Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
d6791276
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
338
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d6791276
编写于
5月 26, 2020
作者:
D
dingminghui
提交者:
MaxwellDing
5月 26, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refactor: abstract function to generate axes trans vector
上级
88513fd0
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
49 addition
and
131 deletion
+49
-131
lite/kernels/mlu/bridges/concat_op.cc
lite/kernels/mlu/bridges/concat_op.cc
+3
-7
lite/kernels/mlu/bridges/flatten_op.cc
lite/kernels/mlu/bridges/flatten_op.cc
+2
-36
lite/kernels/mlu/bridges/reshape_op.cc
lite/kernels/mlu/bridges/reshape_op.cc
+2
-36
lite/kernels/mlu/bridges/slice_op.cc
lite/kernels/mlu/bridges/slice_op.cc
+1
-6
lite/kernels/mlu/bridges/slice_op_test.cc
lite/kernels/mlu/bridges/slice_op_test.cc
+10
-22
lite/kernels/mlu/bridges/softmax_op.cc
lite/kernels/mlu/bridges/softmax_op.cc
+4
-8
lite/kernels/mlu/bridges/transpose_op.cc
lite/kernels/mlu/bridges/transpose_op.cc
+2
-13
lite/kernels/mlu/bridges/utility.h
lite/kernels/mlu/bridges/utility.h
+25
-3
未找到文件。
lite/kernels/mlu/bridges/concat_op.cc
浏览文件 @
d6791276
...
@@ -45,13 +45,9 @@ int ConcatConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -45,13 +45,9 @@ int ConcatConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
dims
=
output_dims
.
size
();
auto
dims
=
output_dims
.
size
();
int
axis
=
(
param_axis
<
0
)
?
(
param_axis
+
dims
)
:
param_axis
;
int
axis
=
(
param_axis
<
0
)
?
(
param_axis
+
dims
)
:
param_axis
;
CHECK_LT
(
axis
,
dims
)
<<
"Unsupport dims in mlu concat"
;
CHECK_LT
(
axis
,
dims
)
<<
"Unsupport dims in mlu concat"
;
std
::
vector
<
int
>
nchw2nhwc_axis
(
dims
);
// value of nhwc2nchw_axis is index of nhwc
nchw2nhwc_axis
[
0
]
=
0
;
// order of nhwc2nchw_axis is nchw
if
(
dims
>
1
)
nchw2nhwc_axis
[
1
]
=
dims
-
1
;
int
nhwc_axis
=
GetAxisNHWC2NCHW
<
int
>
(
dims
)[
axis
];
for
(
size_t
i
=
2
;
i
<
dims
;
++
i
)
{
nchw2nhwc_axis
[
i
]
=
i
-
1
;
}
int
nhwc_axis
=
nchw2nhwc_axis
[
axis
];
auto
output_tensor
=
graph
->
AddNode
(
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
...
...
lite/kernels/mlu/bridges/flatten_op.cc
浏览文件 @
d6791276
...
@@ -38,24 +38,7 @@ int FlattenConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -38,24 +38,7 @@ int FlattenConverter(void* ctx, OpLite* op, KernelBase* kernel) {
// ================== Trans1: NHWC => NCHW ===========================
// ================== Trans1: NHWC => NCHW ===========================
auto
input_tensor
=
graph
->
GetNode
(
x_var_name
);
auto
input_tensor
=
graph
->
GetNode
(
x_var_name
);
// std::vector<int> nhwc_to_nchw_axis = {0, 3, 1, 2};
auto
trans_1_axis
=
std
::
move
(
GetAxisNHWC2NCHW
<
int
>
(
x
->
dims
().
size
()));
std
::
vector
<
int
>
trans_1_axis
;
switch
(
x
->
dims
().
size
())
{
case
4
:
trans_1_axis
=
{
0
,
3
,
1
,
2
};
break
;
case
3
:
trans_1_axis
=
{
0
,
2
,
1
};
break
;
case
2
:
trans_1_axis
=
{
0
,
1
};
break
;
case
1
:
trans_1_axis
=
{
0
};
break
;
default:
break
;
}
auto
trans1_out
=
graph
->
AddNode
(
x_var_name
+
".trans.i"
,
auto
trans1_out
=
graph
->
AddNode
(
x_var_name
+
".trans.i"
,
x
->
dims
().
Vectorize
(),
x
->
dims
().
Vectorize
(),
CNML_TENSOR
,
CNML_TENSOR
,
...
