提交 d4f91bbe 编写于 作者: E eclipsess

conflict

......@@ -29,7 +29,10 @@ if(DEBUGING)
message(STATUS "debugging mode")
add_definitions(-DPADDLE_MOBILE_DEBUG)
else()
add_definitions(-fvisibility=hidden -fvisibility-inlines-hidden)
if(FPGA)
else()
add_definitions(-fvisibility=hidden -fvisibility-inlines-hidden)
endif()
endif()
if(USE_EXCEPTION)
......@@ -93,8 +96,7 @@ else()
endif()
if(FPGA)
set(DEBUGING ON)
add_definitions(-DPADDLE_MOBILE_DEBUG)
message("FPGA mode enabled")
add_definitions(-DPADDLE_MOBILE_FPGA)
else()
file(GLOB_RECURSE _tmp_list src/operators/kernel/fpga/*.cpp src/operators/kernel/fpga/*.cc)
......@@ -177,6 +179,10 @@ if(DEBUGING)
else()
add_subdirectory(test)
endif()
elseif(FPGA)
add_subdirectory(test)
endif()
......@@ -83,7 +83,7 @@ Paddle-Mobile是PaddlePaddle组织下的项目,是一个致力于嵌入式平
- **FPGA**
FPGA实现正在进行中,是基于Xilinx的ZU5目标开发板。
目前已经支持 ZCU102 开发板。
- **灵活性**
......@@ -112,6 +112,7 @@ Paddle-Mobile是PaddlePaddle组织下的项目,是一个致力于嵌入式平
开发文档主要是关于编译、运行等问题。做为开发者,它可以和贡献文档共同结合使用。
* [iOS](https://github.com/PaddlePaddle/paddle-mobile/blob/develop/doc/development_ios.md)
* [Android](https://github.com/PaddlePaddle/paddle-mobile/blob/develop/doc/development_android.md)
* [FPGA](https://github.com/PaddlePaddle/paddle-mobile/blob/develop/doc/development_fpga.md)
### 贡献文档
- [贡献文档链接](https://github.com/PaddlePaddle/paddle-mobile/blob/develop/CONTRIBUTING.md)
......
# FPGA开发文档
FPGA平台的代码在Xilinx ZCU102 revision 1.0开发板测试Resnet50成功,预测结果正确。
## 准备硬件
___
1. 购买Xilinx ZCU102 revision1.0 开发板
2. 另外下载Xilinx ZCU102 Ubuntu[镜像文件](https://www.xilinx.com/member/forms/download/xef.html?filename=Ubuntu_Desktop_Release_2018_1.zip),并烧录进SD卡。
* Windowns系统可使用Win32DiskImager
* Linux系统使用dd命令:dd if=name.img of=/dev/sdb
2. 将SD卡插入电脑,替换分区1中已有的BOOT.BIN、image.ub为[BOOT.BIN、image.ub](http://mms-graph.bj.bcebos.com/paddle-mobile/fpga/files.tar.gz)
3. 将SD卡插入ZCU102开发板,设置板拨码开关为SD卡启动,上电启动Linux系统.
3. 装载驱动:sudo insmod [fpgadrv.ko](http://mms-graph.bj.bcebos.com/paddle-mobile/fpga/files.tar.gz)
## 编译工程
___
1. 将最新的paddle mobile 代码复制到ZCU102开发板中。
2. 进入paddle-mobile根目录, CMakeLists.txt 设置平台为 option(FPGA "fpga support" ON)。CPU和MALI\_GPU选项设置为OFF。
2. 执行以下命令,可在./test/build下生成test-resnet50可执行程序。
* mkdir build
* cd build
* cmake ..
* make
## 准备模型和数据
___
1. 模型文件放在./test/models/resnet50中。将[\_\_model\_\_](http://mms-graph.bj.bcebos.com/paddle-mobile/fpga/files.tar.gz)文件复制到此文件夹下。
2. 另外下载模型[权重文件](http://paddle-imagenet-models.bj.bcebos.com/resnet_50_model.tar),解压后也放在./test/models/resnet50 中。
3. 将数据文件[image_src_float](http://mms-graph.bj.bcebos.com/paddle-mobile/fpga/files.tar.gz)复制到/test/images下。此数据文件对应着标准数据集中的ILSVRC2012_val_00000885.JPEG,分类标签为80, 对应着"black grouse".
## 运行程序
___
1. 进入./test/build目录。
2. sudo ./test-resnet50
3. 如果于DEBUG选项是否打开,屏幕会输出很多中间打印信息。最终打印出预测分类结果为80。
......@@ -22,6 +22,7 @@ const char *G_OP_TYPE_BATCHNORM = "batch_norm";
const char *G_OP_TYPE_BOX_CODER = "box_coder";
const char *G_OP_TYPE_CONCAT = "concat";
const char *G_OP_TYPE_ELEMENTWISE_ADD = "elementwise_add";
const char *G_OP_TYPE_FILL_CONSTANT = "fill_constant";
const char *G_OP_TYPE_FUSION_CONV_ADD_RELU = "fusion_conv_add_relu";
const char *G_OP_TYPE_FUSION_CONV_ADD_PRELU = "fusion_conv_add_prelu";
const char *G_OP_TYPE_FUSION_CONV_ADD_ADD_PRELU = "fusion_conv_add_add_prelu";
......@@ -34,6 +35,7 @@ const char *G_OP_TYPE_FUSION_CONV_ADD = "fusion_conv_add";
const char *G_OP_TYPE_LRN = "lrn";
const char *G_OP_TYPE_MUL = "mul";
const char *G_OP_TYPE_MULTICLASS_NMS = "multiclass_nms";
const char *G_OP_TYPE_POLYGON_BOX_TRANSFORM = "polygon_box_transform";
const char *G_OP_TYPE_POOL2D = "pool2d";
const char *G_OP_TYPE_PRIOR_BOX = "prior_box";
const char *G_OP_TYPE_RELU = "relu";
......@@ -94,9 +96,11 @@ std::unordered_map<
{G_OP_TYPE_FUSION_CONV_BN_ADD_RELU, {{"Input"}, {"Out"}}},
{G_OP_TYPE_PRIOR_BOX, {{"Image", "Input"}, {"Boxes", "Variances"}}},
{G_OP_TYPE_MULTICLASS_NMS, {{"BBoxes", "Scores"}, {"Out"}}},
{G_OP_TYPE_POLYGON_BOX_TRANSFORM, {{"Input"}, {"Output"}}},
{G_OP_TYPE_FC, {{"X", "Y", "Z"}, {"Out"}}},
{G_OP_TYPE_RESHAPE, {{"X"}, {"Out"}}},
{G_OP_TYPE_DEPTHWISE_CONV, {{"Input"}, {"Output"}}},
{G_OP_TYPE_FILL_CONSTANT, {{}, {"Out"}}},
{G_OP_TYPE_FUSION_CONV_ADD_RELU, {{"Input"}, {"Out"}}},
{G_OP_TYPE_FUSION_CONV_ADD_PRELU, {{"Input"}, {"Out"}}},
{G_OP_TYPE_FUSION_CONV_ADD_ADD_PRELU, {{"Input"}, {"Out"}}},
......
......@@ -12,14 +12,16 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cstdlib>
#pragma once
#include <cstdlib>
#include <cstring>
#include <string>
#include "common/enforce.h"
#include "common/log.h"
#pragma once
namespace paddle_mobile {
template <int ID, typename Type>
struct IDToType {
typedef Type type_t;
......
......@@ -22,7 +22,7 @@ limitations under the License. */
#include "fpga/filter.h"
#include "fpga/image.h"
#define FPGA_TEST_MODE
//#define PADDLE_MOBILE_OS_LINUX
#define PADDLE_MOBILE_OS_LINUX
namespace paddle_mobile {
namespace fpga {
......@@ -149,7 +149,7 @@ int ComputeBasicConv(const struct ConvArgs &args) {
return do_ioctl(IOCTL_CONFIG_CONV, &args);
}
int ComputeFpgaConv(const struct WrapperConvArgs &args) {
int ComputeFpgaConv(const struct SplitConvArgs &args) {
#ifdef FPGA_TEST_MODE
DLOG << "=============ComputeFPGAConv===========";
DLOG << " filter_num:" << args.filter_num
......@@ -194,8 +194,8 @@ int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
#ifdef FPGA_TEST_MODE
DLOG << "=============ComputeFpgaEWAdd===========";
DLOG << " relu_enabled:" << args.relu_enabled
<< " const0:" << fp16_2_fp32(short(args.const0))
<< " const1:" << fp16_2_fp32(short(args.const1));
<< " const0:" << fp16_2_fp32(int16_t(args.const0))
<< " const1:" << fp16_2_fp32(int16_t(args.const1));
DLOG << " image0_address:" << args.image0.address
<< " image0_scale_address:" << args.image0.scale_address
<< " image0_channels:" << args.image0.channels
......@@ -383,10 +383,10 @@ void format_concat_output(framework::Tensor *out, int height, int width,
out->reset_data_ptr(data_ptr);
}
void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
framework::Tensor *out, framework::Tensor *filter,
bool relu_enabled, int group_num, int stride_h, int stride_w,
int padding_h, int padding_w, float *bs_ptr) {
void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
framework::Tensor *out, framework::Tensor *filter,
bool relu_enabled, int group_num, int stride_h,
int stride_w, int padding_h, int padding_w, float *bs_ptr) {
auto input_ptr = input->data<float>();
auto filter_ptr = filter->data<float>();
auto out_ptr = out->data<float>();
......
......@@ -89,7 +89,7 @@ struct ConcatArgs {
uint32_t width;
};
struct WrapperConvArgs {
struct SplitConvArgs {
uint32_t split_num;
uint32_t group_num;
uint32_t filter_num;
......@@ -98,6 +98,14 @@ struct WrapperConvArgs {
struct ConcatArgs concat_arg;
};
struct GroupConvArgs {
uint32_t group_num;
uint32_t filter_num;
struct ImageOutputArgs output;
struct SplitConvArgs* conv_args;
struct ConcatArgs concat_arg;
};
struct PoolingArgs {
int16_t mode; // mode: 0:max, 1:avg
half kernel_reciprocal;
......@@ -159,30 +167,6 @@ struct MemoryCacheArgs {
#define IOCTL_FPGA_REG_READ _IOW(IOCTL_FPGA_MAGIC, 28, struct FpgaRegReadArgs)
#define IOCTL_FPGA_REG_WRITE _IOW(IOCTL_FPGA_MAGIC, 29, struct FpgaRegWriteArgs)
enum FPGA_ERR_TYPE {
ERR_IOCTL_CMD = -1,
ERR_TIMEOUT = -2,
ERR_COMPLETION_TIMEOUT = -3,
ERR_INVALID_FPGA_ADDR = -4,
ERR_NOMEM = -5,
ERR_NO_RESERVE_MEM = -6,
ERR_COPY_FROM_USER = -7,
ERR_COPY_TO_USER = -8,
ERR_DEL_TIMER = -9,
ERR_ENABLE_MSI = -10,
ERR_REGISTER_IRQ = -11,
ERR_PCIE_REGISTER = -12,
ERR_PCIE_PROBE = -13,
ERR_REGISTER_BLOCK = -14,
ERR_ALLOC_GENDISK = -15,
ERR_INIT_QUEUE = -16,
ERR_WAIT = -17,
ERR_ECC_ERROR = -31,
ERR_FPGA_FAIL_STOP = -64,
ERR_FPGA_DEBUG_STOP = -113,
DEV_TMP_UNAVAILABLE = -128
};
//============================== API =============================
int open_device();
......@@ -195,7 +179,7 @@ int fpga_flush(void* address, size_t size);
int fpga_invalidate(void* address, size_t size);
int PerformBypass(const struct BypassArgs& args);
int ComputeFpgaConv(const struct WrapperConvArgs& args);
int ComputeFpgaConv(const struct SplitConvArgs& args);
int ComputeFpgaPool(const struct PoolingArgs& args);
int ComputeFpgaEWAdd(const struct EWAddArgs& args);
int ComputeFPGAConcat(const struct ConcatArgs& args);
......@@ -220,10 +204,10 @@ void format_bias_scale_array(float** bias_scale_array,
void format_concat_output(framework::Tensor* out, int height, int width,
int image_num, uint32_t* channel_num);
void fill_conv_arg(struct WrapperConvArgs* arg, framework::Tensor* input,
framework::Tensor* out, framework::Tensor* filter,
bool relu_enabled, int group_num, int stride_h, int stride_w,
int padding_h, int padding_w, float* bs_ptr);
void fill_split_arg(struct SplitConvArgs* arg, framework::Tensor* input,
framework::Tensor* out, framework::Tensor* filter,
bool relu_enabled, int group_num, int stride_h,
int stride_w, int padding_h, int padding_w, float* bs_ptr);
half fp32_2_fp16(float fp32_num);
float fp16_2_fp32(half fp16_num);
......
......@@ -27,9 +27,6 @@ void align_element(float **data_in, int num_per_div_before_alignment, int num) {
(num + num_per_div_before_alignment - 1) / num_per_div_before_alignment;
int num_per_div_after_alignment =
align_to_x(num_per_div_before_alignment, BS_NUM_ALIGNMENT);
if (num_per_div_before_alignment == num_per_div_after_alignment) {
return;
}
int num_element =
2 * div_num * num_per_div_after_alignment; // including bias & scale
float *ptr_aligned =
......
......@@ -21,7 +21,10 @@ namespace paddle_mobile {
namespace fpga {
namespace filter {
int calc_division_capacity(int chw) { return 2048 / ((chw + 15) / 16) * 32; }
int calc_division_capacity(int chw) {
int n = 2048 / ((chw + 15) / 16) * 32;
return n < 2048 ? n : 2048;
}
int calc_split_num(int num, int division_capacity) {
return (num + division_capacity - 1) / division_capacity;
......
......@@ -156,7 +156,7 @@ class AttrReader {
template <typename T>
inline T Get(const string &name) const {
PADDLE_MOBILE_ENFORCE(attrs_.count(name) != 0,
"%s should be in AttributeMap", name);
"%s should be in AttributeMap", name.c_str());
return ((Attribute)attrs_.at(name)).Get<T>();
}
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "framework/data_type.h"
#include <stdint.h>
#include <string>
#include <unordered_map>
namespace paddle_mobile {
namespace framework {
struct DataTypeMap {
std::unordered_map<std::type_index,
_PaddleMobile__Framework__Proto__VarType__Type>
cpp_to_proto_;
std::unordered_map<int, std::type_index> proto_to_cpp_;
std::unordered_map<int, std::string> proto_to_str_;
std::unordered_map<std::type_index, size_t> cpp_to_size_;
};
static DataTypeMap* InitDataTypeMap();
// C++11 removes the need for manual locking. Concurrent execution shall wait if
// a static local variable is already being initialized.
// https://stackoverflow.com/questions/11711920/how-to-implement-multithread-safe-singleton-in-c11-without-using-mutex
static DataTypeMap& gDataTypeMap() {
static DataTypeMap* g_data_type_map_ = InitDataTypeMap();
return *g_data_type_map_;
}
template <typename T>
static inline void RegisterType(
DataTypeMap* map, _PaddleMobile__Framework__Proto__VarType__Type proto_type,
const std::string& name) {
map->proto_to_cpp_.emplace(static_cast<int>(proto_type), typeid(T));
map->cpp_to_proto_.emplace(typeid(T), proto_type);
map->proto_to_str_.emplace(static_cast<int>(proto_type), name);
map->cpp_to_size_.emplace(typeid(T), sizeof(T));
}
static DataTypeMap* InitDataTypeMap() {
auto retv = new DataTypeMap();
#define RegType(cc_type, proto_type) \
RegisterType<cc_type>(retv, proto_type, #cc_type)
// NOTE: Add your customize type here.
