=
output_ptr1
+
output_w
;
int
loop
=
output_w_tiles
;
asm
volatile
(
"vld1.32 {q0}, [%[filter_ptr]]
\n
"
"vmovl.s8 q14, d0
\n
"
...
...
@@ -803,9 +1155,9 @@ void DepthwiseConv3x3s2<int8_t, int32_t>(const framework::Tensor &input,
:
[
filter_ptr
]
"r"
(
filter_ptr
)
:
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q14"
,
"q15"
);
asm
volatile
(
"mov r0, #12
\n
"
"cmp %[loop], #0
\n
"
"ble start_remain_%=
\n
"
"mov r0, #12
\n
"
// loop 6 widths
"loop_3h6w_%=:
\n
"
"vld2.8 {d10, d11}, [%[input_ptr0]], r0
\n
"
...
...
@@ -1055,18 +1407,19 @@ void DepthwiseConv3x3s2<int8_t, int32_t>(const framework::Tensor &input,
[
input_ptr2
]
"+r"
(
input_ptr2
),
[
input_ptr3
]
"+r"
(
input_ptr3
),
[
input_ptr4
]
"+r"
(
input_ptr4
),
[
input_ptr5
]
"+r"
(
input_ptr5
),
[
loop
]
"+r"
(
loop
)
:
[
remain
]
"r"
(
remain
)
:
[
remain
]
"r"
(
output_w_
remain
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
,
"q15"
,
"r0"
);
}
int
start_h
=
(
output_h
/
3
)
*
6
;
for
(
int
h
=
start_h
;
h
<
input_h
-
2
/*(input_h - 1) - 1*/
;
h
+=
2
)
{
const
int8_t
*
input_ptr0
=
input_ptr
+
h
*
input_w
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
(
h
>>
1
)
*
output_w
;
int
loop
=
loops
;
int
start_h
=
valid_h_start
+
valid_h
/
3
*
3
;
for
(
int
h
=
start_h
;
h
<
valid_h_end
;
++
h
)
{
size_t
offset
=
(
2
*
h
-
padding_h
)
*
input_w
+
input_w_start
;
const
int8_t
*
input_ptr0
=
input_ptr
+
offset
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
h
*
output_w
+
valid_w_start
;
int
loop
=
output_w_tiles
;
asm
volatile
(
"vld1.32 {q0}, [%[filter_ptr]]
\n
"
"vmovl.s8 q14, d0
\n
"
...
...
@@ -1084,9 +1437,9 @@ void DepthwiseConv3x3s2<int8_t, int32_t>(const framework::Tensor &input,
:
[
filter_ptr
]
"r"
(
filter_ptr
)
:
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q14"
,
"q15"
);
asm
volatile
(
"mov r0, #12
\n
"
"cmp %[loop], #0
\n
"
"ble start_remain_%=
\n
"
"mov r0, #12
\n
"
// loop 6 widths
"loop_1h6w_%=:
\n
"
"vld2.8 {d10, d11}, [%[input_ptr0]], r0
\n
"
...
...
@@ -1194,14 +1547,15 @@ void DepthwiseConv3x3s2<int8_t, int32_t>(const framework::Tensor &input,
:
[
output_ptr0
]
"+r"
(
output_ptr0
),
[
input_ptr0
]
"+r"
(
input_ptr0
),
[
input_ptr1
]
"+r"
(
input_ptr1
),
[
input_ptr2
]
"+r"
(
input_ptr2
),
[
loop
]
"+r"
(
loop
)
:
[
remain
]
"r"
(
remain
)
:
[
remain
]
"r"
(
output_w_
remain
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"r0"
);
}
}
#endif // __aarch64__
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/op_param.h
浏览文件 @
d96ca3e9
...
...
@@ -405,9 +405,9 @@ class ConvParam : public OpParam {
const
RType
*
Input
()
const
{
return
input_
;
}
RType
*
&
Filter
()
const
{
return
filter_
;
}
RType
*
Filter
()
const
{
return
filter_
;
}
RType
*
&
Output
()
const
{
return
output_
;
}
RType
*
Output
()
const
{
return
output_
;
}
const
vector
<
int
>
&
Strides
()
const
{
return
strides_
;
}
...
...