@@ -95,24 +78,7 @@ int FlattenConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -95,24 +78,7 @@ int FlattenConverter(void* ctx, OpLite* op, KernelBase* kernel) {
// ======================= Flatten End ===================================
// ======================= Flatten End ===================================
// ================== Trans2: NCHW => NHWC ===============================
// ================== Trans2: NCHW => NHWC ===============================
// std::vector<int> nchw_to_nhwc_axis = {0, 2, 3, 1};
auto
trans_2_axis
=
std
::
move
(
GetAxisNCHW2NHWC
<
int
>
(
output
->
dims
().
size
()));
std
::
vector
<
int
>
trans_2_axis
;
switch
(
output
->
dims
().
size
())
{
case
4
:
trans_2_axis
=
{
0
,
2
,
3
,
1
};
break
;
case
3
:
trans_2_axis
=
{
0
,
2
,
1
};
break
;
case
2
:
trans_2_axis
=
{
0
,
1
};
break
;
case
1
:
trans_2_axis
=
{
0
};
break
;
default:
break
;
}
auto
output_tensor
=
graph
->
AddNode
(
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
cnmlBaseOp_t
trans2_op
{
nullptr
};
cnmlBaseOp_t
trans2_op
{
nullptr
};
...
...
lite/kernels/mlu/bridges/reshape_op.cc
浏览文件 @
d6791276
...
@@ -38,24 +38,7 @@ int ReshapeConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -38,24 +38,7 @@ int ReshapeConverter(void* ctx, OpLite* op, KernelBase* kernel) {
// ================== Trans1: NHWC => NCHW ===========================
// ================== Trans1: NHWC => NCHW ===========================
auto
input_tensor
=
graph
->
GetNode
(
x_var_name
);
auto
input_tensor
=
graph
->
GetNode
(
x_var_name
);
// std::vector<int> nhwc_to_nchw_axis = {0, 3, 1, 2};
auto
trans_1_axis
=
std
::
move
(
GetAxisNHWC2NCHW
<
int
>
(
x
->
dims
().
size
()));
std
::
vector
<
int
>
trans_1_axis
;
switch
(
x
->
dims
().
size
())
{
case
4
:
trans_1_axis
=
{
0
,
3
,
1
,
2
};
break
;
case
3
:
trans_1_axis
=
{
0
,
2
,
1
};
break
;
case
2
:
trans_1_axis
=
{
0
,
1
};
break
;
case
1
:
trans_1_axis
=
{
0
};
break
;
default:
break
;
}
auto
trans1_out
=
graph
->
AddNode
(
x_var_name
+
".trans.i"
,
auto
trans1_out
=
graph
->
AddNode
(
x_var_name
+
".trans.i"
,
x
->
dims
().
Vectorize
(),
x
->
dims
().
Vectorize
(),
CNML_TENSOR
,
CNML_TENSOR
,
...
@@ -95,24 +78,7 @@ int ReshapeConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -95,24 +78,7 @@ int ReshapeConverter(void* ctx, OpLite* op, KernelBase* kernel) {
// ======================= Reshape op End ===================================
// ======================= Reshape op End ===================================
// ================== Trans2: NCHW => NHWC ===============================
// ================== Trans2: NCHW => NHWC ===============================
// std::vector<int> nchw_to_nhwc_axis = {0, 2, 3, 1};
auto
trans_2_axis
=
std
::
move
(
GetAxisNCHW2NHWC
<
int
>
(
output
->
dims
().
size
()));
std
::
vector
<
int
>
trans_2_axis
;
switch
(
output
->
dims
().
size
())
{
case
4
:
trans_2_axis
=
{
0
,
2
,
3
,
1
};
break
;
case
3
:
trans_2_axis
=
{
0
,
2
,
1
};
break
;
case
2
:
trans_2_axis
=
{
0
,
1
};
break
;
case
1
:
trans_2_axis
=
{
0
};
break
;
default:
break
;
}
auto
output_tensor
=
graph
->
AddNode
(
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
cnmlBaseOp_t
trans2_op
{
nullptr
};
cnmlBaseOp_t
trans2_op
{
nullptr
};
...
...
lite/kernels/mlu/bridges/slice_op.cc
浏览文件 @
d6791276
...