// RegType(float16, PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__FP16);
RegType(float, PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__FP32);
RegType(double, PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__FP64);
RegType(int, PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__INT32);
RegType(int64_t, PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__INT64);
RegType(bool, PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__BOOL);
RegType(size_t, PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__SIZE_T);
RegType(int16_t, PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__INT16);
RegType(uint8_t, PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__UINT8);
RegType(int8_t, PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__INT8);
#undef RegType
return retv;
}
_PaddleMobile__Framework__Proto__VarType__Type ToDataType(
std::type_index type) {
auto it = gDataTypeMap().cpp_to_proto_.find(type);
if (it != gDataTypeMap().cpp_to_proto_.end()) {
return it->second;
}
PADDLE_MOBILE_THROW_EXCEPTION("Not support %s as tensor type", type.name());
}
std::type_index ToTypeIndex(
_PaddleMobile__Framework__Proto__VarType__Type type) {
auto it = gDataTypeMap().proto_to_cpp_.find(static_cast<int>(type));
if (it != gDataTypeMap().proto_to_cpp_.end()) {
return it->second;
}
PADDLE_MOBILE_THROW_EXCEPTION(
"Not support _PaddleMobile__Framework__Proto__VarType__Type(%d) as "
"tensor type",
static_cast<int>(type));
}
std::string DataTypeToString(
const _PaddleMobile__Framework__Proto__VarType__Type type) {
auto it = gDataTypeMap().proto_to_str_.find(static_cast<int>(type));
if (it != gDataTypeMap().proto_to_str_.end()) {
return it->second;
}
PADDLE_MOBILE_THROW_EXCEPTION(
"Not support _PaddleMobile__Framework__Proto__VarType__Type(%d) as "
"tensor type",
static_cast<int>(type));
}
} // namespace framework
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <typeindex>
#include "common/enforce.h"
#include "framework/framework.pb-c.h"
namespace paddle_mobile {
namespace framework {
extern _PaddleMobile__Framework__Proto__VarType__Type ToDataType(
std::type_index type);
extern std::type_index ToTypeIndex(
_PaddleMobile__Framework__Proto__VarType__Type type);
template <typename Visitor>
inline void VisitDataType(_PaddleMobile__Framework__Proto__VarType__Type type,
Visitor visitor) {
switch (type) {
// case PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__FP16:
// visitor.template apply<float16>();
// break;
case PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__FP32:
visitor.template apply<float>();
break;
case PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__FP64:
visitor.template apply<double>();
break;
case PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__INT32:
visitor.template apply<int>();
break;
case PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__INT64:
visitor.template apply<int64_t>();
break;
case PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__BOOL:
visitor.template apply<bool>();
break;
case PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__UINT8:
visitor.template apply<uint8_t>();
break;
case PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__INT16:
visitor.template apply<int16_t>();
break;
case PADDLE_MOBILE__FRAMEWORK__PROTO__VAR_TYPE__TYPE__INT8:
visitor.template apply<int8_t>();
break;
default:
PADDLE_MOBILE_THROW_EXCEPTION("Not supported %d", type);
}
}
extern std::string DataTypeToString(
const _PaddleMobile__Framework__Proto__VarType__Type type);
inline std::ostream& operator<<(
std::ostream& out,
const _PaddleMobile__Framework__Proto__VarType__Type& type) {
out << DataTypeToString(type);
return out;
}
} // namespace framework
} // namespace paddle_mobile
......@@ -64,6 +64,9 @@ limitations under the License. */
// load requared ops
LOAD_OP(feed)
LOAD_OP(fetch)
#ifdef FILL_CONSTANT_OP
LOAD_OP(fill_constant)
#endif
#ifdef BATCHNORM_OP
LOAD_OP2(batch_norm, CPU, MALI_GPU);
#endif
......@@ -199,6 +202,9 @@ LOAD_OP3(pool2d, CPU, MALI_GPU, FPGA);
#ifdef MULTICLASSNMS_OP
LOAD_OP1(multiclass_nms, CPU);
#endif
#ifdef POLYGONBOXTRANSFORM_OP
LOAD_OP1(polygon_box_transform, CPU);
#endif
#ifdef SUM_OP
LOAD_OP1(sum, CPU);
#endif
......
......@@ -32,7 +32,7 @@ template <typename Dtype>
vector<string> OperatorBase<Dtype>::GetInputKeys() const {
auto it = op_input_output_key.find(type_);
if (it == op_input_output_key.end()) {
DLOG << type_ << " has no outputs";
DLOG << type_ << " has no inputs";
return {};
}
return it->second.first;
......
......@@ -18,9 +18,9 @@ limitations under the License. */
#include <vector>
#include "framework/lod_tensor.h"
#include "framework/mixed_vector.h"
#include "framework/tensor.h"
#include "memory/t_malloc.h"
#include "mixed_vector.h"
namespace paddle_mobile {
namespace framework {
......
......@@ -338,10 +338,14 @@ inline Print &operator<<(Print &printer, const Tensor &tensor) {
for (int i = 0; i < tensor.numel(); i += stride) {
if (tensor.type() == typeid(float)) {
printer << tensor.data<float>()[i] << " ";
} else if (tensor.type() == typeid(int32_t)) {
printer << tensor.data<int32_t>()[i] << " ";
} else if (tensor.type() == typeid(int64_t)) {
printer << tensor.data<int64_t>()[i] << " ";
} else if (tensor.type() == typeid(int8_t)) {
printer << tensor.data<int8_t>()[i] << " ";
printer << static_cast<int>(tensor.data<int8_t>()[i]) << " ";
} else if (tensor.type() == typeid(int32_t)) {
printer << tensor.data<int32_t>()[i] << " ";
}
}
#endif
......
......@@ -29,7 +29,14 @@ PaddleMobilePredictor<Dtype, P>::PaddleMobilePredictor(
template <typename Dtype, Precision P>
bool PaddleMobilePredictor<Dtype, P>::Init(const PaddleMobileConfig &config) {
paddle_mobile_.reset(new PaddleMobile<Dtype, P>());
if (!config.model_dir.empty()) {
if (config.memory_pack.from_memory) {
DLOG << "load from memory!";
paddle_mobile_->LoadCombinedMemory(config.memory_pack.model_size,
config.memory_pack.model_buf,
config.memory_pack.combined_params_size,
config.memory_pack.combined_params_buf);
} else if (!config.model_dir.empty()) {
paddle_mobile_->Load(config.model_dir, config.optimize,
config.quantification, config.batch_size);
} else if (!config.prog_file.empty() && !config.param_file.empty()) {
......
......@@ -80,12 +80,13 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
}
template <typename Dtype>
void LoadMemInternal(void **data, framework::LoDTensor *tensor) {
static void LoadMemInternal(void **data, framework::LoDTensor *tensor,
bool quant_uint8 = false) {
char **data_buf = reinterpret_cast<char **>(data);
int64_t size = tensor->numel();
Dtype *tensor_data = tensor->mutable_data<Dtype>();
if (0) {
// TODO(hjchen2) should be moved into operator init function
if (quant_uint8) {
// should be moved into operator init function
float min_value;
float max_value;
memcpy(&min_value, data_buf, sizeof(float));
......@@ -141,7 +142,8 @@ void Executor<Dtype, P>::LoadMemory(
// parse tensor from stream
switch (tensor_desc.DataType()) {
case framework::VARTYPE_TYPE_FP32:
LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor);
LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
program_.quantification);
break;
case framework::VARTYPE_TYPE_INT8:
LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
......
......@@ -111,6 +111,14 @@ class PaddlePredictor {
PaddlePredictor() = default;
};
struct PaddleModelMemoryPack {
bool from_memory = false;
size_t model_size = 0;
uint8_t* model_buf = nullptr;
size_t combined_params_size = 0;
uint8_t* combined_params_buf = nullptr;
};
struct PaddleMobileConfig : public PaddlePredictor::Config {
enum Precision { FP32 = 0 };
enum Device { kCPU = 0, kFPGA = 1, kGPU_MALI = 2 };
......@@ -124,6 +132,7 @@ struct PaddleMobileConfig : public PaddlePredictor::Config {
int thread_num = 1;
std::string prog_file;
std::string param_file;
struct PaddleModelMemoryPack memory_pack;
};
// A factory to help create different predictors.
......
......@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef DEQUANT_OP
#include "operators/dequantize_op.h"
namespace paddle_mobile {
......@@ -30,3 +32,5 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(dequantize, ops::DequantizeOp);
#endif
#endif
......@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef DEQUANT_OP
#pragma once
#include <string>
......@@ -41,3 +43,5 @@ class DequantizeOp
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -14,7 +14,7 @@ limitations under the License. */
#ifdef ELEMENTWISEMUL_OP
#include "elementwise_mul_op.h"
#include "operators/elementwise_mul_op.h"
namespace paddle_mobile {
namespace operators {
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FILL_CONSTANT_OP
#include "operators/fill_constant_op.h"
namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(fill_constant, ops::FillConstantOp);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
REGISTER_OPERATOR_MALI_GPU(fill_constant, ops::FillConstantOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fill_constant, ops::FillConstantOp);
#endif
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FILL_CONSTANT_OP
#pragma once
#include <string>
#include "framework/data_type.h"
#include "framework/operator.h"
#include "framework/selected_rows.h"
#include "operators/math/math_function.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
using std::string;
template <typename DeviceType, typename T>
class FillConstantOp : public framework::OperatorBase<DeviceType> {
public:
FillConstantOp(const string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorBase<DeviceType>(type, inputs, outputs, attrs,
scope),
param_(inputs, outputs, attrs, *scope) {}
void RunImpl() const {
auto data_type =
static_cast<_PaddleMobile__Framework__Proto__VarType__Type>(
param_.DataDtype());
framework::Tensor *tensor = nullptr;
auto value = param_.Value();
auto *outvar = param_.OutVar();
if (outvar->template IsType<framework::LoDTensor>()) {
tensor = outvar->template GetMutable<framework::LoDTensor>();
} else if (outvar->template IsType<framework::SelectedRows>()) {
tensor = outvar->template GetMutable<framework::SelectedRows>()
->mutable_value();
} else {
PADDLE_MOBILE_THROW_EXCEPTION(
"fill constant op's output only"
"supports SelectedRows and LoDTensor");
}
tensor->Resize(framework::make_ddim(param_.Shape()));
tensor->mutable_data(framework::ToTypeIndex(data_type));
math::set_constant(tensor, value);
}
void Init() {}
void InferShape() const {
PADDLE_MOBILE_ENFORCE(
param_.Out() != nullptr,
"Output (Out) of fill_constant op should not be null.");
framework::DDim ddim = framework::make_ddim(param_.Shape());
param_.Out()->Resize(ddim);
}
protected:
FillConstantParam<DeviceType> param_;
};
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_MOBILE_CPU
#ifdef DEQUANT_OP
#include "operators/kernel/dequantize_kernel.h"
......@@ -38,7 +38,8 @@ void DequantizeKernel<CPU, float>::Compute(
const int32_t *x = input->data<const int32_t>();
float *y = output->mutable_data<float>();
size_t size = output->numel();
float scale = 1.f / (activation_scale * weight_scale);
// float scale = 1.f / (activation_scale * weight_scale);
float scale = activation_scale / weight_scale;
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
size_t loop = size >> 4;
size_t remain = size & 0xF;
......
......@@ -31,6 +31,8 @@ void MulKernel<CPU, float>::Compute(const MulParam<CPU> &param) const {
param.Out()->set_lod(param.InputX()->lod());
}
template class MulKernel<CPU, float>;
} // namespace operators
} // namespace paddle_mobile
......
......@@ -12,57 +12,24 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef MUL_OP
#ifdef POLYGONBOXTRANSFORM_OP
#include "operators/kernel/mul_kernel.h"
#include "operators/kernel/polygon_box_transform_kernel.h"
#include "operators/kernel/central-arm-func/polygon_box_transform_arm_func.h"
namespace paddle_mobile {
namespace operators {
template <>
bool MulKernel<FPGA, float>::Init(MulParam<FPGA> *param) {
bool relu_enabled = false;
auto input_x = const_cast<LoDTensor *>(param->InputX());
auto filter = const_cast<LoDTensor *>(param->InputY());
auto out = param->Out();
PADDLE_MOBILE_ENFORCE(input_x->dims()[1] == filter->dims()[0],
"Image channel should be equal to weight number");
int channel = (uint32_t)out->dims()[1];
auto bs_ptr =
(float *)fpga::fpga_malloc(2 * channel * sizeof(float)); // NOLINT
for (int i = 0; i < channel; i++) {
bs_ptr[i + channel] = 1;
bs_ptr[i] = 0;
}
int num = (uint32_t)filter->dims()[1];
int chw = (uint32_t)filter->dims()[0];
PADDLE_MOBILE_ENFORCE(
chw == input_x->numel(),
"Filter element num should be equal to IFM element num");
int height = (uint32_t)input_x->dims()[2];
int width = (uint32_t)input_x->dims()[3];
int filter_channel = chw / height / width;
out->Resize(framework::make_ddim({1, channel, 1, 1}));
filter->Resize(framework::make_ddim({num, filter_channel, height, width}));
float max_value = fpga::filter_find_max(filter);
fpga::format_fc_filter(filter, max_value);
int element_num_per_div = fpga::get_filter_num_per_div(filter, 1);
fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);
fpga::format_fp16_ofm(out);
fpga::WrapperConvArgs conv_arg = {0};
fpga::fill_conv_arg(&conv_arg, input_x, out, filter, relu_enabled, 1, 1, 1, 0,
0, bs_ptr);
param->SetFpgaArgs(conv_arg);
bool PolygonBoxTransformKernel<CPU, float>::Init(
PolygonBoxTransformParam<CPU> *param) {
return true;
}
template <>
void MulKernel<FPGA, float>::Compute(const MulParam<FPGA> &param) const {
fpga::ComputeFpgaConv(param.FpgaArgs());
void PolygonBoxTransformKernel<CPU, float>::Compute(
const PolygonBoxTransformParam<CPU> &param) const {
PolygonBoxTransformCompute<float>(param);
}
} // namespace operators
......
......@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_MOBILE_CPU
#ifdef QUANT_OP
#include "operators/kernel/quantize_kernel.h"
#include <cmath>
......@@ -225,7 +225,7 @@ static void quantize_round_to_nearest(const Tensor *input, const float scale,
const float *x = input->data<const float>();
int8_t *y = output->mutable_data<int8_t>();
size_t size = input->numel();
#ifdef defined(__ARM_NEON__) || defined(__ARM_NEON)
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
size_t loop = size >> 4;
size_t remain = size & 0xF;
for (size_t i = 0; i < loop; ++i) {
......@@ -280,17 +280,18 @@ void QuantizeKernel<CPU, float>::Compute(
}
max_abs = std::max(max_abs, 1e-6f);
// only support int8 currently
float online_scale = 127 / max_abs;
param.online_scale_->mutable_data<float>()[0] = online_scale;
float scale = 127 / max_abs;
param.online_scale_->mutable_data<float>()[0] = max_abs;
switch (param.round_type_) {
case ROUND_NEAREST_TO_EVEN:
quantize_round_to_even(input, online_scale, output);
quantize_round_to_even(input, scale, output);
break;
case ROUND_NEAREST_TOWARDS_ZERO:
quantize_round_to_zero(input, online_scale, output);
quantize_round_to_zero(input, scale, output);
break;
case ROUND_NEAREST_AWAY_ZERO:
quantize_round_to_nearest(input, online_scale, output);
quantize_round_to_nearest(input, scale, output);
break;
default:
LOG(kLOG_ERROR) << "round type is not supported.";
break;
......