@@ -419,6 +419,8 @@ class ConvParam : public OpParam {
EXEC_INVALID
=
0
,
EXEC_GEMM_FLOAT
,
EXEC_DEPTHWISE3x3S1P1_FLOAT
,
EXEC_DEPTHWISE3x3S2P0_FLOAT
,
EXEC_DEPTHWISE3x3S2P1_FLOAT
,
EXEC_DEPTHWISE3x3_FLOAT
,
EXEC_WINOGRAD3X3_FLOAT
,
EXEC_WINOGRAD5X5_FLOAT
,
...
...
@@ -439,8 +441,8 @@ class ConvParam : public OpParam {
protected:
RType
*
input_
;
mutable
RType
*
output_
;
mutable
RType
*
filter_
;
RType
*
output_
;
RType
*
filter_
;
vector
<
int
>
strides_
;
vector
<
int
>
paddings_
;
vector
<
int
>
dilations_
;
...
...
@@ -2585,7 +2587,9 @@ class DequantizeParam : public OpParam {
DequantizeParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
{
input_
=
InputXFrom
<
GType
>
(
inputs
,
scope
);
if
(
outputs
.
count
(
"Out"
))
{
output_
=
OutFrom
<
GType
>
(
outputs
,
scope
);
}
activation_scale_
=
OpParam
::
GetVarValue
<
GType
>
(
"Scale"
,
inputs
,
scope
);
// dequantization is performed as x = x / static_scale / online_scale
if
(
HasAttr
(
"weight_scale"
,
attrs
))
{
...
...
@@ -2605,20 +2609,19 @@ class DequantizeParam : public OpParam {
};
#endif
#ifdef FUSION_DEQUANT_ADD_BN_RELU_OP
#if defined(FUSION_DEQUANT_ADD_BN_OP) || \
defined(FUSION_DEQUANT_ADD_BN_RELU_OP) || \
defined(FUSION_DEQUANT_BN_RELU_OP) || defined(FUSION_DEQUANT_BN_OP)
template
<
typename
Dtype
>
class
FusionDequant
AddBNRelu
Param
:
public
DequantizeParam
<
Dtype
>
{
class
FusionDequant
BN
Param
:
public
DequantizeParam
<
Dtype
>
{
typedef
typename
DtypeTensorTrait
<
Dtype
>::
gtype
GType
;
typedef
typename
DtypeTensorTrait
<
Dtype
>::
rtype
RType
;
public:
FusionDequant
AddBNRelu
Param
(
const
VariableNameMap
&
inputs
,
FusionDequant
BN
Param
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
:
DequantizeParam
<
Dtype
>
(
inputs
,
outputs
,
attrs
,
scope
)
{
// element wise add params
axis_
=
OpParam
::
GetAttr
<
int
>
(
"axis"
,
attrs
);
bias_
=
OpParam
::
InputYFrom
<
GType
>
(
inputs
,
scope
);
// batch norm params
bn_mean_
=
OpParam
::
GetVarValue
<
GType
>
(
"BNMean"
,
inputs
,
scope
);
bn_variance_
=
OpParam
::
GetVarValue
<
GType
>
(
"BNVariance"
,
inputs
,
scope
);
...
...
@@ -2626,21 +2629,83 @@ class FusionDequantAddBNReluParam : public DequantizeParam<Dtype> {
bn_bias_
=
OpParam
::
GetVarValue
<
GType
>
(
"BNBias"
,
inputs
,
scope
);
epsilon_
=
OpParam
::
GetAttr
<
float
>
(
"epsilon"
,
attrs
);
// output
output_
=
OpParam
::
OutFrom
<
GType
>
(
outputs
,
scope
);
if
(
outputs
.
count
(
"Y"
))
{
this
->
output_
=
OpParam
::
OutputYFrom
<
GType
>
(
outputs
,
scope
);
}
}
public:
// elementwise add
int
axis_
;
RType
*
bias_
;
// batch norm
RType
*
bn_mean_
;
RType
*
bn_variance_
;
RType
*
bn_scale_
;
RType
*
bn_bias_
;
float
epsilon_
;
};
#endif
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) || defined(FUSION_DEQUANT_ADD_BN_OP)
template
<
typename
Dtype
>
class
FusionDequantAddBNParam
:
public
FusionDequantBNParam
<
Dtype
>
{
typedef
typename
DtypeTensorTrait
<
Dtype
>::
gtype
GType
;
typedef
typename
DtypeTensorTrait
<
Dtype
>::
rtype
RType
;
public:
FusionDequantAddBNParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
:
FusionDequantBNParam
<
Dtype
>
(
inputs
,
outputs
,
attrs
,
scope
)
{
// element wise add params
axis_
=
OpParam
::
GetAttr
<
int
>
(
"axis"
,
attrs
);
bias_
=
OpParam
::
InputYFrom
<
GType
>
(
inputs
,
scope
);
// output
RType
*
output_
;
if
(
outputs
.