@@ -53,12 +53,7 @@ int SliceConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -53,12 +53,7 @@ int SliceConverter(void* ctx, OpLite* op, KernelBase* kernel) {
std
::
vector
<
int32_t
>
begin_index
(
input_shape
.
size
(),
0
);
std
::
vector
<
int32_t
>
begin_index
(
input_shape
.
size
(),
0
);
std
::
vector
<
int32_t
>
end_index
(
input_shape
.
size
());
std
::
vector
<
int32_t
>
end_index
(
input_shape
.
size
());
std
::
vector
<
int32_t
>
strides
(
input_shape
.
size
(),
1
);
std
::
vector
<
int32_t
>
strides
(
input_shape
.
size
(),
1
);
std
::
vector
<
int
>
nhwc2nchw_axis
(
input_shape
.
size
());
auto
nhwc2nchw_axis
=
std
::
move
(
GetAxisNHWC2NCHW
<
int
>
(
input_shape
.
size
()));
nhwc2nchw_axis
[
0
]
=
0
;
if
(
input_shape
.
size
()
>
1
)
nhwc2nchw_axis
[
1
]
=
input_shape
.
size
()
-
1
;
for
(
size_t
i
=
2
;
i
<
input_shape
.
size
();
++
i
)
{
nhwc2nchw_axis
[
i
]
=
i
-
1
;
}
for
(
size_t
i
=
0
;
i
<
input_shape
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
input_shape
.
size
();
++
i
)
{
end_index
[
nhwc2nchw_axis
[
i
]]
=
input_shape
[
i
];
end_index
[
nhwc2nchw_axis
[
i
]]
=
input_shape
[
i
];
}
}
...
...
lite/kernels/mlu/bridges/slice_op_test.cc
浏览文件 @
d6791276
...
@@ -108,28 +108,16 @@ static void test_case(std::vector<int64_t> x_shape,
...
@@ -108,28 +108,16 @@ static void test_case(std::vector<int64_t> x_shape,
std
::
vector
<
float
>
out_ref
(
out
->
data_size
(),
0
);
std
::
vector
<
float
>
out_ref
(
out
->
data_size
(),
0
);
slice_ref
(
x_data
,
x_shape
,
axes
,
starts
,
ends
,
out_ref
.
data
());
slice_ref
(
x_data
,
x_shape
,
axes
,
starts
,
ends
,
out_ref
.
data
());
std
::
vector
<
int
>
nhwc2nchw_axis
(
x_shape
.
size
());
nhwc2nchw_axis
[
0
]
=
0
;
if
(
x_shape
.
size
()
>
1
)
nhwc2nchw_axis
[
1
]
=
x_shape
.
size
()
-
1
;
for
(
size_t
i
=
2
;
i
<
x_shape
.
size
();
++
i
)
{
nhwc2nchw_axis
[
i
]
=
i
-
1
;
}
std
::
vector
<
int
>
nchw2nhwc_axis
(
x_shape
.
size
());
nchw2nhwc_axis
[
0
]
=
0
;
for
(
size_t
i
=
1
;
i
<
x_shape
.
size
()
-
1
;
++
i
)
{
nchw2nhwc_axis
[
i
]
=
i
+
1
;
}
if
(
x_shape
.
size
()
>
1
)
nchw2nhwc_axis
[
x_shape
.
size
()
-
1
]
=
1
;
auto
type_cast
=
[](
int64_t
in
)
{
return
static_cast
<
int
>
(
in
);
};
auto
type_cast
=
[](
int64_t
in
)
{
return
static_cast
<
int
>
(
in
);
};
std
::
vector
<
int
>
i_dims
;
std
::
vector
<
int
>
i_dims
;
std
::
transform
(
std
::
transform
(
x_shape
.
cbegin
(),
x_shape
.
cend
(),
std
::
back_inserter
(
i_dims
),
type_cast
);
x_shape
.
cbegin
(),
x_shape
.
cend
(),
std
::
back_inserter
(
i_dims
),
type_cast
);
auto
nchw2nhwc_axis
=
std
::
move
(
GetAxisNCHW2NHWC
<
int
>
(
x_shape
.
size
()));
Tensor
input_x
;
Tensor
input_x
;
input_x
.
Resize
(
x
->
dims
());
input_x
.
Resize
(
x
->
dims
());
transpose
<
float
*
>
(
x
->
mutable_data
<
float
>
(),
transpose
<
float
>
(
x
->
mutable_data
<
float
>
(),
input_x
.
mutable_data
<
float
>
(),
input_x
.
mutable_data
<
float
>
(),
i_dims
,
i_dims
,
nchw2nhwc_axis
);
nchw2nhwc_axis
);
...