......@@ -16,24 +16,27 @@ limitations under the License. */
#pragma once
#include <vector>
#include "operators/math/conv_arm_int8.h"
#include "operators/math/conv_func.h"
#include "operators/math/depthwise_conv_3x3.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/pad.h"
#include "operators/math/vol2col.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
template <typename Dtype>
inline void ConvBasic(const ConvParam<CPU> &param) {
const Tensor *input = param.Input();
Tensor filter = *param.Filter();
Tensor *output = param.Output();
output->mutable_data<float>();
int groups = param.Groups();
std::vector<int> strides = param.Strides();
std::vector<int> paddings = param.Paddings();
std::vector<int> dilations = param.Dilations();
const std::vector<int> strides = param.Strides();
const std::vector<int> paddings = param.Paddings();
const std::vector<int> dilations = param.Dilations();
const int batch_size = static_cast<int>(input->dims()[0]);
......@@ -57,7 +60,7 @@ inline void ConvBasic(const ConvParam<CPU> &param) {
Tensor col;
Tensor col_matrix;
if (is_expand) {
col.mutable_data<float>(col_shape);
col.mutable_data<Dtype>(col_shape);
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
}
......@@ -76,8 +79,8 @@ inline void ConvBasic(const ConvParam<CPU> &param) {
int in_step = static_cast<int>(input->dims()[1]) / groups;
int out_step = static_cast<int>(output->dims()[1]) / groups;
math::Vol2ColFunctor<CPU, float> vol2col;
math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;
math::Vol2ColFunctor<CPU, Dtype> vol2col;
math::Im2ColFunctor<math::ColFormat::kCFO, CPU, Dtype> im2col;
for (int i = 0; i < batch_size; i++) {
Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
......@@ -96,6 +99,7 @@ inline void ConvBasic(const ConvParam<CPU> &param) {
std::vector<int>{paddings[0], paddings[1], paddings[0],
paddings[1]},
&col);
} else if (data_dim == 3U) {
// vol2col
vol2col(in_slice, dilations, strides, paddings, &col);
......@@ -104,29 +108,85 @@ inline void ConvBasic(const ConvParam<CPU> &param) {
// gemm
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
math::matmul<float>(filter_slice, false, col_matrix, false,
math::matmul<Dtype>(filter_slice, false, col_matrix, false,
static_cast<float>(1), &out_slice,
static_cast<float>(0));
}
}
}
inline void ConvCompute_int8(const ConvParam<CPU> &param) {
typedef void (*ConvFunc)(const Tensor &input, const Tensor &kernel,
Tensor *output);
static ConvFunc conv_funcs_table[7][5] = {
{0, 0, 0, 0, 0}, // k = 1
{0, 0, 0, 0, 0}, {conv3x3s1_int8, 0, 0, 0, 0}, // k = 3
{0, 0, 0, 0, 0}, {conv5x5s1_int8, 0, 0, 0, 0}, // k = 5
{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, // k = 7
};
const Tensor *input = param.Input();
Tensor *filter = param.Filter();
Tensor *output = param.Output();
int groups = param.Groups();
const std::vector<int> &strides = param.Strides();
const std::vector<int> &paddings = param.Paddings();
const std::vector<int> &dilations = param.Dilations();
int kernel_h = filter->dims()[2];
int kernel_w = filter->dims()[3];
output->mutable_data<int32_t>();
ConvFunc conv_func = 0;
if (strides[1] == strides[0] && strides[1] < 6 && kernel_h == kernel_w &&
kernel_h < 8 && groups == 1 && dilations[0] == dilations[1] &&
dilations[1] == 1) {
conv_func = conv_funcs_table[kernel_h - 1][strides[0] - 1];
}
if (conv_func) {
int batch_size = input->dims()[0];
math::PadFunctor<CPU, int8_t> pad;
Tensor input_pad;
for (int i = 0; i < batch_size; ++i) {
Tensor in_batch = input->Slice(i, i + 1);
Tensor out_batch = output->Slice(i, i + 1);
if (paddings[0] == 0 && paddings[1] == 0) {
input_pad = in_batch;
} else {
framework::DDim pad_shape = in_batch.dims();
pad_shape[2] += 2 * paddings[0];
pad_shape[3] += 2 * paddings[1];
input_pad.mutable_data<int8_t>(pad_shape);
pad(in_batch, paddings[0], paddings[1], &input_pad);
}
conv_func(input_pad, *filter, &out_batch);
}
} else {
ConvBasic<int8_t>(param);
}
}
template <typename P>
void ConvCompute(const ConvParam<CPU> &param) {
if (param.Groups() == param.Input()->dims()[1] &&
param.Input()->dims()[1] == param.Output()->dims()[1] &&
param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
param.Filter()->dims()[2] == 3 && param.Strides()[0] == 1) {
math::DepthwiseConv3x3s1p1(param.Input(), param.Filter(), param.Output(),
nullptr, false);
} else if (param.Groups() == param.Input()->dims()[1] &&
param.Input()->dims()[1] == param.Output()->dims()[1] &&
param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
param.Filter()->dims()[2] == 3) {
math::DepthwiseConv3x3(param.Input(), param.Strides(), param.Paddings(),
param.Filter(), nullptr, param.Output(), false);
if (param.Input()->type() == typeid(int8_t)) {
ConvCompute_int8(param);
} else {
ConvBasic(param);
param.Output()->mutable_data<float>();
if (param.Groups() == param.Input()->dims()[1] &&
param.Input()->dims()[1] == param.Output()->dims()[1] &&
param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
param.Filter()->dims()[2] == 3 && param.Strides()[0] == 1) {
math::DepthwiseConv3x3s1p1(param.Input(), param.Filter(), param.Output(),
nullptr, false);
} else if (param.Groups() == param.Input()->dims()[1] &&
param.Input()->dims()[1] == param.Output()->dims()[1] &&
param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
param.Filter()->dims()[2] == 3) {
math::DepthwiseConv3x3(param.Input(), param.Strides(), param.Paddings(),
param.Filter(), nullptr, param.Output(), false);
} else {
ConvBasic<float>(param);
}
}
}
......
......@@ -44,7 +44,7 @@ void DepthwiseConvCompute(const ConvParam<CPU> &param) {
Bias, false);
} else {
ConvBasic(param);
ConvBasic<float>(param);
}
}
......
......@@ -15,8 +15,12 @@ limitations under the License. */
#ifdef ELEMENTWISEADD_OP
#pragma once
#include "operators/math/elementwise_op_function.h"
#include "operators/op_param.h"
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
#endif
namespace paddle_mobile {
namespace operators {
......@@ -33,8 +37,61 @@ void ElementwiseAddCompute(const ElementwiseAddParam<CPU> &param) {
Tensor *Out = param.Out();
Out->mutable_data<float>();
int axis = param.Axis();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
const auto &x_dims = input_x->dims();
const auto &y_dims = input_y->dims();
/// axis = -1 represent the last dimensions.
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
size_t batch = 1;
size_t channels = 1;
size_t elementwise_num = 1;
for (int i = 0; i < axis; ++i) {
batch *= x_dims[i];
}
for (int i = 0; i < y_dims.size(); ++i) {
channels *= y_dims[i];
}
for (int i = y_dims.size() + axis; i < x_dims.size(); ++i) {
elementwise_num *= x_dims[i];
}
const float *bias_data = input_y->data<float>();
const float *input_data = input_x->data<float>();
float *output_data = Out->mutable_data<float>();
for (int i = 0; i < batch; ++i) {
for (int j = 0; j < channels; ++j) {
size_t offset = (i * channels + j) * elementwise_num;
const float *input = input_data + offset;
const float *bias = bias_data + j;
float *output = output_data + offset;
int loop = elementwise_num >> 0x4;
int remain = elementwise_num & 0xF;
for (int k = 0; k < loop; ++k) {
float32x4_t rb = vdupq_n_f32(*bias);
float32x4_t r0 = vld1q_f32(input);
float32x4_t r1 = vld1q_f32(input + 4);
float32x4_t r2 = vld1q_f32(input + 8);
float32x4_t r3 = vld1q_f32(input + 12);
r0 = vaddq_f32(r0, rb);
r1 = vaddq_f32(r1, rb);
r2 = vaddq_f32(r2, rb);
r3 = vaddq_f32(r3, rb);
vst1q_f32(output, r0);
vst1q_f32(output + 4, r1);
vst1q_f32(output + 8, r2);
vst1q_f32(output + 12, r3);
input += 16;
output += 16;
}
for (int k = 0; k < remain; ++k) {
output[k] = input[k] + *bias;
}
}
}
#else
ElementwiseComputeEx<AddFunctor<float>, float>(input_x, input_y, axis,
AddFunctor<float>(), Out);
#endif
}
template class ElementwiseAddKernel<CPU, float>;
......
......@@ -58,7 +58,7 @@ void MulCompute(const MulParam<CPU> &param) {
const Tensor *input_x = param.InputX();
const Tensor *input_y = param.InputY();
Tensor *out = param.Out();
out->mutable_data<float>();
const Tensor x_matrix =
input_x->dims().size() > 2
? framework::ReshapeToMatrix(*input_x, param.XNumColDims())
......@@ -71,15 +71,21 @@ void MulCompute(const MulParam<CPU> &param) {
if (out_dim.size() != 2) {
out->Resize({x_matrix.dims()[0], y_matrix.dims()[1]});
}
math::matmul<float>(x_matrix, false, y_matrix, false, static_cast<float>(1),
out, static_cast<float>(0));
if (param.InputX()->type() == typeid(int8_t)) {
out->mutable_data<int32_t>();
math::matmul<int8_t>(x_matrix, false, y_matrix, false,
static_cast<int8_t>(1), out, static_cast<int8_t>(0));
} else {
out->mutable_data<float>();
math::matmul<float>(x_matrix, false, y_matrix, false, static_cast<float>(1),
out, static_cast<float>(0));
}
if (out_dim.size() != 2) {
out->Resize(out_dim);
}
}
template class MulKernel<CPU, float>;
} // namespace operators
} // namespace paddle_mobile
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef POLYGONBOXTRANSFORM_OP
#pragma once
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
template <typename P>
void PolygonBoxTransformCompute(const PolygonBoxTransformParam<CPU>& param) {
const auto* input = param.Input();
const auto& input_dims = input->dims();
const auto* input_data = input->data<float>();
auto* output = param.Output();
auto* output_data = output->mutable_data<float>();
int64_t batch_size = input_dims[0];
int64_t geo_channel = input_dims[1];
int64_t height = input_dims[2];
int64_t width = input_dims[3];
int64_t id = 0;
for (int64_t id_n = 0; id_n < batch_size * geo_channel; ++id_n) {
for (int64_t id_h = 0; id_h < height; ++id_h) {
for (int64_t id_w = 0; id_w < width; ++id_w) {
id = id_n * height * width + width * id_h + id_w;
if (id_n % 2 == 0) {
output_data[id] = id_w * 4 - input_data[id];
} else {
output_data[id] = id_h * 4 - input_data[id];
}
}
}
}
}
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -17,6 +17,9 @@ limitations under the License. */
#include <operators/math/transform.h>
#include "operators/op_param.h"
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
#endif
namespace paddle_mobile {
namespace operators {
......@@ -37,71 +40,100 @@ void ReluCompute(const ReluParam<CPU> &param) {
auto *out_ptr = out->mutable_data<float>();
int numel = input_x->numel();
// if (numel > 64) {
// asm volatile(
// "pld [%[input_x_ptr], #0] \n\t"
// "vmov.f32 q8, #0.0 \n\t"
// "subs %[num], %[num], #32 \n\t"
// "blt end_num_%= \n\t"
// "loop_num_%=: \n\t"
// "pld [%[input_x_ptr], #1024] \n\t"
//
// "vld1.32 {q0, q1}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q2, q3}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q4, q5}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q6, q7}, [%[input_x_ptr]]! \n\t"
//
// "vmax.f32 q0, q0, q8 \n\t"
// "vmax.f32 q1, q1, q8 \n\t"
// "vmax.f32 q2, q2, q8 \n\t"
// "vmax.f32 q3, q3, q8 \n\t"
// "vmax.f32 q4, q4, q8 \n\t"
// "vmax.f32 q5, q5, q8 \n\t"
// "vmax.f32 q6, q6, q8 \n\t"
// "vmax.f32 q7, q7, q8 \n\t"
//
// "vst1.32 {q0, q1}, [%[out_ptr]]! \n\t"
// "vst1.32 {q2, q3}, [%[out_ptr]]! \n\t"
// "vst1.32 {q4, q5}, [%[out_ptr]]! \n\t"
// "vst1.32 {q6, q7}, [%[out_ptr]]! \n\t"
//
// "subs %[num], %[num], #32 \n\t"
// "bge loop_num_%= \n\t"
// "end_num_%=: \n\t"
// "cmp %[num], #0 \n\t"
// "bge end_%= \n\t"
// "mov r6, #4 \n\t"
// "mul r5, %[num], r6 \n\t"
// "add %[input_x_ptr], %[input_x_ptr], r5 \n\t"
// "vld1.32 {q0, q1}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q2, q3}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q4, q5}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q6, q7}, [%[input_x_ptr]]! \n\t"
// "vmax.f32 q0, q0, q8 \n\t"
// "vmax.f32 q1, q1, q8 \n\t"
// "vmax.f32 q2, q2, q8 \n\t"
// "vmax.f32 q3, q3, q8 \n\t"
// "vmax.f32 q4, q4, q8 \n\t"
// "vmax.f32 q5, q5, q8 \n\t"
// "vmax.f32 q6, q6, q8 \n\t"
// "vmax.f32 q7, q7, q8 \n\t"
// "add %[out_ptr], %[out_ptr], r5 \n\t"
// "vst1.32 {q0, q1}, [%[out_ptr]]! \n\t"
// "vst1.32 {q2, q3}, [%[out_ptr]]! \n\t"
// "vst1.32 {q4, q5}, [%[out_ptr]]! \n\t"
// "vst1.32 {q6, q7}, [%[out_ptr]]! \n\t"
// "end_%=: \n\t"
// :
// :
// [out_ptr] "r"(out_ptr), [input_x_ptr] "r"(input_x_ptr), [num]
// "r"(numel) : "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6",
// "q7", "q8", "r5",
// "r6");
// } else {
ReluFunctor<float> func_;
math::Transform trans;
trans(input_x_ptr, input_x_ptr + numel, out_ptr, func_);
// }
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#if __aarch64__
if (numel > 0) {
int loop = numel >> 0x4;
int remain = numel & 0xF;
float32x4_t zero = vdupq_n_f32(0.f);
for (int i = 0; i < loop; ++i) {
float32x4_t r0 = vld1q_f32(input_x_ptr);
float32x4_t r1 = vld1q_f32(input_x_ptr + 4);
float32x4_t r2 = vld1q_f32(input_x_ptr + 8);
float32x4_t r3 = vld1q_f32(input_x_ptr + 12);
r0 = vmaxq_f32(r0, zero);
r1 = vmaxq_f32(r1, zero);
r2 = vmaxq_f32(r2, zero);
r3 = vmaxq_f32(r3, zero);
vst1q_f32(out_ptr, r0);
vst1q_f32(out_ptr + 4, r1);
vst1q_f32(out_ptr + 8, r2);
vst1q_f32(out_ptr + 12, r3);
input_x_ptr += 16;
out_ptr += 16;
}
for (int i = 0; i < remain; ++i) {
out_ptr[i] = (input_x_ptr[i] > 0) * input_x_ptr[i];
}
#else
if (numel > 64) {
asm volatile(
"pld [%[input_x_ptr], #0] \n\t"
"vmov.f32 q8, #0.0 \n\t"
"subs %[num], %[num], #32 \n\t"
"blt end_num_%= \n\t"
"loop_num_%=: \n\t"
"pld [%[input_x_ptr], #1024] \n\t"
"vld1.32 {q0, q1}, [%[input_x_ptr]]! \n\t"
"vld1.32 {q2, q3}, [%[input_x_ptr]]! \n\t"
"vld1.32 {q4, q5}, [%[input_x_ptr]]! \n\t"
"vld1.32 {q6, q7}, [%[input_x_ptr]]! \n\t"
"vmax.f32 q0, q0, q8 \n\t"
"vmax.f32 q1, q1, q8 \n\t"
"vmax.f32 q2, q2, q8 \n\t"
"vmax.f32 q3, q3, q8 \n\t"
"vmax.f32 q4, q4, q8 \n\t"
"vmax.f32 q5, q5, q8 \n\t"
"vmax.f32 q6, q6, q8 \n\t"
"vmax.f32 q7, q7, q8 \n\t"
"vst1.32 {q0, q1}, [%[out_ptr]]! \n\t"
"vst1.32 {q2, q3}, [%[out_ptr]]! \n\t"
"vst1.32 {q4, q5}, [%[out_ptr]]! \n\t"
"vst1.32 {q6, q7}, [%[out_ptr]]! \n\t"
"subs %[num], %[num], #32 \n\t"
"bge loop_num_%= \n\t"
"end_num_%=: \n\t"
"cmp %[num], #0 \n\t"
"bge end_%= \n\t"
"mov r6, #4 \n\t"
"mul r5, %[num], r6 \n\t"
"add %[input_x_ptr], %[input_x_ptr], r5 \n\t"
"vld1.32 {q0, q1}, [%[input_x_ptr]]! \n\t"
"vld1.32 {q2, q3}, [%[input_x_ptr]]! \n\t"
"vld1.32 {q4, q5}, [%[input_x_ptr]]! \n\t"
"vld1.32 {q6, q7}, [%[input_x_ptr]]! \n\t"
"vmax.f32 q0, q0, q8 \n\t"
"vmax.f32 q1, q1, q8 \n\t"
"vmax.f32 q2, q2, q8 \n\t"
"vmax.f32 q3, q3, q8 \n\t"
"vmax.f32 q4, q4, q8 \n\t"
"vmax.f32 q5, q5, q8 \n\t"
"vmax.f32 q6, q6, q8 \n\t"
"vmax.f32 q7, q7, q8 \n\t"
"add %[out_ptr], %[out_ptr], r5 \n\t"
"vst1.32 {q0, q1}, [%[out_ptr]]! \n\t"
"vst1.32 {q2, q3}, [%[out_ptr]]! \n\t"
"vst1.32 {q4, q5}, [%[out_ptr]]! \n\t"
"vst1.32 {q6, q7}, [%[out_ptr]]! \n\t"
"end_%=: \n\t"
:
:
[out_ptr] "r"(out_ptr), [input_x_ptr] "r"(input_x_ptr), [num] "r"(numel)
: "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", "q8", "r5",
"r6");
#endif
} else {
#endif
ReluFunctor<float> func_;
math::Transform trans;
trans(input_x_ptr, input_x_ptr + numel, out_ptr, func_);
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
}
#endif
}
} // namespace operators
} // namespace paddle_mobile
......