count
(
"Y"
))
{
this
->
output_
=
OpParam
::
OutputYFrom
<
GType
>
(
outputs
,
scope
);
}
}
public:
// elementwise add
int
axis_
;
RType
*
bias_
;
};
#endif
#ifdef FUSION_DEQUANT_BN_RELU_OP
template
<
typename
Dtype
>
class
FusionDequantBNReluParam
:
public
FusionDequantBNParam
<
Dtype
>
{
typedef
typename
DtypeTensorTrait
<
Dtype
>::
gtype
GType
;
typedef
typename
DtypeTensorTrait
<
Dtype
>::
rtype
RType
;
public:
FusionDequantBNReluParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
:
FusionDequantBNParam
<
Dtype
>
(
inputs
,
outputs
,
attrs
,
scope
)
{
// output
if
(
outputs
.
count
(
"Out"
))
{
this
->
output_
=
OpParam
::
OutFrom
<
GType
>
(
outputs
,
scope
);
}
}
};
#endif
#ifdef FUSION_DEQUANT_ADD_BN_RELU_OP
template
<
typename
Dtype
>
class
FusionDequantAddBNReluParam
:
public
FusionDequantAddBNParam
<
Dtype
>
{
typedef
typename
DtypeTensorTrait
<
Dtype
>::
gtype
GType
;
typedef
typename
DtypeTensorTrait
<
Dtype
>::
rtype
RType
;
public:
FusionDequantAddBNReluParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
:
FusionDequantAddBNParam
<
Dtype
>
(
inputs
,
outputs
,
attrs
,
scope
)
{
// output
if
(
outputs
.
count
(
"Out"
))
{
this
->
output_
=
OpParam
::
OutFrom
<
GType
>
(
outputs
,
scope
);
}
}
};
#endif
...
...
test/fpga/test_resnet50.cpp
浏览文件 @
d96ca3e9
...
...
@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include <iomanip>
#include <iostream>
#include "../test_include.h"
#ifdef PADDLE_MOBILE_FPGA_V1
...
...
@@ -87,26 +89,29 @@ int main() {
paddle_mobile
::
PaddleMobile
<
paddle_mobile
::
FPGA
>
paddle_mobile
;
if
(
paddle_mobile
.
Load
(
std
::
string
(
g_resnet50
),
true
))
{
Tensor
input_tensor
;
SetupTensor
<
float
>
(
&
input_tensor
,
{
1
,
3
,
224
,
224
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
SetupTensor
<
float
>
(
&
input_tensor
,
{
1
,
3
,
224
,
224
},
static_cast
<
float
>
(
2
),
static_cast
<
float
>
(
2
));
readStream
(
g_image_src_float
,
input_tensor
.
mutable_data
<
float
>
({
1
,
3
,
224
,
224
}));
paddle_mobile
.
FeedData
(
input_tensor
);
paddle_mobile
.
Predict_To
(
-
1
);
/*for(int i = 0; i < 73; i++)
{
for
(
int
i
=
0
;
i
<
73
;
i
++
)
{
auto
tensor_ptr
=
paddle_mobile
.
FetchResult
(
i
);
std::string saveName = "resnet50_result_" + std::to_string
(i);
std
::
string
saveName
=
"resnet50_result_"
+
std
::
to_string
(
i
);
paddle_mobile
::
fpga
::
fpga_invalidate
((
*
tensor_ptr
).
data
<
float
>
(),
tensor_ptr->numel()); dump_stride(saveName, (*tensor_ptr), 20);
//dump(saveName, (*tensor_ptr));
}*/
tensor_ptr
->
numel
()
*
sizeof
(
half
));
dump_stride
(
saveName
,
(
*
tensor_ptr
),
20
);
// dump(saveName, (*tensor_ptr));
}
/*
std::shared_ptr<Tensor> output_tensor = paddle_mobile.FetchResult(73);
(*output_tensor).dump<float>("resnet50_result_73");
std
::
shared_ptr
<
Tensor
>
output_tensor
=
paddle_mobile
.
FetchResult
(
73
);
//
(*output_tensor).dump<float>("resnet50_result_73");
output_tensor
=
paddle_mobile
.