@@ -145,10 +133,10 @@ static void test_case(std::vector<int64_t> x_shape,
...
@@ -145,10 +133,10 @@ static void test_case(std::vector<int64_t> x_shape,
for
(
size_t
i
=
0
;
i
<
os
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
os
.
size
();
++
i
)
{
o_dims
[
i
]
=
os
[
nchw2nhwc_axis
[
i
]];
o_dims
[
i
]
=
os
[
nchw2nhwc_axis
[
i
]];
}
}
transpose
<
float
*
>
(
out
->
mutable_data
<
float
>
(),
transpose
<
float
>
(
out
->
mutable_data
<
float
>
(),
output_trans
.
mutable_data
<
float
>
(),
output_trans
.
mutable_data
<
float
>
(),
o_dims
,
o_dims
,
nhwc2nchw_axis
);
GetAxisNHWC2NCHW
<
int
>
(
x_shape
.
size
())
);
auto
out_data
=
output_trans
.
mutable_data
<
float
>
();
auto
out_data
=
output_trans
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
out
->
dims
().
production
();
i
++
)
{
for
(
int
i
=
0
;
i
<
out
->
dims
().
production
();
i
++
)
{
...
...
lite/kernels/mlu/bridges/softmax_op.cc
浏览文件 @
d6791276
...
@@ -38,13 +38,7 @@ int SoftmaxConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -38,13 +38,7 @@ int SoftmaxConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
x_shape
=
auto
x_shape
=
scope
->
FindVar
(
x_var_name
)
->
GetMutable
<
Tensor
>
()
->
dims
().
Vectorize
();
scope
->
FindVar
(
x_var_name
)
->
GetMutable
<
Tensor
>
()
->
dims
().
Vectorize
();
// nchw axis to nhwc aixs
// nchw axis to nhwc axis
std
::
vector
<
int
>
nchw2nhwc_axis
(
x_shape
.
size
());
nchw2nhwc_axis
[
0
]
=
0
;
if
(
x_shape
.
size
()
>
1
)
nchw2nhwc_axis
[
1
]
=
x_shape
.
size
()
-
1
;
for
(
size_t
i
=
2
;
i
<
x_shape
.
size
();
++
i
)
{
nchw2nhwc_axis
[
i
]
=
i
-
1
;
}
int
axis
=
1
;
int
axis
=
1
;
if
(
op_info
->
HasAttr
(
"axis"
))
{
if
(
op_info
->
HasAttr
(
"axis"
))
{
axis
=
op_info
->
GetAttr
<
int
>
(
"axis"
);
axis
=
op_info
->
GetAttr
<
int
>
(
"axis"
);
...
@@ -52,7 +46,9 @@ int SoftmaxConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -52,7 +46,9 @@ int SoftmaxConverter(void* ctx, OpLite* op, KernelBase* kernel) {
axis
=
output_dims
.
size
()
+
axis
;
axis
=
output_dims
.
size
()
+
axis
;
}
}
}
}
int
nhwc_axis
=
nchw2nhwc_axis
[
axis
];
// value of nhwc2nchw_axis is index of nhwc
// order of nhwc2nchw_axis is nchw
int
nhwc_axis
=
GetAxisNHWC2NCHW
<
int
>
(
x_shape
.
size
())[
axis
];
auto
output_tensor
=
graph
->
AddNode
(
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
...
...
lite/kernels/mlu/bridges/transpose_op.cc
浏览文件 @
d6791276
...
@@ -24,19 +24,8 @@ namespace mlu {
...
@@ -24,19 +24,8 @@ namespace mlu {
std
::
vector
<
int
>
axis_to_nhwc
(
const
std
::
vector
<
int
>&
axis
)
{
std
::
vector
<
int
>
axis_to_nhwc
(
const
std
::
vector
<
int
>&
axis
)
{
std
::
vector
<
int
>
new_axis
(
axis
.
size
());
std
::
vector
<
int
>
new_axis
(
axis
.
size
());
std
::
vector
<
int
>
nhwc2nchw_axis
(
axis
.
size
());
auto
nhwc2nchw_axis
=
std
::
move
(
GetAxisNHWC2NCHW
<
int
>
(
axis
.
size
()));
nhwc2nchw_axis
[
0
]
=
0
;
auto
nchw2nhwc_axis
=
std
::
move
(
GetAxisNCHW2NHWC
<
int
>
(
axis
.
size
()));
if
(
axis
.