......@@ -15,11 +15,14 @@ limitations under the License. */
#ifdef SUM_OP
#pragma once
#include <vector>
#include "operators/math/selected_rows_functor.h"
namespace paddle_mobile {
namespace operators {
using LoDTensorArray = std::vector<LoDTensor>;
template <typename P>
void SumCompute(const SumParam<CPU> &param) {
auto inputsvars = param.InputsVars();
......@@ -63,31 +66,21 @@ void SumCompute(const SumParam<CPU> &param) {
std::unique_ptr<framework::SelectedRows> in0;
if (in_place) {
// If is in_place, we store the input[0] to in0
auto *in_sel0 = inputsvars[0]->Get<SelectedRows>();
auto *in_sel0 = inputsvars[0]->Get<framework::SelectedRows>();
auto &rows = in_sel0->rows();
//#ifdef PADDLE_WITH_CUDA
// std::vector<int64_t> rows_in_cpu;
// rows_in_cpu.reserve(rows.size());
// for (auto item : rows) {
// rows_in_cpu.push_back(item);
// }
// in0.reset(new framework::SelectedRows(rows_in_cpu,
// in_sel0.height()));
//#else
in0.reset(new framework::SelectedRows(rows, in_sel0->height()));
//#endif
in0->mutable_value()->ShareDataWith(in_sel0->value());
}
auto get_selected_row = [&](size_t i) -> const SelectedRows & {
auto get_selected_row = [&](size_t i) -> const framework::SelectedRows & {
if (i == 0 && in0) {
return *in0.get();
} else {
return *(inputsvars[i]->Get<SelectedRows>());
return *(inputsvars[i]->Get<framework::SelectedRows>());
}
};
auto *out = outvar->GetMutable<SelectedRows>();
auto *out = outvar->GetMutable<framework::SelectedRows>();
out->mutable_rows()->clear();
auto *out_value = out->mutable_value();
......@@ -150,8 +143,6 @@ void SumCompute(const SumParam<CPU> &param) {
}
}
} else {
if (outvar->IsType<framework::Tensor>()) {
}
PADDLE_MOBILE_THROW_EXCEPTION(
"Unexpected branch, output variable type is %s", outvar->Type().name());
}
......
......@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef DEQUANT_OP
#pragma once
#include "framework/operator.h"
......@@ -30,3 +32,5 @@ class DequantizeKernel
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -23,8 +23,6 @@ limitations under the License. */
namespace paddle_mobile {
namespace operators {
using namespace framework;
template <typename DeviceType, typename T>
class ElementwiseMulKernel
: public framework::OpKernelBase<DeviceType,
......
......@@ -66,10 +66,11 @@ bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam<FPGA> *param) {
fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);
fpga::format_fp16_ofm(out);
fpga::WrapperConvArgs conv_arg = {0};
fpga::fill_conv_arg(&conv_arg, input, out, filter, relu_enabled,
param->Groups(), param->Strides()[0], param->Strides()[1],
param->Paddings()[0], param->Paddings()[1], bs_ptr);
fpga::SplitConvArgs conv_arg = {0};
fpga::fill_split_arg(&conv_arg, input, out, filter, relu_enabled,
param->Groups(), param->Strides()[0],
param->Strides()[1], param->Paddings()[0],
param->Paddings()[1], bs_ptr);
param->SetFpgaArgs(conv_arg);
return true;
......
......@@ -65,10 +65,11 @@ bool ConvAddBNReluKernel<FPGA, float>::Init(
fpga::format_fp16_ofm(out);
fpga::WrapperConvArgs conv_arg = {0};
fpga::fill_conv_arg(&conv_arg, input, out, filter, relu_enabled,
param->Groups(), param->Strides()[0], param->Strides()[1],
param->Paddings()[0], param->Paddings()[1], bs_ptr);
fpga::SplitConvArgs conv_arg = {0};
fpga::fill_split_arg(&conv_arg, input, out, filter, relu_enabled,
param->Groups(), param->Strides()[0],
param->Strides()[1], param->Paddings()[0],
param->Paddings()[1], bs_ptr);
param->SetFpgaArgs(conv_arg);
return true;
}
......
......@@ -47,10 +47,11 @@ bool ConvAddReluKernel<FPGA, float>::Init(FusionConvAddReluParam<FPGA> *param) {
fpga::format_fp16_ofm(out);
fpga::WrapperConvArgs conv_arg = {0};
fpga::fill_conv_arg(&conv_arg, input, out, filter, relu_enabled,
param->Groups(), param->Strides()[0], param->Strides()[1],
param->Paddings()[0], param->Paddings()[1], bs_ptr);
fpga::SplitConvArgs conv_arg = {0};
fpga::fill_split_arg(&conv_arg, input, out, filter, relu_enabled,
param->Groups(), param->Strides()[0],
param->Strides()[1], param->Paddings()[0],
param->Paddings()[1], bs_ptr);
param->SetFpgaArgs(conv_arg);
return true;
}
......
......@@ -59,10 +59,11 @@ bool ConvBNKernel<FPGA, float>::Init(FusionConvBNParam<FPGA> *param) {
fpga::format_fp16_ofm(out);
fpga::WrapperConvArgs conv_arg = {0};
fpga::fill_conv_arg(&conv_arg, input, out, filter, relu_enabled,
param->Groups(), param->Strides()[0], param->Strides()[1],
param->Paddings()[0], param->Paddings()[1], bs_ptr);
fpga::SplitConvArgs conv_arg = {0};
fpga::fill_split_arg(&conv_arg, input, out, filter, relu_enabled,
param->Groups(), param->Strides()[0],
param->Strides()[1], param->Paddings()[0],
param->Paddings()[1], bs_ptr);
param->SetFpgaArgs(conv_arg);
return true;
}
......
......@@ -59,10 +59,11 @@ bool ConvBNReluKernel<FPGA, float>::Init(FusionConvBNReluParam<FPGA> *param) {
fpga::format_fp16_ofm(out);
fpga::WrapperConvArgs conv_arg = {0};
fpga::fill_conv_arg(&conv_arg, input, out, filter, relu_enabled,
param->Groups(), param->Strides()[0], param->Strides()[1],
param->Paddings()[0], param->Paddings()[1], bs_ptr);
fpga::SplitConvArgs conv_arg = {0};
fpga::fill_split_arg(&conv_arg, input, out, filter, relu_enabled,
param->Groups(), param->Strides()[0],
param->Strides()[1], param->Paddings()[0],
param->Paddings()[1], bs_ptr);
param->SetFpgaArgs(conv_arg);
return true;
}
......
......@@ -53,9 +53,9 @@ bool FusionFcReluKernel<FPGA, float>::Init(FusionFcReluParam<FPGA> *param) {
fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);
fpga::format_fp16_ofm(out);
fpga::WrapperConvArgs conv_arg = {0};
fpga::fill_conv_arg(&conv_arg, input_x, out, filter, relu_enabled, 1, 1, 1, 0,
0, bs_ptr);
fpga::SplitConvArgs conv_arg = {0};
fpga::fill_split_arg(&conv_arg, input_x, out, filter, relu_enabled, 1, 1, 1,
0, 0, bs_ptr);
param->SetFpgaArgs(conv_arg);
return true;
}
......
......@@ -54,9 +54,9 @@ bool FusionFcKernel<FPGA, float>::Init(FusionFcParam<FPGA> *param) {
fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);
fpga::format_fp16_ofm(out);
fpga::WrapperConvArgs conv_arg = {0};
fpga::fill_conv_arg(&conv_arg, input_x, out, filter, relu_enabled, 1, 1, 1, 0,
0, bs_ptr);
fpga::SplitConvArgs conv_arg = {0};
fpga::fill_split_arg(&conv_arg, input_x, out, filter, relu_enabled, 1, 1, 1,
0, 0, bs_ptr);
param->SetFpgaArgs(conv_arg);
return true;
}
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef POLYGONBOXTRANSFORM_OP
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
template <typename DeviceType, typename T>
class PolygonBoxTransformKernel
: public framework::OpKernelBase<DeviceType,
PolygonBoxTransformParam<DeviceType>> {
public:
void Compute(const PolygonBoxTransformParam<DeviceType>& param) const;
bool Init(PolygonBoxTransformParam<DeviceType>* param);
};
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef QUANT_OP
#pragma once
#include "framework/operator.h"
......@@ -30,3 +32,5 @@ class QuantizeKernel
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -21,8 +21,6 @@ limitations under the License. */
namespace paddle_mobile {
namespace operators {
using namespace framework;
template <typename DeviceType, typename T>
class SumKernel
: public framework::OpKernelBase<DeviceType, SumParam<DeviceType>> {
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#include "operators/math/conv_arm_int8.h"
namespace paddle_mobile {
namespace operators {
void conv3x3s1_int8(const framework::Tensor& input,
const framework::Tensor& weight,
framework::Tensor* output) {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
const int8_t* in_data = input.data<int8_t>();
const int8_t* w_data = weight.data<int8_t>();
int32_t* out_data = output->mutable_data<int32_t>();
// make sure that batch size is 1
int input_c = input.dims()[1];
int input_h = input.dims()[2];
int input_w = input.dims()[3];
int output_c = output->dims()[1];
int output_h = output->dims()[2];
int output_w = output->dims()[3];
int image_size = input_h * input_w;
int out_image_size = output_h * output_w;
memset(out_data, 0, output_c * out_image_size * sizeof(int32_t));
#if __aarch64__
// TODO(hjchen2)
#else
int oc = 0;
#pragma omp parallel for
for (; oc < output_c - 1; oc += 2) {
for (int ic = 0; ic < input_c; ++ic) {
const int8_t* kernel0 = w_data + (oc * input_c + ic) * 9;
const int8_t* kernel1 = w_data + ((oc + 1) * input_c + ic) * 9;
int32_t* output0 = out_data + oc * out_image_size;
int32_t* output0n = output0 + output_w;
int32_t* output1 = out_data + (oc + 1) * out_image_size;
int32_t* output1n = output1 + output_w;
int oh = 0;
for (; oh < output_h - 1; oh += 2) {
const int8_t* r0 = in_data + ic * image_size + oh * input_w;
const int8_t* r1 = r0 + input_w;
const int8_t* r2 = r1 + input_w;
const int8_t* r3 = r2 + input_w;
int ow = output_w >> 3;
int remain = output_w & 0x7;
if (ow > 0) {
asm volatile(
"vld1.8 {d0}, [%[kernel0]] \n"
"ldr r5, [%[kernel0], #8] \n"
"vld1.8 {d1}, [%[kernel1]] \n"
"ldr r6, [%[kernel1], #8] \n"
"0: \n"
"vld1.8 {d2-d3}, [%[r0]] \n" // r0
"add %[r0], #8 \n"
"vext.8 d4, d2, d3, #1 \n"
"vext.8 d5, d2, d3, #2 \n"
"vdup.s8 d6, d0[0] \n"
"vdup.s8 d7, d0[1] \n"
"vdup.s8 d8, d0[2] \n"
"vdup.s8 d9, d1[0] \n"
"vdup.s8 d10, d1[1] \n"
"vdup.s8 d11, d1[2] \n"
"vmull.s8 q6, d2, d6 \n"
"vmull.s8 q7, d4, d7 \n"
"vmlal.s8 q6, d5, d8 \n"
"vaddl.s16 q12, d12, d14 \n"
"vaddl.s16 q13, d13, d15 \n"
"vmull.s8 q6, d2, d9 \n"
"vmull.s8 q7, d4, d10 \n"
"vmlal.s8 q6, d5, d11 \n"
"vaddl.s16 q14, d12, d14 \n"
"vaddl.s16 q15, d13, d15 \n"
"vld1.8 {d2-d3}, [%[r1]] \n" // r1
"add %[r1], #8 \n"
"vext.8 d4, d2, d3, #1 \n"
"vext.8 d5, d2, d3, #2 \n"
"vmull.s8 q6, d2, d6 \n" // next row
"vmull.s8 q7, d4, d7 \n"
"vmlal.s8 q6, d5, d8 \n"
"vaddl.s16 q8, d12, d14 \n"
"vaddl.s16 q9, d13, d15 \n"
"vmull.s8 q6, d2, d9 \n"
"vmull.s8 q7, d4, d10 \n"
"vmlal.s8 q6, d5, d11 \n"
"vaddl.s16 q10, d12, d14 \n"
"vaddl.s16 q11, d13, d15 \n"
"vdup.s8 d6, d0[3] \n"
"vdup.s8 d7, d0[4] \n"
"vdup.s8 d8, d0[5] \n"
"vdup.s8 d9, d1[3] \n"
"vdup.s8 d10, d1[4] \n"
"vdup.s8 d11, d1[5] \n"
"vmull.s8 q6, d2, d6 \n"
"vmull.s8 q7, d4, d7 \n"
"vmlal.s8 q6, d5, d8 \n"
"vaddw.s16 q12, q12, d12 \n"
"vaddw.s16 q13, q13, d13 \n"
"vaddw.s16 q12, q12, d14 \n"
"vaddw.s16 q13, q13, d15 \n"
"vmull.s8 q6, d2, d9 \n"
"vmull.s8 q7, d4, d10 \n"
"vmlal.s8 q6, d5, d11 \n"
"vaddw.s16 q14, q14, d12 \n"