FetchResult
(
74
);
(*output_tensor).dump<float>("resnet50_result_74");*/
std
::
shared_ptr
<
Tensor
>
output_tensor
=
paddle_mobile
.
FetchResult
(
74
);
//(*output_tensor).dump<float>("resnet50_result_74");
// std::shared_ptr<Tensor> output_tensor = paddle_mobile.FetchResult(74);
// output_tensor = paddle_mobile.FetchResult(74);
float
max
=
0
;
auto
data_ptr
=
output_tensor
->
data
<
float
>
();
int
maximumIdx
=
0
;
...
...
@@ -116,7 +121,7 @@ int main() {
max
=
data_ptr
[
i
];
}
}
std
::
cout
<<
"index : "
<<
maximumIdx
<<
", value : "
<<
max
std
::
cout
<<
"index : "
<<
std
::
dec
<<
maximumIdx
<<
", value : "
<<
max
<<
std
::
endl
;
std
::
cout
<<
"Computation done"
<<
std
::
endl
;
return
0
;
...
...
test/operators/test_quantize_op.cpp
浏览文件 @
d96ca3e9
...
...
@@ -44,25 +44,19 @@ struct Round<round::RoundTowardsZero> {
template
<
>
struct
Round
<
round
::
RoundToEven
>
{
int8_t
operator
()(
float
x
)
{
int8_t
ret
=
0
;
float
v
=
std
::
round
(
x
);
int32_t
q
=
(
int32_t
)
v
;
if
(
abs
(
abs
(
q
-
x
)
-
0.5
)
>
0
)
{
ret
=
q
;
}
else
{
if
(
abs
(
q
)
%
2
==
0
)
{
ret
=
q
;
}
else
{
ret
=
q
+
((
q
>
0
)
?
-
1
:
1
);
int32_t
q
=
static_cast
<
int32_t
>
(
v
);
if
(
abs
(
abs
(
q
-
v
)
-
0.5
)
<=
0
)
{
if
(
abs
(
q
)
%
2
!=
0
)
{
q
=
q
+
((
q
>
0
)
?
-
1
:
1
);
}
}
return
ret
;
return
static_cast
<
int8_t
>
(
q
)
;
}
};
template
<
round
::
RoundType
T
>
static
void
quantize
(
const
Tensor
*
input
,
const
float
scale
,
const
int
pad
,
const
int8_t
pad_val
,
Tensor
*
output
)
{
static
void
quantize
(
const
Tensor
*
input
,
const
float
scale
,
Tensor
*
output
)
{
int
batch_size
=
input
->
dims
()[
0
];
int
channels
=
input
->
dims
()[
1
];
int
input_h
=
input
->
dims
()[
2
];
...
...
@@ -77,29 +71,9 @@ static void quantize(const Tensor *input, const float scale, const int pad,
for
(
int
nc
=
0
;
nc
<
batch_size
*
channels
;
++
nc
)
{
const
float
*
xh
=
x
+
nc
*
input_spatial
;
int8_t
*
yh
=
y
+
nc
*
output_spatial
;
// pad top
for
(
int
h
=
0
;
h
<
pad
;
++
h
,
yh
+=
output_w
)
{
for
(
int
w
=
0
;
w
<
output_w
;
++
w
)
{
yh
[
w
]
=
pad_val
;
}
}
for
(
int
h
=
0
;
h
<
input_h
;
++
h
,
yh
+=
output_w
,
xh
+=
input_w
)
{
// pad left
for
(
int
w
=
0
;
w
<
pad
;
++
w
)
{
yh
[
w
]
=
pad_val
;
}
for
(
int
w
=
0
;
w
<
input_w
;
++
w
)
{
yh
[
w
+
pad
]
=
Round
<
T
>
()(
xh
[
w
]
*
scale
);
}
// pad right
for
(
int
w
=
0
;
w
<
pad
;
++
w
)
{
yh
[
pad
+
input_w
+
w
]
=
pad_val
;
}
}
// pad bottom
for
(
int
h
=
0
;
h
<
pad
;
++
h
,
yh
+=
output_w
)
{
for
(
int
w
=
0
;
w
<
output_w
;
++
w
)
{
yh
[
w
]
=
pad_val
;
yh
[
w
]
=
Round
<
T
>
()(
xh
[
w
]
*
scale
);
}
}
}
...
...