size
()
>
1
)
nhwc2nchw_axis
[
1
]
=
axis
.
size
()
-
1
;
for
(
size_t
i
=
2
;
i
<
axis
.
size
();
++
i
)
{
nhwc2nchw_axis
[
i
]
=
i
-
1
;
}
std
::
vector
<
int
>
nchw2nhwc_axis
(
axis
.
size
());
nchw2nhwc_axis
[
0
]
=
0
;
for
(
size_t
i
=
1
;
i
<
axis
.
size
()
-
1
;
++
i
)
{
nchw2nhwc_axis
[
i
]
=
i
+
1
;
}
if
(
axis
.
size
()
>
1
)
nchw2nhwc_axis
[
axis
.
size
()
-
1
]
=
1
;
for
(
size_t
i
=
0
;
i
<
new_axis
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
new_axis
.
size
();
++
i
)
{
new_axis
[
i
]
=
nhwc2nchw_axis
[
axis
[
nchw2nhwc_axis
[
i
]]];
new_axis
[
i
]
=
nhwc2nchw_axis
[
axis
[
nchw2nhwc_axis
[
i
]]];
...
...
lite/kernels/mlu/bridges/utility.h
浏览文件 @
d6791276
...
@@ -44,12 +44,12 @@ void transpose(dtype* input_data,
...
@@ -44,12 +44,12 @@ void transpose(dtype* input_data,
int
new_index
=
-
1
;
int
new_index
=
-
1
;
std
::
vector
<
int
>
shape
;
std
::
vector
<
int
>
shape
;
std
::
vector
<
int
>
expand_axis
;
std
::
vector
<
int
>
expand_axis
;
if
(
input_shape
.
size
()
<
5
)
{
if
(
input_shape
.
size
()
<
5
u
)
{
for
(
in
t
i
=
0
;
i
<
5
-
input_shape
.
size
();
i
++
)
{
for
(
size_
t
i
=
0
;
i
<
5
-
input_shape
.
size
();
i
++
)
{
shape
.
push_back
(
1
);
shape
.
push_back
(
1
);
expand_axis
.
push_back
(
i
);
expand_axis
.
push_back
(
i
);
}
}
for
(
in
t
i
=
0
;
i
<
input_shape
.
size
();
i
++
)
{
for
(
size_
t
i
=
0
;
i
<
input_shape
.
size
();
i
++
)
{
shape
.
push_back
(
input_shape
[
i
]);
shape
.
push_back
(
input_shape
[
i
]);
expand_axis
.
push_back
(
axis
[
i
]
+
5
-
input_shape
.
size
());
expand_axis
.
push_back
(
axis
[
i
]
+
5
-
input_shape
.
size
());
}
}
...
@@ -154,6 +154,28 @@ inline const std::vector<data_type> DimNCHW2NHWC(
...
@@ -154,6 +154,28 @@ inline const std::vector<data_type> DimNCHW2NHWC(
}
}
}
}
template
<
typename
data_type
>
inline
std
::
vector
<
data_type
>
GetAxisNHWC2NCHW
(
size_t
n_dims
)
{
std
::
vector
<
data_type
>
nhwc2nchw_axis
(
n_dims
);
nhwc2nchw_axis
[
0
]
=
0
;
if
(
n_dims
>
1
)
nhwc2nchw_axis
[
1
]
=
n_dims
-
1
;
for
(
size_t
i
=
2
;
i
<
n_dims
;
++
i
)
{
nhwc2nchw_axis
[
i
]
=
i
-
1
;
}
return
nhwc2nchw_axis
;
}
template
<
typename
data_type
>
inline
std
::
vector
<
data_type
>
GetAxisNCHW2NHWC
(
size_t
n_dims
)
{
std
::
vector
<
data_type
>
nchw2nhwc_axis
(
n_dims
);
nchw2nhwc_axis
[
0
]
=
0
;
for
(
size_t
i
=
1
;
i
<
n_dims
-
1
;
++
i
)
{
nchw2nhwc_axis
[
i
]
=
i
+
1
;
}
if
(
n_dims
>
1
)
nchw2nhwc_axis
[
n_dims
-
1
]
=
1
;
return
nchw2nhwc_axis
;
}
template
<
paddle
::
lite_api
::
PrecisionType
>
template
<
paddle
::
lite_api
::
PrecisionType
>
struct
MLUTypeTraits
{
struct
MLUTypeTraits
{
/* using type = void; */
/* using type = void; */
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录