"vaddw.s16 q15, q15, d13 \n"
"vaddw.s16 q14, q14, d14 \n"
"vaddw.s16 q15, q15, d15 \n"
"vld1.8 {d2-d3}, [%[r2]] \n" // r2
"add %[r2], #8 \n"
"vext.8 d4, d2, d3, #1 \n"
"vext.8 d5, d2, d3, #2 \n"
"vmull.s8 q6, d2, d6 \n" // next row
"vmull.s8 q7, d4, d7 \n"
"vmlal.s8 q6, d5, d8 \n"
"vaddw.s16 q8, q8, d12 \n"
"vaddw.s16 q8, q8, d14 \n"
"vaddw.s16 q9, q9, d13 \n"
"vaddw.s16 q9, q9, d15 \n"
"vmull.s8 q6, d2, d9 \n"
"vmull.s8 q7, d4, d10 \n"
"vmlal.s8 q6, d5, d11 \n"
"vaddw.s16 q10, q10, d12 \n"
"vaddw.s16 q11, q11, d13 \n"
"vaddw.s16 q10, q10, d14 \n"
"vaddw.s16 q11, q11, d15 \n"
"vdup.s8 d6, d0[6] \n"
"vdup.s8 d7, d0[7] \n"
"vdup.s8 d8, r5 \n"
"vdup.s8 d9, d1[6] \n"
"vdup.s8 d10, d1[7] \n"
"vdup.s8 d11, r6 \n"
"vmull.s8 q6, d2, d6 \n"
"vmull.s8 q7, d4, d7 \n"
"vmlal.s8 q6, d5, d8 \n"
"vaddw.s16 q12, q12, d12 \n"
"vaddw.s16 q13, q13, d13 \n"
"vaddw.s16 q12, q12, d14 \n"
"vaddw.s16 q13, q13, d15 \n"
"vld1.32 {d12-d15}, [%[output0]] \n"
"vadd.s32 q6, q6, q12 \n"
"vadd.s32 q7, q7, q13 \n"
"vst1.32 {d12-d15}, [%[output0]]! \n"
"vmull.s8 q6, d2, d9 \n"
"vmull.s8 q7, d4, d10 \n"
"vmlal.s8 q6, d5, d11 \n"
"vaddw.s16 q14, q14, d12 \n"
"vaddw.s16 q15, q15, d13 \n"
"vaddw.s16 q14, q14, d14 \n"
"vaddw.s16 q15, q15, d15 \n"
"vld1.32 {d12-d15}, [%[output1]] \n"
"vadd.s32 q6, q6, q14 \n"
"vadd.s32 q7, q7, q15 \n"
"vst1.32 {d12-d15}, [%[output1]]! \n"
"vld1.8 {d2-d3}, [%[r3]] \n" // r3
"add %[r3], #8 \n"
"vext.8 d4, d2, d3, #1 \n"
"vext.8 d5, d2, d3, #2 \n"
"vmull.s8 q6, d2, d6 \n" // next row
"vmull.s8 q7, d4, d7 \n"
"vmlal.s8 q6, d5, d8 \n"
"vaddw.s16 q8, q8, d12 \n"
"vaddw.s16 q9, q9, d15 \n"
"vaddw.s16 q8, q8, d14 \n"
"vaddw.s16 q9, q9, d13 \n"
"vld1.32 {d12-d15}, [%[output0n]] \n"
"vadd.s32 q6, q6, q8 \n"
"vadd.s32 q7, q7, q9 \n"
"vst1.32 {d12-d15}, [%[output0n]]! \n"
"vmull.s8 q6, d2, d9 \n"
"vmull.s8 q7, d4, d10 \n"
"vmlal.s8 q6, d5, d11 \n"
"vaddw.s16 q10, q10, d12 \n"
"vaddw.s16 q11, q11, d15 \n"
"vaddw.s16 q10, q10, d14 \n"
"vaddw.s16 q11, q11, d13 \n"
"vld1.32 {d12-d15}, [%[output1n]] \n"
"vadd.s32 q6, q6, q10 \n"
"vadd.s32 q7, q7, q11 \n"
"vst1.32 {d12-d15}, [%[output1n]]! \n"
"subs %[ow], #1 \n"
"bne 0b \n"
: [r0] "+r"(r0), [r1] "+r"(r1), [r2] "+r"(r2), [r3] "+r"(r3),
[ow] "+r"(ow), [output0] "+r"(output0), [output1] "+r"(output1),
[output0n] "+r"(output0n), [output1n] "+r"(output1n)
: [kernel0] "r"(kernel0), [kernel1] "r"(kernel1)
: "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
"q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15", "r5",
"r6");
}
if (remain > 0) {
asm volatile(
"vld1.8 {d0}, [%[kernel0]] \n"
"ldr r5, [%[kernel0], #8] \n"
"vld1.8 {d1}, [%[kernel1]] \n"
"ldr r6, [%[kernel1], #8] \n"
"0: \n"
"vld1.8 d4, [%[r0]] \n"
"vld1.8 d5, [%[r1]] \n"
"vld1.8 d6, [%[r2]] \n"
"vld1.8 d7, [%[r3]] \n"
"add %[r0], #1 \n"
"add %[r1], #1 \n"
"add %[r2], #1 \n"
"add %[r3], #1 \n"
"vdup.s8 d2, r5 \n"
"vdup.s8 d3, r6 \n"
"vext.8 d8, d0, d2, #3 \n"
"vext.8 d9, d0, d2, #6 \n"
"vext.8 d10, d1, d3, #3 \n"
"vext.8 d11, d1, d3, #6 \n"
"vmull.s8 q6, d4, d0 \n"
"vmull.s8 q7, d5, d8 \n"
"vmlal.s8 q6, d6, d9 \n"
"vaddl.s16 q12, d12, d14 \n"
"vdup.s32 d2, d24[1] \n"
"vadd.s32 d24, d24, d2 \n"
"vadd.s32 d24, d24, d25 \n"
"vmull.s8 q6, d4, d1 \n"
"vmull.s8 q7, d5, d10 \n"
"vmlal.s8 q6, d6, d11 \n"
"vaddl.s16 q13, d12, d14 \n"
"vdup.s32 d2, d26[1] \n"
"vadd.s32 d26, d26, d2 \n"
"vadd.s32 d26, d26, d27 \n"
"ldr r7, [%[output0]] \n"
"vdup.s32 d14, r7 \n"
"vadd.s32 d14, d14, d24 \n"
"vst1.32 d14[0], [%[output0]]! \n"
"ldr r7, [%[output1]] \n"
"vdup.s32 d14, r7 \n"
"vadd.s32 d14, d14, d26 \n"
"vst1.32 d14[0], [%[output1]]! \n"
"vmull.s8 q6, d5, d0 \n"
"vmull.s8 q7, d6, d8 \n"
"vmlal.s8 q6, d7, d9 \n"
"vaddl.s16 q12, d12, d14 \n"
"vdup.s32 d2, d24[1] \n"
"vadd.s32 d24, d24, d2 \n"
"vadd.s32 d24, d24, d25 \n"
"vmull.s8 q6, d5, d1 \n"
"vmull.s8 q7, d6, d10 \n"
"vmlal.s8 q6, d7, d11 \n"
"vaddl.s16 q13, d12, d14 \n"
"vdup.s32 d2, d26[1] \n"
"vadd.s32 d26, d26, d2 \n"
"vadd.s32 d26, d26, d27 \n"
"ldr r7, [%[output0n]] \n"
"vdup.s32 d14, r7 \n"
"vadd.s32 d14, d14, d24 \n"
"vst1.32 d14[0], [%[output0n]]! \n"
"ldr r7, [%[output1n]] \n"
"vdup.s32 d14, r7 \n"
"vadd.s32 d14, d14, d26 \n"
"vst1.32 d14[0], [%[output1n]]! \n"
"subs %[remain], #1 \n"
"bne 0b \n"
: [r0] "+r"(r0), [r1] "+r"(r1), [r2] "+r"(r2), [r3] "+r"(r3),
[remain] "+r"(remain), [output0] "+r"(output0),
[output1] "+r"(output1), [output0n] "+r"(output0n),
[output1n] "+r"(output1n)
: [kernel0] "r"(kernel0), [kernel1] "r"(kernel1)
: "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
"q8", "q9", "q10", "r5", "r6", "r7");
}
output0 += output_w;
output1 += output_w;
output0n += output_w;
output1n += output_w;
}
// remain output height
for (; oh < output_h; ++oh) {
const int8_t* r0 = in_data + ic * image_size + oh * input_w;
const int8_t* r1 = r0 + input_w;
const int8_t* r2 = r1 + input_w;
const int8_t* r3 = r2 + input_w;
const int8_t* r4 = r3 + input_w;
int ow = output_w >> 3;
int remain = output_w & 0x7;
if (ow > 0) {
asm volatile(
"vld1.8 {d0}, [%[kernel0]] \n"
"ldr r5, [%[kernel0], #8] \n"
"vld1.8 {d1}, [%[kernel1]] \n"
"ldr r6, [%[kernel1], #8] \n"
"0: \n"
"vld1.8 {d2-d3}, [%[r0]] \n" // r0
"add %[r0], #8 \n"
"vext.8 d4, d2, d3, #1 \n"
"vext.8 d5, d2, d3, #2 \n"
"vdup.s8 d6, d0[0] \n"
"vdup.s8 d7, d0[1] \n"
"vdup.s8 d8, d0[2] \n"
"vdup.s8 d9, d1[0] \n"
"vdup.s8 d10, d1[1] \n"
"vdup.s8 d11, d1[2] \n"
"vmull.s8 q6, d2, d6 \n"
"vmull.s8 q7, d4, d7 \n"
"vmlal.s8 q6, d5, d8 \n"
"vaddl.s16 q12, d12, d14 \n"
"vaddl.s16 q13, d13, d15 \n"
"vmull.s8 q6, d2, d9 \n"
"vmull.s8 q7, d4, d10 \n"
"vmlal.s8 q6, d5, d11 \n"
"vaddl.s16 q14, d12, d14 \n"
"vaddl.s16 q15, d13, d15 \n"
"vld1.8 {d2-d3}, [%[r1]] \n" // r1
"add %[r1], #8 \n"
"vext.8 d4, d2, d3, #1 \n"
"vext.8 d5, d2, d3, #2 \n"
"vdup.s8 d6, d0[3] \n"
"vdup.s8 d7, d0[4] \n"
"vdup.s8 d8, d0[5] \n"
"vdup.s8 d9, d1[3] \n"
"vdup.s8 d10, d1[4] \n"
"vdup.s8 d11, d1[5] \n"
"vmull.s8 q6, d2, d6 \n"
"vmull.s8 q7, d4, d7 \n"
"vmlal.s8 q6, d5, d8 \n"
"vaddw.s16 q12, q12, d12 \n"
"vaddw.s16 q12, q12, d14 \n"
"vaddw.s16 q13, q13, d13 \n"
"vaddw.s16 q13, q13, d15 \n"
"vmull.s8 q6, d2, d9 \n"
"vmull.s8 q7, d4, d10 \n"
"vmlal.s8 q6, d5, d11 \n"
"vaddw.s16 q14, q14, d12 \n"
"vaddw.s16 q14, q14, d14 \n"
"vaddw.s16 q15, q15, d13 \n"
"vaddw.s16 q15, q15, d15 \n"
"vld1.8 {d2-d3}, [%[r2]] \n" // r2
"add %[r2], #8 \n"
"vext.8 d4, d2, d3, #1 \n"
"vext.8 d5, d2, d3, #2 \n"
"vdup.s8 d6, d0[6] \n"
"vdup.s8 d7, d0[7] \n"
"vdup.s8 d8, r5 \n"
"vdup.s8 d9, d1[6] \n"
"vdup.s8 d10, d1[7] \n"
"vdup.s8 d11, r6 \n"
"vmull.s8 q6, d2, d6 \n"
"vmull.s8 q7, d4, d7 \n"
"vmlal.s8 q6, d5, d8 \n"
"vaddw.s16 q12, q12, d12 \n"
"vaddw.s16 q12, q12, d14 \n"
"vaddw.s16 q13, q13, d13 \n"
"vaddw.s16 q13, q13, d15 \n"
"vmull.s8 q6, d2, d9 \n"
"vmull.s8 q7, d4, d10 \n"
"vmlal.s8 q6, d5, d11 \n"
"vaddw.s16 q14, q14, d12 \n"
"vaddw.s16 q14, q14, d14 \n"
"vaddw.s16 q15, q15, d13 \n"
"vaddw.s16 q15, q15, d15 \n"
"vld1.32 {d12-d15}, [%[output0]] \n"
"vadd.s32 q6, q6, q12 \n"
"vadd.s32 q7, q7, q13 \n"
"vst1.32 {d12-d15}, [%[output0]]! \n"
"vld1.32 {d12-d15}, [%[output1]] \n"
"vadd.s32 q6, q6, q14 \n"
"vadd.s32 q7, q7, q15 \n"
"vst1.32 {d12-d15}, [%[output1]]! \n"
"subs %[ow], #1 \n"
"bne 0b \n"
: [r0] "+r"(r0), [r1] "+r"(r1), [r2] "+r"(r2), [ow] "+r"(ow),
[output0] "+r"(output0), [output1] "+r"(output1)
: [kernel0] "r"(kernel0), [kernel1] "r"(kernel1)
: "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
"q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15", "r5",
"r6");
}
if (remain > 0) {
asm volatile(
"vld1.8 {d0}, [%[kernel0]] \n"
"ldr r5, [%[kernel0], #8] \n"
"vld1.8 {d1}, [%[kernel1]] \n"
"ldr r6, [%[kernel1], #8] \n"
"0: \n"
"vld1.8 d4, [%[r0]] \n"
"vld1.8 d5, [%[r1]] \n"
"vld1.8 d6, [%[r2]] \n"
"add %[r0], #1 \n"
"add %[r1], #1 \n"
"add %[r2], #1 \n"
"vdup.s8 d2, r5 \n"
"vdup.s8 d3, r6 \n"
"vext.8 d8, d0, d2, #3 \n"
"vext.8 d9, d0, d2, #6 \n"
"vext.8 d10, d1, d3, #3 \n"
"vext.8 d11, d1, d3, #6 \n"
"vmull.s8 q6, d4, d0 \n"
"vmull.s8 q7, d5, d8 \n"
"vmlal.s8 q6, d6, d9 \n"
"vaddl.s16 q12, d12, d14 \n"
"vdup.s32 d2, d24[1] \n"
"vadd.s32 d24, d24, d2 \n"
"vadd.s32 d24, d24, d25 \n"
"vmull.s8 q6, d4, d1 \n"
"vmull.s8 q7, d5, d10 \n"
"vmlal.s8 q6, d6, d11 \n"
"vaddl.s16 q13, d12, d14 \n"
"vdup.s32 d2, d26[1] \n"
"vadd.s32 d26, d26, d2 \n"
"vadd.s32 d26, d26, d27 \n"
"ldr r7, [%[output0]] \n"
"vdup.s32 d14, r7 \n"
"vadd.s32 d14, d14, d24 \n"
"vst1.32 d14[0], [%[output0]]! \n"
"ldr r7, [%[output1]] \n"
"vdup.s32 d14, r7 \n"
"vadd.s32 d14, d14, d26 \n"
"vst1.32 d14[0], [%[output1]]! \n"
"subs %[remain], #1 \n"
"bne 0b \n"
: [r0] "+r"(r0), [r1] "+r"(r1), [r2] "+r"(r2),
[remain] "+r"(remain), [output0] "+r"(output0),
[output1] "+r"(output1)
: [kernel0] "r"(kernel0), [kernel1] "r"(kernel1)
: "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
"q8", "q9", "q10", "r5", "r6", "r7");
}
}
}
}
for (; oc < output_c; ++oc) {
for (int ic = 0; ic < input_c; ++ic) {
const int8_t* kernel0 = w_data + (oc * input_c + ic) * 9;
int32_t* output0 = out_data + oc * out_image_size;
int32_t* output0n = output0 + output_w;
int oh = 0;
for (; oh < output_h - 1; oh += 2) {
const int8_t* r0 = in_data + ic * image_size + oh * input_w;
const int8_t* r1 = r0 + input_w;
const int8_t* r2 = r1 + input_w;
const int8_t* r3 = r2 + input_w;
int ow = output_w >> 3;
int remain = output_w & 0x7;
if (ow > 0) {
asm volatile(
"vld1.8 {d0}, [%[kernel0]] \n"
"ldr r5, [%[kernel0], #8] \n"
"0: \n"
"vld1.8 {d2-d3}, [%[r0]] \n" // r0
"add %[r0], #8 \n"
"vext.8 d4, d2, d3, #1 \n"
"vext.8 d5, d2, d3, #2 \n"
"vdup.s8 d6, d0[0] \n"
"vdup.s8 d7, d0[1] \n"
"vdup.s8 d8, d0[2] \n"
"vmull.s8 q6, d2, d6 \n"
"vmull.s8 q7, d4, d7 \n"
"vmlal.s8 q6, d5, d8 \n"
"vaddl.s16 q12, d12, d14 \n"
"vaddl.s16 q13, d13, d15 \n"
"vld1.8 {d2-d3}, [%[r1]] \n" // r1
"add %[r1], #8 \n"
"vext.8 d4, d2, d3, #1 \n"
"vext.8 d5, d2, d3, #2 \n"
"vmull.s8 q6, d2, d6 \n" // next row
"vmull.s8 q7, d4, d7 \n"
"vmlal.s8 q6, d5, d8 \n"
"vaddl.s16 q8, d12, d14 \n"
"vaddl.s16 q9, d13, d15 \n"
"vdup.s8 d6, d0[3] \n"
"vdup.s8 d7, d0[4] \n"
"vdup.s8 d8, d0[5] \n"
"vmull.s8 q6, d2, d6 \n"
"vmull.s8 q7, d4, d7 \n"
"vmlal.s8 q6, d5, d8 \n"
"vaddw.s16 q12, q12, d12 \n"
"vaddw.s16 q12, q12, d14 \n"
"vaddw.s16 q13, q13, d13 \n"
"vaddw.s16 q13, q13, d15 \n"
"vld1.8 {d2-d3}, [%[r2]] \n" // r2
"add %[r2], #8 \n"