@@ -120,19 +94,14 @@ static float find_abs_max(const Tensor *input) {
int
TestQuqntizeOp
(
int
argc
,
char
*
argv
[])
{
if
(
argc
<
5
)
{
std
::
cout
<<
"Usage: ./test-quantize-op batch_size channel height width [pad]"
std
::
cout
<<
"Usage: ./test-quantize-op batch_size channel height width"
<<
std
::
endl
;
return
1
;
}
int
pad
=
0
;
int
batch_size
=
atoi
(
argv
[
1
]);
int
channel
=
atoi
(
argv
[
2
]);
int
height
=
atoi
(
argv
[
3
]);
int
width
=
atoi
(
argv
[
4
]);
if
(
argc
==
6
)
{
pad
=
atoi
(
argv
[
5
]);
}
std
::
cout
<<
"batch_size: "
<<
batch_size
<<
", channel: "
<<
channel
<<
", height: "
<<
height
<<
", width: "
<<
width
<<
std
::
endl
;
framework
::
DDim
dim
=
...
...
@@ -153,7 +122,6 @@ int TestQuqntizeOp(int argc, char *argv[]) {
auto
output_scale_var
=
scope
.
get
()
->
Var
(
"output_scale"
);
framework
::
AttributeMap
attrs
;
attrs
[
"paddings"
].
Set
<
vector
<
int
>>
(
std
::
vector
<
int
>
({
pad
,
pad
}));
auto
*
op
=
new
operators
::
QuantizeOp
<
CPU
,
float
>
(
"quantize"
,
inputs
,
outputs
,
attrs
,
scope
);
op
->
InferShape
();
...
...
@@ -172,9 +140,9 @@ int TestQuqntizeOp(int argc, char *argv[]) {
framework
::
Tensor
output_cmp
;
output_cmp
.
Resize
(
output
->
dims
());
float
scale
=
127
/
output_scale_cmp
;
// quantize<round::RoundToEven>(input, scale,
pad, 0,
&output_cmp);
// quantize<round::RoundAwayZero>(input, scale,
pad, 0,
&output_cmp);
quantize
<
round
::
RoundTowardsZero
>
(
input
,
scale
,
pad
,
0
,
&
output_cmp
);
// quantize<round::RoundToEven>(input, scale, &output_cmp);
// quantize<round::RoundAwayZero>(input, scale, &output_cmp);
quantize
<
round
::
RoundTowardsZero
>
(
input
,
scale
,
&
output_cmp
);
int8_t
*
output_cmp_data
=
output_cmp
.
data
<
int8_t
>
();
for
(
int
i
=
0
;
i
<
output
->
numel
();
++
i
)
{
PADDLE_MOBILE_ENFORCE
(
output_data
[
i
]
==
output_cmp_data
[
i
],
...
...
tools/op.cmake
浏览文件 @
d96ca3e9
...
...
@@ -250,7 +250,9 @@ if(NOT FOUND_MATCH)
set
(
SUM_OP ON
)
set
(
QUANT_OP ON
)
set
(
DEQUANT_OP ON
)
set
(
FUSION_DEQUANT_ADD_BN_RELU ON
)
set
(
FUSION_DEQUANT_ADD_BN_OP ON
)
set
(
FUSION_DEQUANT_BN_RELU_OP ON
)
set
(
FUSION_DEQUANT_ADD_BN_RELU_OP ON
)
endif
()
# option(BATCHNORM_OP "" ON)
...
...
@@ -455,10 +457,17 @@ endif()
if
(
DEQUANT_OP
)
add_definitions
(
-DDEQUANT_OP
)
endif
()
if
(
FUSION_DEQUANT_ADD_BN_RELU
)
if
(
FUSION_DEQUANT_ADD_BN_OP
)
add_definitions
(
-DFUSION_DEQUANT_ADD_BN_OP
)
endif
()
if
(
FUSION_DEQUANT_BN_RELU_OP
)
add_definitions
(
-DFUSION_DEQUANT_BN_RELU_OP
)
endif
()
if
(
FUSION_DEQUANT_ADD_BN_RELU_OP
)
add_definitions
(
-DFUSION_DEQUANT_ADD_BN_RELU_OP
)
endif
()
if
(
TANH_OP
)
add_definitions
(
-DTANH_OP
)
endif
()
...
...
@@ -471,3 +480,4 @@ endif()
if
(
FUSION_DECONVADDRELU_OP
)
add_definitions
(
-DFUSION_DECONVADDRELU_OP
)
endif
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录