"vext.8 d4, d2, d3, #1 \n"
"vext.8 d5, d2, d3, #2 \n"
"vmull.s8 q6, d2, d6 \n" // next row
"vmull.s8 q7, d4, d7 \n"
"vmlal.s8 q6, d5, d8 \n"
"vaddw.s16 q8, q8, d12 \n"
"vaddw.s16 q8, q8, d14 \n"
"vaddw.s16 q9, q9, d13 \n"
"vaddw.s16 q9, q9, d15 \n"
"vdup.s8 d6, d0[6] \n"
"vdup.s8 d7, d0[7] \n"
"vdup.s8 d8, r5 \n"
"vmull.s8 q6, d2, d6 \n"
"vmull.s8 q7, d4, d7 \n"
"vmlal.s8 q6, d5, d8 \n"
"vaddw.s16 q12, q12, d12 \n"
"vaddw.s16 q12, q12, d14 \n"
"vaddw.s16 q13, q13, d13 \n"
"vaddw.s16 q13, q13, d15 \n"
"vld1.32 {d12-d15}, [%[output0]] \n"
"vadd.s32 q6, q6, q12 \n"
"vadd.s32 q7, q7, q13 \n"
"vst1.32 {d12-d15}, [%[output0]]! \n"
"vld1.8 {d2-d3}, [%[r3]] \n" // r3
"add %[r3], #8 \n"
"vext.8 d4, d2, d3, #1 \n"
"vext.8 d5, d2, d3, #2 \n"
"vmull.s8 q6, d2, d6 \n" // next row
"vmull.s8 q7, d4, d7 \n"
"vmlal.s8 q6, d5, d8 \n"
"vaddw.s16 q8, q8, d12 \n"
"vaddw.s16 q8, q8, d14 \n"
"vaddw.s16 q9, q9, d13 \n"
"vaddw.s16 q9, q9, d15 \n"
"vld1.32 {d12-d15}, [%[output0n]] \n"
"vadd.s32 q6, q6, q8 \n"
"vadd.s32 q7, q7, q9 \n"
"vst1.32 {d12-d15}, [%[output0n]]! \n"
"subs %[ow], #1 \n"
"bne 0b \n"
: [r0] "+r"(r0), [r1] "+r"(r1), [r2] "+r"(r2), [r3] "+r"(r3),
[ow] "+r"(ow), [output0] "+r"(output0),
[output0n] "+r"(output0n)
: [kernel0] "r"(kernel0)
: "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
"q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15", "r5");
}
if (remain > 0) {
asm volatile(
"vld1.8 {d0}, [%[kernel0]] \n"
"ldr r5, [%[kernel0], #8] \n"
"0: \n"
"vld1.8 d4, [%[r0]] \n"
"vld1.8 d5, [%[r1]] \n"
"vld1.8 d6, [%[r2]] \n"
"vld1.8 d7, [%[r3]] \n"
"add %[r0], #1 \n"
"add %[r1], #1 \n"
"add %[r2], #1 \n"
"add %[r3], #1 \n"
"vdup.s8 d2, r5 \n"
"vext.8 d8, d0, d2, #3 \n"
"vext.8 d9, d0, d2, #6 \n"
"vmull.s8 q6, d4, d0 \n"
"vmull.s8 q7, d5, d8 \n"
"vmlal.s8 q6, d6, d9 \n"
"vaddl.s16 q12, d12, d14 \n"
"vdup.s32 d2, d24[1] \n"
"vadd.s32 d24, d24, d2 \n"
"vadd.s32 d24, d24, d25 \n"
"ldr r7, [%[output0]] \n"
"vdup.s32 d14, r7 \n"
"vadd.s32 d14, d14, d24 \n"
"vst1.32 d14[0], [%[output0]]! \n"
"vmull.s8 q6, d5, d0 \n"
"vmull.s8 q7, d6, d8 \n"
"vmlal.s8 q6, d7, d9 \n"
"vaddl.s16 q12, d12, d14 \n"
"vdup.s32 d2, d24[1] \n"
"vadd.s32 d24, d24, d2 \n"
"vadd.s32 d24, d24, d25 \n"
"ldr r7, [%[output0n]] \n"
"vdup.s32 d14, r7 \n"
"vadd.s32 d14, d14, d24 \n"
"vst1.32 d14[0], [%[output0n]]! \n"
"subs %[remain], #1 \n"
"bne 0b \n"
: [r0] "+r"(r0), [r1] "+r"(r1), [r2] "+r"(r2), [r3] "+r"(r3),
[remain] "+r"(remain), [output0] "+r"(output0),
[output0n] "+r"(output0n)
: [kernel0] "r"(kernel0)
: "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
"q8", "q9", "q10", "r5", "r7");
}
output0 += output_w;
output0n += output_w;
}
// remain output height
for (; oh < output_h; ++oh) {
const int8_t* r0 = in_data + ic * image_size + oh * input_w;
const int8_t* r1 = r0 + input_w;
const int8_t* r2 = r1 + input_w;
int ow = output_w >> 3;
int remain = output_w & 0x7;
if (ow > 0) {
asm volatile(
"vld1.8 {d0}, [%[kernel0]] \n"
"ldr r5, [%[kernel0], #8] \n"
"0: \n"
"vld1.8 {d2-d3}, [%[r0]] \n" // r0
"add %[r0], #8 \n"
"vext.8 d4, d2, d3, #1 \n"
"vext.8 d5, d2, d3, #2 \n"
"vdup.s8 d6, d0[0] \n"
"vdup.s8 d7, d0[1] \n"
"vdup.s8 d8, d0[2] \n"
"vmull.s8 q6, d2, d6 \n"
"vmull.s8 q7, d4, d7 \n"
"vmlal.s8 q6, d5, d8 \n"
"vaddl.s16 q12, d12, d14 \n"
"vaddl.s16 q13, d13, d15 \n"
"vld1.8 {d2-d3}, [%[r1]] \n" // r1
"add %[r1], #8 \n"
"vext.8 d4, d2, d3, #1 \n"
"vext.8 d5, d2, d3, #2 \n"
"vdup.s8 d6, d0[3] \n"
"vdup.s8 d7, d0[4] \n"
"vdup.s8 d8, d0[5] \n"
"vmull.s8 q6, d2, d6 \n"
"vmull.s8 q7, d4, d7 \n"
"vmlal.s8 q6, d5, d8 \n"
"vaddw.s16 q12, q12, d12 \n"
"vaddw.s16 q12, q12, d14 \n"
"vaddw.s16 q13, q13, d13 \n"
"vaddw.s16 q13, q13, d15 \n"
"vld1.8 {d2-d3}, [%[r2]] \n" // r2
"add %[r2], #8 \n"
"vext.8 d4, d2, d3, #1 \n"
"vext.8 d5, d2, d3, #2 \n"
"vdup.s8 d6, d0[6] \n"
"vdup.s8 d7, d0[7] \n"
"vdup.s8 d8, r5 \n"
"vmull.s8 q6, d2, d6 \n"
"vmull.s8 q7, d4, d7 \n"
"vmlal.s8 q6, d5, d8 \n"
"vaddw.s16 q12, q12, d12 \n"
"vaddw.s16 q12, q12, d14 \n"
"vaddw.s16 q13, q13, d13 \n"
"vaddw.s16 q13, q13, d15 \n"
"vld1.32 {d12-d15}, [%[output0]] \n"
"vadd.s32 q6, q6, q12 \n"
"vadd.s32 q7, q7, q13 \n"
"vst1.32 {d12-d15}, [%[output0]]! \n"
"subs %[ow], #1 \n"
"bne 0b \n"
: [r0] "+r"(r0), [r1] "+r"(r1), [r2] "+r"(r2), [ow] "+r"(ow),
[output0] "+r"(output0)
: [kernel0] "r"(kernel0)
: "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
"q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15", "r5");
}
if (remain > 0) {
asm volatile(
"vld1.8 {d0}, [%[kernel0]] \n"
"ldr r5, [%[kernel0], #8] \n"
"0: \n"
"vld1.8 d4, [%[r0]] \n"
"vld1.8 d5, [%[r1]] \n"
"vld1.8 d6, [%[r2]] \n"
"add %[r0], #1 \n"
"add %[r1], #1 \n"
"add %[r2], #1 \n"
"vdup.s8 d2, r5 \n"
"vext.8 d8, d0, d2, #3 \n"
"vext.8 d9, d0, d2, #6 \n"
"vmull.s8 q6, d4, d0 \n"
"vmull.s8 q7, d5, d8 \n"
"vmlal.s8 q6, d6, d9 \n"
"vaddl.s16 q12, d12, d14 \n"
"vdup.s32 d2, d24[1] \n"
"vadd.s32 d24, d24, d2 \n"
"vadd.s32 d24, d24, d25 \n"
"ldr r7, [%[output0]] \n"
"vdup.s32 d14, r7 \n"
"vadd.s32 d14, d14, d24 \n"
"vst1.32 d14[0], [%[output0]]! \n"
"subs %[remain], #1 \n"
"bne 0b \n"
: [r0] "+r"(r0), [r1] "+r"(r1), [r2] "+r"(r2),
[remain] "+r"(remain), [output0] "+r"(output0)
: [kernel0] "r"(kernel0)
: "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
"q8", "q9", "q10", "r5", "r7");
}
}
}
}
#endif
#else
// TODO(hjchen2)
#endif
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#include "operators/math/conv_arm_int8.h"
namespace paddle_mobile {
namespace operators {
void conv5x5s1_int8(const framework::Tensor& input,
const framework::Tensor& weight,
framework::Tensor* output) {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
const int8_t* in_data = input.data<int8_t>();
const int8_t* w_data = weight.data<int8_t>();
int32_t* out_data = output->mutable_data<int32_t>();
// make sure that batch size is 1
int input_c = input.dims()[1];
int input_h = input.dims()[2];
int input_w = input.dims()[3];
int output_c = output->dims()[1];
int output_h = output->dims()[2];
int output_w = output->dims()[3];
int image_size = input_h * input_w;
int out_image_size = output_h * output_w;
memset(out_data, 0, output_c * out_image_size * sizeof(int32_t));
#if __aarch64__
// TODO(hjchen2)
#else
#pragma omp parallel for
for (int oc = 0; oc < output_c; ++oc) {
for (int ic = 0; ic < input_c; ++ic) {
const int8_t* kernel = w_data + (oc * input_c + ic) * 25;
int32_t* output0 = out_data + oc * out_image_size;
int32_t* output1 = output0 + output_w;
int oh = 0;
for (; oh < output_h - 1; oh += 2) {
const int8_t* r0 = in_data + ic * image_size + oh * input_w;
const int8_t* r1 = r0 + input_w;
const int8_t* r2 = r1 + input_w;
const int8_t* r3 = r2 + input_w;
const int8_t* r4 = r3 + input_w;
const int8_t* r5 = r4 + input_w;
int ow = output_w >> 3;
int remain = output_w & 0x7;
if (ow > 0) {
asm volatile("vld1.8 {d0-d3}, [%[kernel]] \n"
: [kernel] "+r"(kernel)
:
: "cc", "memory", "q0", "q1");
asm volatile(
"0: \n"
"vld1.8 {d4-d5}, [%[r0]] \n" // r0
"add %[r0], #8 \n"
"vext.8 d6, d4, d5, #1 \n"
"vext.8 d7, d4, d5, #2 \n"
"vext.8 d8, d4, d5, #3 \n"
"vext.8 d9, d4, d5, #4 \n"
"vdup.s8 d10, d0[0] \n"
"vdup.s8 d11, d0[1] \n"
"vdup.s8 d12, d0[2] \n"
"vdup.s8 d13, d0[3] \n"
"vdup.s8 d14, d0[4] \n"
"vmull.s8 q8, d4, d10 \n"
"vmull.s8 q9, d6, d11 \n"
"vmlal.s8 q8, d7, d12 \n"
"vmlal.s8 q9, d8, d13 \n"
"vaddl.s16 q14, d16, d18 \n"
"vaddl.s16 q15, d17, d19 \n"
"vmull.s8 q8, d9, d14 \n"
"vaddw.s16 q14, q14, d16 \n"
"vaddw.s16 q15, q15, d17 \n"
"vld1.8 {d4-d5}, [%[r1]] \n" // r1
"add %[r1], #8 \n"
"vext.8 d6, d4, d5, #1 \n"
"vext.8 d7, d4, d5, #2 \n"
"vext.8 d8, d4, d5, #3 \n"
"vext.8 d9, d4, d5, #4 \n"
"vmull.s8 q8, d4, d10 \n" // next row
"vmull.s8 q9, d6, d11 \n"
"vmlal.s8 q8, d7, d12 \n"
"vmlal.s8 q9, d8, d13 \n"
"vaddl.s16 q10, d16, d18 \n"
"vaddl.s16 q11, d17, d19 \n"
"vmull.s8 q8, d9, d14 \n"
"vaddw.s16 q10, q10, d16 \n"
"vaddw.s16 q11, q11, d17 \n"
"vdup.s8 d10, d0[5] \n"
"vdup.s8 d11, d0[6] \n"
"vdup.s8 d12, d0[7] \n"
"vdup.s8 d13, d1[0] \n"
"vdup.s8 d14, d1[1] \n"
"vmull.s8 q8, d4, d10 \n"
"vmull.s8 q9, d6, d11 \n"
"vmlal.s8 q8, d7, d12 \n"
"vmlal.s8 q9, d8, d13 \n"
"vaddl.s16 q12, d16, d18 \n"
"vaddl.s16 q13, d17, d19 \n"
"vmull.s8 q8, d9, d14 \n"
"vaddw.s16 q12, q12, d16 \n"
"vaddw.s16 q13, q13, d17 \n"
"vadd.s32 q14, q14, q12 \n"
"vadd.s32 q15, q15, q13 \n"
"vld1.8 {d4-d5}, [%[r2]] \n" // r2
"add %[r2], #8 \n"
"vext.8 d6, d4, d5, #1 \n"
"vext.8 d7, d4, d5, #2 \n"
"vext.8 d8, d4, d5, #3 \n"
"vext.8 d9, d4, d5, #4 \n"
"vmull.s8 q8, d4, d10 \n" // next row
"vmull.s8 q9, d6, d11 \n"
"vmlal.s8 q8, d7, d12 \n"
"vmlal.s8 q9, d8, d13 \n"
"vaddl.s16 q12, d16, d18 \n"
"vaddl.s16 q13, d17, d19 \n"
"vmull.s8 q8, d9, d14 \n"
"vaddw.s16 q12, q12, d16 \n"
"vaddw.s16 q13, q13, d17 \n"
"vadd.s32 q10, q10, q12 \n"
"vadd.s32 q11, q11, q13 \n"
"vdup.s8 d10, d1[2] \n"
"vdup.s8 d11, d1[3] \n"
"vdup.s8 d12, d1[4] \n"
"vdup.s8 d13, d1[5] \n"
"vdup.s8 d14, d1[6] \n"
"vmull.s8 q8, d4, d10 \n"
"vmull.s8 q9, d6, d11 \n"
"vmlal.s8 q8, d7, d12 \n"
"vmlal.s8 q9, d8, d13 \n"
"vaddl.s16 q12, d16, d18 \n"
"vaddl.s16 q13, d17, d19 \n"
"vmull.s8 q8, d9, d14 \n"
"vaddw.s16 q12, q12, d16 \n"
"vaddw.s16 q13, q13, d17 \n"
"vadd.s32 q14, q14, q12 \n"
"vadd.s32 q15, q15, q13 \n"
"vld1.8 {d4-d5}, [%[r3]] \n" // r3
"add %[r3], #8 \n"
"vext.8 d6, d4, d5, #1 \n"
"vext.8 d7, d4, d5, #2 \n"
"vext.8 d8, d4, d5, #3 \n"
"vext.8 d9, d4, d5, #4 \n"
"vmull.s8 q8, d4, d10 \n" // next row
"vmull.s8 q9, d6, d11 \n"
"vmlal.s8 q8, d7, d12 \n"
"vmlal.s8 q9, d8, d13 \n"
"vaddl.s16 q12, d16, d18 \n"
"vaddl.s16 q13, d17, d19 \n"
"vmull.s8 q8, d9, d14 \n"
"vaddw.s16 q12, q12, d16 \n"
"vaddw.s16 q13, q13, d17 \n"
"vadd.s32 q10, q10, q12 \n"
"vadd.s32 q11, q11, q13 \n"
"vdup.s8 d10, d1[7] \n"
"vdup.s8 d11, d2[0] \n"
"vdup.s8 d12, d2[1] \n"
"vdup.s8 d13, d2[2] \n"
"vdup.s8 d14, d2[3] \n"
"vmull.s8 q8, d4, d10 \n"
"vmull.s8 q9, d6, d11 \n"
"vmlal.s8 q8, d7, d12 \n"
"vmlal.s8 q9, d8, d13 \n"
"vaddl.s16 q12, d16, d18 \n"
"vaddl.s16 q13, d17, d19 \n"
"vmull.s8 q8, d9, d14 \n"
"vaddw.s16 q12, q12, d16 \n"
"vaddw.s16 q13, q13, d17 \n"
"vadd.s32 q14, q14, q12 \n"
"vadd.s32 q15, q15, q13 \n"
"vld1.8 {d4-d5}, [%[r4]] \n" // r4
"add %[r4], #8 \n"
"vext.8 d6, d4, d5, #1 \n"
"vext.8 d7, d4, d5, #2 \n"
"vext.8 d8, d4, d5, #3 \n"
"vext.8 d9, d4, d5, #4 \n"
"vmull.s8 q8, d4, d10 \n" // next row
"vmull.s8 q9, d6, d11 \n"
"vmlal.s8 q8, d7, d12 \n"
"vmlal.s8 q9, d8, d13 \n"
"vaddl.s16 q12, d16, d18 \n"
"vaddl.s16 q13, d17, d19 \n"
"vmull.s8 q8, d9, d14 \n"
"vaddw.s16 q12, q12, d16 \n"
"vaddw.s16 q13, q13, d17 \n"
"vadd.s32 q10, q10, q12 \n"
"vadd.s32 q11, q11, q13 \n"
"vdup.s8 d10, d2[4] \n"
"vdup.s8 d11, d2[5] \n"
"vdup.s8 d12, d2[6] \n"
"vdup.s8 d13, d2[7] \n"
"vdup.s8 d14, d3[0] \n"
"vmull.s8 q8, d4, d10 \n"
"vmull.s8 q9, d6, d11 \n"
"vmlal.s8 q8, d7, d12 \n"
"vmlal.s8 q9, d8, d13 \n"
"vaddl.s16 q12, d16, d18 \n"
"vaddl.s16 q13, d17, d19 \n"
"vmull.s8 q8, d9, d14 \n"
"vaddw.s16 q12, q12, d16 \n"
"vaddw.s16 q13, q13, d17 \n"
"vadd.s32 q14, q14, q12 \n"
"vadd.s32 q15, q15, q13 \n"
"vld1.32 {d24-d27}, [%[output0]] \n"
"vadd.s32 q12, q12, q14 \n"
"vadd.s32 q13, q13, q15 \n"
"vst1.32 {d24-d27}, [%[output0]]! \n"
"vld1.8 {d4-d5}, [%[r5]] \n" // row 5
"add %[r5], #8 \n"
"vext.8 d6, d4, d5, #1 \n"
"vext.8 d7, d4, d5, #2 \n"
"vext.8 d8, d4, d5, #3 \n"
"vext.8 d9, d4, d5, #4 \n"
"vmull.s8 q8, d4, d10 \n"
"vmull.s8 q9, d6, d11 \n"
"vmlal.s8 q8, d7, d12 \n"
"vmlal.s8 q9, d8, d13 \n"
"vaddl.s16 q12, d16, d18 \n"
"vaddl.s16 q13, d17, d19 \n"
"vmull.s8 q8, d9, d14 \n"
"vaddw.s16 q12, q12, d16 \n"
"vaddw.s16 q13, q13, d17 \n"
"vadd.s32 q10, q10, q12 \n"
"vadd.s32 q11, q11, q13 \n"
"vld1.32 {d24-d27}, [%[output1]] \n"
"vadd.s32 q12, q12, q10 \n"
"vadd.s32 q13, q13, q11 \n"
"vst1.32 {d24-d27}, [%[output1]]! \n"
"subs %[ow], #1 \n"
"bne 0b \n"
: [r0] "+r"(r0), [r1] "+r"(r1), [r2] "+r"(r2), [r3] "+r"(r3),
[r4] "+r"(r4), [r5] "+r"(r5), [ow] "+r"(ow),
[output0] "+r"(output0), [output1] "+r"(output1)
:
: "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
"q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15");
}
if (remain > 0) {
asm volatile("vld1.8 {d0-d3}, [%[kernel]] \n"
: [kernel] "+r"(kernel)
:
: "cc", "memory", "q0", "q1");
asm volatile(
"0: \n"
"vld1.8 d4, [%[r0]] \n"
"vld1.8 d5, [%[r1]] \n"
"vld1.8 d6, [%[r2]] \n"
"vld1.8 d7, [%[r3]] \n"
"vld1.8 d8, [%[r4]] \n"
"vld1.8 d9, [%[r5]] \n"
"add %[r0], #1 \n"
"add %[r1], #1 \n"
"add %[r2], #1 \n"
"add %[r3], #1 \n"
"add %[r4], #1 \n"
"add %[r5], #1 \n"
"vext.8 d10, d0, d1, #5 \n"
"vext.8 d11, d1, d2, #2 \n"
"vext.8 d12, d1, d2, #7 \n"
"vext.8 d13, d2, d3, #4 \n"
"vmull.s8 q7, d4, d0 \n"
"vmull.s8 q8, d5, d10 \n"
"vmull.s8 q9, d6, d11 \n"
"vmlal.s8 q8, d7, d12 \n"
"vmlal.s8 q9, d8, d13 \n"
"vaddl.s16 q10, d14, d16 \n"
"vaddw.s16 q10, q10, d18 \n"
"vadd.s32 d4, d20, d21 \n"
"vaddl.s16 q10, d15, d17 \n"
"vaddw.s16 q10, q10, d19 \n"
"vdup.s32 d14, d4[0] \n"
"vdup.s32 d15, d4[1] \n"
"vadd.s32 d15, d15, d14 \n"
"vdup.s32 d14, d20[0] \n"
"vadd.s32 d15, d15, d14 \n"
"ldr r6, [%[output0]] \n"
"vdup.s32 d14, r6 \n"
"vadd.s32 d15, d15, d14 \n"
"vst1.32 d15[0], [%[output0]]! \n"
"vmull.s8 q7, d5, d0 \n"
"vmull.s8 q8, d6, d10 \n"
"vmull.s8 q9, d7, d11 \n"
"vmlal.s8 q8, d8, d12 \n"
"vmlal.s8 q9, d9, d13 \n"
"vaddl.s16 q10, d14, d16 \n"
"vaddw.s16 q10, q10, d18 \n"
"vadd.s32 d4, d20, d21 \n"
"vaddl.s16 q10, d15, d17 \n"
"vaddw.s16 q10, q10, d19 \n"
"vdup.s32 d14, d4[0] \n"
"vdup.s32 d15, d4[1] \n"
"vadd.s32 d15, d15, d14 \n"
"vdup.s32 d14, d20[0] \n"
"vadd.s32 d15, d15, d14 \n"
"ldr r6, [%[output1]] \n"
"vdup.s32 d14, r6 \n"
"vadd.s32 d15, d15, d14 \n"
"vst1.32 d15[0], [%[output1]]! \n"
"subs %[remain], #1 \n"
"bne 0b \n"
: [r0] "+r"(r0), [r1] "+r"(r1), [r2] "+r"(r2), [r3] "+r"(r3),
[r4] "+r"(r4), [r5] "+r"(r5), [remain] "+r"(remain),
[output0] "+r"(output0), [output1] "+r"(output1)
:
: "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
"q8", "q9", "q10", "r6");
}
output0 += output_w;
output1 += output_w;
}
// remain output height
for (; oh < output_h; ++oh) {
const int8_t* r0 = in_data + ic * image_size + oh * input_w;
const int8_t* r1 = r0 + input_w;
const int8_t* r2 = r1 + input_w;
const int8_t* r3 = r2 + input_w;
const int8_t* r4 = r3 + input_w;
int ow = output_w >> 3;
int remain = output_w & 0x7;
if (ow > 0) {
asm volatile("vld1.8 {d0-d3}, [%[kernel]] \n"
: [kernel] "+r"(kernel)
:
: "cc", "memory", "q0", "q1");
asm volatile(
"0: \n"
"vld1.8 {d4-d5}, [%[r0]] \n" // r0
"add %[r0], #8 \n"
"vext.8 d6, d4, d5, #1 \n"
"vext.8 d7, d4, d5, #2 \n"
"vext.8 d8, d4, d5, #3 \n"
"vext.8 d9, d4, d5, #4 \n"
"vdup.s8 d10, d0[0] \n"
"vdup.s8 d11, d0[1] \n"
"vdup.s8 d12, d0[2] \n"
"vdup.s8 d13, d0[3] \n"
"vdup.s8 d14, d0[4] \n"
"vmull.s8 q8, d4, d10 \n"
"vmull.s8 q9, d6, d11 \n"
"vmlal.s8 q8, d7, d12 \n"
"vmlal.s8 q9, d8, d13 \n"
"vaddl.s16 q14, d16, d18 \n"
"vaddl.s16 q15, d17, d19 \n"
"vmull.s8 q8, d9, d14 \n"
"vaddw.s16 q14, q14, d16 \n"
"vaddw.s16 q15, q15, d17 \n"
"vld1.8 {d4-d5}, [%[r1]] \n" // r1
"add %[r1], #8 \n"
"vext.8 d6, d4, d5, #1 \n"
"vext.8 d7, d4, d5, #2 \n"
"vext.8 d8, d4, d5, #3 \n"
"vext.8 d9, d4, d5, #4 \n"
"vdup.s8 d10, d0[5] \n"
"vdup.s8 d11, d0[6] \n"
"vdup.s8 d12, d0[7] \n"
"vdup.s8 d13, d1[0] \n"
"vdup.s8 d14, d1[1] \n"
"vmull.s8 q8, d4, d10 \n"
"vmull.s8 q9, d6, d11 \n"
"vmlal.s8 q8, d7, d12 \n"
"vmlal.s8 q9, d8, d13 \n"
"vaddl.s16 q12, d16, d18 \n"
"vaddl.s16 q13, d17, d19 \n"
"vmull.s8 q8, d9, d14 \n"
"vaddw.s16 q12, q12, d16 \n"
"vaddw.s16 q13, q13, d17 \n"
"vadd.s32 q14, q14, q12 \n"
"vadd.s32 q15, q15, q13 \n"
"vld1.8 {d4-d5}, [%[r2]] \n" // r2
"add %[r2], #8 \n"
"vext.8 d6, d4, d5, #1 \n"
"vext.8 d7, d4, d5, #2 \n"
"vext.8 d8, d4, d5, #3 \n"
"vext.8 d9, d4, d5, #4 \n"
"vdup.s8 d10, d1[2] \n"
"vdup.s8 d11, d1[3] \n"
"vdup.s8 d12, d1[4] \n"
"vdup.s8 d13, d1[5] \n"
"vdup.s8 d14, d1[6] \n"
"vmull.s8 q8, d4, d10 \n"
"vmull.s8 q9, d6, d11 \n"
"vmlal.s8 q8, d7, d12 \n"
"vmlal.s8 q9, d8, d13 \n"
"vaddl.s16 q12, d16, d18 \n"
"vaddl.s16 q13, d17, d19 \n"
"vmull.s8 q8, d9, d14 \n"
"vaddw.s16 q12, q12, d16 \n"
"vaddw.s16 q13, q13, d17 \n"
"vadd.s32 q14, q14, q12 \n"
"vadd.s32 q15, q15, q13 \n"
"vld1.8 {d4-d5}, [%[r3]] \n" // r3
"add %[r3], #8 \n"
"vext.8 d6, d4, d5, #1 \n"
"vext.8 d7, d4, d5, #2 \n"
"vext.8 d8, d4, d5, #3 \n"
"vext.8 d9, d4, d5, #4 \n"
"vdup.s8 d10, d1[7] \n"
"vdup.s8 d11, d2[0] \n"
"vdup.s8 d12, d2[1] \n"
"vdup.s8 d13, d2[2] \n"
"vdup.s8 d14, d2[3] \n"
"vmull.s8 q8, d4, d10 \n"
"vmull.s8 q9, d6, d11 \n"
"vmlal.s8 q8, d7, d12 \n"
"vmlal.s8 q9, d8, d13 \n"
"vaddl.s16 q12, d16, d18 \n"
"vaddl.s16 q13, d17, d19 \n"
"vmull.s8 q8, d9, d14 \n"
"vaddw.s16 q12, q12, d16 \n"
"vaddw.s16 q13, q13, d17 \n"
"vadd.s32 q14, q14, q12 \n"
"vadd.s32 q15, q15, q13 \n"
"vld1.8 {d4-d5}, [%[r4]] \n" // r4
"add %[r4], #8 \n"
"vext.8 d6, d4, d5, #1 \n"
"vext.8 d7, d4, d5, #2 \n"
"vext.8 d8, d4, d5, #3 \n"
"vext.8 d9, d4, d5, #4 \n"
"vdup.s8 d10, d2[4] \n"
"vdup.s8 d11, d2[5] \n"
"vdup.s8 d12, d2[6] \n"
"vdup.s8 d13, d2[7] \n"
"vdup.s8 d14, d3[0] \n"
"vmull.s8 q8, d4, d10 \n"
"vmull.s8 q9, d6, d11 \n"
"vmlal.s8 q8, d7, d12 \n"
"vmlal.s8 q9, d8, d13 \n"
"vaddl.s16 q12, d16, d18 \n"
"vaddl.s16 q13, d17, d19 \n"
"vmull.s8 q8, d9, d14 \n"
"vaddw.s16 q12, q12, d16 \n"
"vaddw.s16 q13, q13, d17 \n"
"vadd.s32 q14, q14, q12 \n"
"vadd.s32 q15, q15, q13 \n"
"vld1.32 {d24-d27}, [%[output0]] \n"
"vadd.s32 q12, q12, q14 \n"
"vadd.s32 q13, q13, q15 \n"
"vst1.32 {d24-d27}, [%[output0]]! \n"
"subs %[ow], #1 \n"
"bne 0b \n"
: [r0] "+r"(r0), [r1] "+r"(r1), [r2] "+r"(r2), [r3] "+r"(r3),
[r4] "+r"(r4), [ow] "+r"(ow), [output0] "+r"(output0)
:
: "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
"q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15");
}
if (remain > 0) {
asm volatile("vld1.8 {d0-d3}, [%[kernel]] \n"
: [kernel] "+r"(kernel)
:
: "cc", "memory", "q0", "q1");
asm volatile(
"0: \n"
"vld1.8 d4, [%[r0]] \n"
"vld1.8 d5, [%[r1]] \n"
"vld1.8 d6, [%[r2]] \n"
"vld1.8 d7, [%[r3]] \n"
"vld1.8 d8, [%[r4]] \n"
"add %[r0], #1 \n"
"add %[r1], #1 \n"
"add %[r2], #1 \n"
"add %[r3], #1 \n"
"add %[r4], #1 \n"
"vext.8 d10, d0, d1, #5 \n"
"vext.8 d11, d1, d2, #2 \n"
"vext.8 d12, d1, d2, #7 \n"
"vext.8 d13, d2, d3, #4 \n"
"vmull.s8 q7, d4, d0 \n"
"vmull.s8 q8, d5, d10 \n"
"vmull.s8 q9, d6, d11 \n"
"vmlal.s8 q8, d7, d12 \n"
"vmlal.s8 q9, d8, d13 \n"
"vaddl.s16 q10, d14, d16 \n"
"vaddw.s16 q10, q10, d18 \n"
"vadd.s32 d4, d20, d21 \n"
"vaddl.s16 q10, d15, d17 \n"
"vaddw.s16 q10, q10, d19 \n"
"vdup.s32 d14, d4[0] \n"
"vdup.s32 d15, d4[1] \n"
"vadd.s32 d15, d15, d14 \n"
"vdup.s32 d14, d20[0] \n"
"vadd.s32 d15, d15, d14 \n"
"ldr r6, [%[output0]] \n"
"vdup.s32 d14, r6 \n"
"vadd.s32 d15, d15, d14 \n"
"vst1.32 d15[0], [%[output0]]! \n"
"subs %[remain], #1 \n"
"bne 0b \n"
: [r0] "+r"(r0), [r1] "+r"(r1), [r2] "+r"(r2), [r3] "+r"(r3),
[r4] "+r"(r4), [remain] "+r"(remain), [output0] "+r"(output0)
:
: "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
"q8", "q9", "q10", "r6");
}
}
}
}
#endif
#else
// TODO(hjchen2)
#endif
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#pragma once
#include "framework/tensor.h"
namespace paddle_mobile {
namespace operators {
void conv3x3s1_int8(const framework::Tensor& input,
const framework::Tensor& weight, framework::Tensor* output);
void conv3x3s1_int8_4c(const framework::Tensor& input,
const framework::Tensor& weight,
framework::Tensor* output);
void conv5x5s1_int8(const framework::Tensor& input,
const framework::Tensor& weight, framework::Tensor* output);
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -3379,7 +3379,7 @@ void Gemm::SgemmWithBn_omp(int m, int n, int k, float alpha, const float *A,
// 对 B 分块
NC = L1 / (KC * sizeof(float));
if (NC == 0) {
NC == NR;
NC = NR;
} else {
int nblock_num = (n + NC - 1) / NC;
NC = (n + nblock_num - 1) / nblock_num;
......@@ -3662,7 +3662,7 @@ void Gemm::AddDot6x8(int k, const float *a, const float *b, float *c, int ldc) {
b_ptr = b;
int kc1 = k / 8;
int kc2 = k % 8;
int step = 4 * ldc;
int step = sizeof(float) * ldc;
asm volatile(
"pld [%[a_ptr]] \n\t"
"pld [%[a_ptr], #64] \n\t"
......@@ -3866,11 +3866,10 @@ void Gemm::AddDot6x8(int k, const float *a, const float *b, float *c, int ldc) {
:
: [a_ptr] "r"(a_ptr), [b_ptr] "r"(b_ptr), [c] "r"(c), [kc1] "r"(kc1),
[kc2] "r"(kc2), [step] "r"(step)
: "memory", "r5", "r6", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
"q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15");
: "cc", "memory", "r5", "r6", "q0", "q1", "q2", "q3", "q4", "q5", "q6",
"q7", "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15");
#endif // __aarch64__
#else
#endif // __ARM_NEON
}
......
......@@ -22,9 +22,11 @@ limitations under the License. */
#define C(i, j) C[(i)*ldc + (j)]
#if __aarch64__
#define MR_INT8 4
#define MR 6
#define NR 16
#else
#define MR_INT8 4
#define MR 6
#define NR 8
#endif
......@@ -96,6 +98,7 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
void InnerKernelWithPRelu(int mc, int nc, const float *a, const float *b,
float *c, float *C, int ldc, float *p,
std::string mode, float *bias, float *bias1);
/*
// 向量矩阵乘法 (M = 1)
void VectorKernel(int m, int n, int k, float alpha, const float *A, int lda,
......@@ -139,6 +142,7 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
float *new_scale, float *new_bias);
void WriteWithBnAddRelu(int mc, int nc, float *c, float *C, int ldc,
float *new_scale, float *new_bias, float *bias1);
/*
// 向量矩阵乘法结果回写
// C = A * B
......@@ -185,15 +189,67 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
const float *B, int ldb, float *C, int ldc, float *p,
std::string mode, float *bias, float *bias1);
// 8 bits function cluster begins
// 8 bits int small block inner product
void AddDot4x8(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
int32_t ldc);
void AddDot6x8(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
int32_t ldc);
// 8 bits int inner product
void InnerKernelWithBias(int32_t mc, int32_t nc, int8_t alpha,
const int8_t *a, const int8_t *b, int8_t beta,
int32_t *c, int32_t *C, int32_t ldc, bool relu,
int8_t *bias);
// 8 bits int pack function
void PackMatrixA_4r(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
int32_t lda, int8_t *buffer);
void PackMatrixA_6r(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
int32_t lda, int8_t *buffer);
void PackMatrixB_8c(int32_t k, int32_t n, int32_t n_tail, const int8_t *B,
int32_t ldb, int8_t *buffer);
// 8 bits int matrix product
void Sgemm(int32_t m, int32_t n, int32_t k, int8_t alpha, const int8_t *A,
int32_t lda, const int8_t *B, int32_t ldb, int8_t beta, int32_t *C,
int32_t ldc, bool relu, int8_t *bias);
// 8 bits int write back
// C = alpha * A * B + beta * C
void WriteWithAlphaBeta(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
int32_t ldc);
// C = A * B
void WriteBasic(int32_t mc, int32_t nc, int32_t *c, int32_t *C, int32_t ldc);
// C = A * B + C
void WriteWithAdd(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
int32_t ldc);
// C = A * B + bias
void WriteWithAddV1(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
int32_t ldc, int8_t *bias);
// C = A * B + C, relu(C)
void WriteWithAddRelu(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
int32_t ldc);
// C = A * B + bias, relu(C)
void WriteWithAddReluV1(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
int32_t ldc, int8_t *bias);
private:
int MC = 0;
int KC = 0;
int NC = 0;
// 32位 float
float *packedA;
float *packedB;
float *packedC;
float *zero;
// 8 bits int
int8_t *packedA_int8;
int8_t *packedB_int8;
int32_t *packedC_int8;
int8_t *zero_int8;
};
} // namespace math
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string.h>
#include "common/log.h"
#include "memory/t_malloc.h"
#include "operators/math/gemm.h"
#if __ARM_NEON
#include <arm_neon.h>
#endif
#ifdef _OPENMP
#include <omp.h>
#endif
namespace paddle_mobile {
namespace operators {
namespace math {
void Gemm::AddDot4x8(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
int32_t ldc) {
#if __ARM_NEON
#if __aarch64__
// TODO
#else
const int8_t *a_ptr, *b_ptr;
a_ptr = a;
b_ptr = b;
int32_t kc1 = k >> 3;
int32_t kc2 = k & 7;
int32_t kc3 = kc2 >> 2;
int32_t kc4 = kc2 & 3;
int32_t kc5 = kc4 >> 1;
int32_t kc6 = kc4 & 1;
int32_t step = sizeof(int32_t) * ldc;
asm volatile(
// q8-q15: save 32 results
"pld [%[a_ptr]] \n\t"
"pld [%[b_ptr]] \n\t"
"pld [%[b_ptr], #64] \n\t"
"vmov.s32 q8, #0 \n\t"
"vmov.s32 q9, q8 \n\t"
"vmov.s32 q10, q8 \n\t"
"vmov.s32 q11, q8 \n\t"
"vmov.s32 q12, q8 \n\t"
"vmov.s32 q13, q8 \n\t"
"vmov.s32 q14, q8 \n\t"
"vmov.s32 q15, q8 \n\t"
"subs %[kc1], %[kc1], #1 \n\t"
"blt 1f \n\t"
"0: \n\t"
"pld [%[a_ptr], #64] \n\t"
"pld [%[b_ptr], #128] \n\t"
"vld1.s8 {d0-d3}, [%[a_ptr]]! \n\t" // load A 8 cols
"vld1.s8 {d8-d11}, [%[b_ptr]]! \n\t" // load B first 4 rows
"vmovl.s8 q2, d0 \n\t" // process B first 4
// rows
"vmovl.s8 q3, d8 \n\t"
"vmlal.s16 q8, d6, d4[0]\n\t"
"vmlal.s16 q9, d7, d4[0]\n\t"
"vmlal.s16 q10, d6, d4[1]\n\t"
"vmlal.s16 q11, d7, d4[1]\n\t"
"vmlal.s16 q12, d6, d4[2]\n\t"
"vmlal.s16 q13, d7, d4[2]\n\t"
"vmlal.s16 q14, d6, d4[3]\n\t"
"vmlal.s16 q15, d7, d4[3]\n\t"
"vmovl.s8 q3, d9 \n\t"
"vmlal.s16 q8, d6, d5[0]\n\t"
"vmlal.s16 q9, d7, d5[0]\n\t"
"vmlal.s16 q10, d6, d5[1]\n\t"
"vmlal.s16 q11, d7, d5[1]\n\t"
"vmlal.s16 q12, d6, d5[2]\n\t"
"vmlal.s16 q13, d7, d5[2]\n\t"
"vmlal.s16 q14, d6, d5[3]\n\t"
"vmlal.s16 q15, d7, d5[3]\n\t"
"vld1.s8 {d12-d15}, [%[b_ptr]]! \n\t" // load B second 4
// rows
"vmovl.s8 q2, d1 \n\t"
"vmovl.s8 q3, d10 \n\t"
"vmlal.s16 q8, d6, d4[0]\n\t"
"vmlal.s16 q9, d7, d4[0]\n\t"
"vmlal.s16 q10, d6, d4[1]\n\t"
"vmlal.s16 q11, d7, d4[1]\n\t"
"vmlal.s16 q12, d6, d4[2]\n\t"
"vmlal.s16 q13, d7, d4[2]\n\t"
"vmlal.s16 q14, d6, d4[3]\n\t"
"vmlal.s16 q15, d7, d4[3]\n\t"
"vmovl.s8 q3, d11 \n\t"
"vmlal.s16 q8, d6, d5[0]\n\t"
"vmlal.s16 q9, d7, d5[0]\n\t"
"vmlal.s16 q10, d6, d5[1]\n\t"
"vmlal.s16 q11, d7, d5[1]\n\t"
"vmlal.s16 q12, d6, d5[2]\n\t"
"vmlal.s16 q13, d7, d5[2]\n\t"
"vmlal.s16 q14, d6, d5[3]\n\t"
"vmlal.s16 q15, d7, d5[3]\n\t"
"vmovl.s8 q2, d2 \n\t" // process B second 4
// rows
"vmovl.s8 q3, d12 \n\t"
"vmlal.s16 q8, d6, d4[0]\n\t"
"vmlal.s16 q9, d7, d4[0]\n\t"
"vmlal.s16 q10, d6, d4[1]\n\t"
"vmlal.s16 q11, d7, d4[1]\n\t"
"vmlal.s16 q12, d6, d4[2]\n\t"
"vmlal.s16 q13, d7, d4[2]\n\t"
"vmlal.s16 q14, d6, d4[3]\n\t"
"vmlal.s16 q15, d7, d4[3]\n\t"
"vmovl.s8 q3, d13 \n\t"
"vmlal.s16 q8, d6, d5[0]\n\t"
"vmlal.s16 q9, d7, d5[0]\n\t"
"vmlal.s16 q10, d6, d5[1]\n\t"
"vmlal.s16 q11, d7, d5[1]\n\t"
"vmlal.s16 q12, d6, d5[2]\n\t"
"vmlal.s16 q13, d7, d5[2]\n\t"
"vmlal.s16 q14, d6, d5[3]\n\t"
"vmlal.s16 q15, d7, d5[3]\n\t"
"vmovl.s8 q2, d3 \n\t"
"vmovl.s8 q3, d14 \n\t"
"vmlal.s16 q8, d6, d4[0]\n\t"
"vmlal.s16 q9, d7, d4[0]\n\t"
"vmlal.s16 q10, d6, d4[1]\n\t"
"vmlal.s16 q11, d7, d4[1]\n\t"
"vmlal.s16 q12, d6, d4[2]\n\t"
"vmlal.s16 q13, d7, d4[2]\n\t"
"vmlal.s16 q14, d6, d4[3]\n\t"
"vmlal.s16 q15, d7, d4[3]\n\t"
"vmovl.s8 q3, d15 \n\t"
"vmlal.s16 q8, d6, d5[0]\n\t"
"vmlal.s16 q9, d7, d5[0]\n\t"
"vmlal.s16 q10, d6, d5[1]\n\t"
"vmlal.s16 q11, d7, d5[1]\n\t"
"vmlal.s16 q12, d6, d5[2]\n\t"
"vmlal.s16 q13, d7, d5[2]\n\t"
"vmlal.s16 q14, d6, d5[3]\n\t"
"vmlal.s16 q15, d7, d5[3]\n\t"
"subs %[kc1], %[kc1], #1 \n\t"
"bge 0b \n\t"
"1: \n\t" // last 4 rows
"subs %[kc3], %[kc3], #1 \n\t"
"blt 2f \n\t"
"vld1.s8 {d0-d1}, [%[a_ptr]]! \n\t" // load A 4 cols
"vld1.s8 {d8-d11}, [%[b_ptr]]! \n\t" // load B 4 rows
"vmovl.s8 q2, d0 \n\t"
"vmovl.s8 q3, d8 \n\t"
"vmlal.s16 q8, d6, d4[0]\n\t"
"vmlal.s16 q9, d7, d4[0]\n\t"
"vmlal.s16 q10, d6, d4[1]\n\t"
"vmlal.s16 q11, d7, d4[1]\n\t"
"vmlal.s16 q12, d6, d4[2]\n\t"
"vmlal.s16 q13, d7, d4[2]\n\t"
"vmlal.s16 q14, d6, d4[3]\n\t"
"vmlal.s16 q15, d7, d4[3]\n\t"
"vmovl.s8 q3, d9 \n\t"
"vmlal.s16 q8, d6, d5[0]\n\t"
"vmlal.s16 q9, d7, d5[0]\n\t"
"vmlal.s16 q10, d6, d5[1]\n\t"
"vmlal.s16 q11, d7, d5[1]\n\t"
"vmlal.s16 q12, d6, d5[2]\n\t"
"vmlal.s16 q13, d7, d5[2]\n\t"
"vmlal.s16 q14, d6, d5[3]\n\t"
"vmlal.s16 q15, d7, d5[3]\n\t"
"vmovl.s8 q2, d1 \n\t"
"vmovl.s8 q3, d10 \n\t"
"vmlal.s16 q8, d6, d4[0]\n\t"
"vmlal.s16 q9, d7, d4[0]\n\t"
"vmlal.s16 q10, d6, d4[1]\n\t"
"vmlal.s16 q11, d7, d4[1]\n\t"
"vmlal.s16 q12, d6, d4[2]\n\t"
"vmlal.s16 q13, d7, d4[2]\n\t"
"vmlal.s16 q14, d6, d4[3]\n\t"
"vmlal.s16 q15, d7, d4[3]\n\t"
"vmovl.s8 q3, d11 \n\t"
"vmlal.s16 q8, d6, d5[0]\n\t"
"vmlal.s16 q9, d7, d5[0]\n\t"
"vmlal.s16 q10, d6, d5[1]\n\t"
"vmlal.s16 q11, d7, d5[1]\n\t"
"vmlal.s16 q12, d6, d5[2]\n\t"
"vmlal.s16 q13, d7, d5[2]\n\t"
"vmlal.s16 q14, d6, d5[3]\n\t"
"vmlal.s16 q15, d7, d5[3]\n\t"
"2: \n\t" // last 2 rows
"subs %[kc5], %[kc5], #1 \n\t"
"blt 3f \n\t"
"vld1.s8 {d0}, [%[a_ptr]]! \n\t" // load A 2 cols
"vld1.s8 {d8-d9}, [%[b_ptr]]! \n\t" // load B 2 rows
"vmovl.s8 q2, d0 \n\t"
"vmovl.s8 q3, d8 \n\t"
"vmlal.s16 q8, d6, d4[0]\n\t"
"vmlal.s16 q9, d7, d4[0]\n\t"
"vmlal.s16 q10, d6, d4[1]\n\t"
"vmlal.s16 q11, d7, d4[1]\n\t"
"vmlal.s16 q12, d6, d4[2]\n\t"
"vmlal.s16 q13, d7, d4[2]\n\t"
"vmlal.s16 q14, d6, d4[3]\n\t"
"vmlal.s16 q15, d7, d4[3]\n\t"
"vmovl.s8 q3, d9 \n\t"
"vmlal.s16 q8, d6, d5[0]\n\t"
"vmlal.s16 q9, d7, d5[0]\n\t"
"vmlal.s16 q10, d6, d5[1]\n\t"
"vmlal.s16 q11, d7, d5[1]\n\t"
"vmlal.s16 q12, d6, d5[2]\n\t"
"vmlal.s16 q13, d7, d5[2]\n\t"
"vmlal.s16 q14, d6, d5[3]\n\t"
"vmlal.s16 q15, d7, d5[3]\n\t"
"3: \n\t" // last 1 row
"subs %[kc6], %[kc6], #1 \n\t"
"blt 4f \n\t"
"vld1.s8 {d0}, [%[a_ptr]] \n\t" // load A 1 col
"vld1.s8 {d8}, [%[b_ptr]] \n\t" // load B 1 row
"vmovl.s8 q2, d0 \n\t"
"vmovl.s8 q3, d8 \n\t"
"vmlal.s16 q8, d6, d4[0]\n\t"
"vmlal.s16 q9, d7, d4[0]\n\t"
"vmlal.s16 q10, d6, d4[1]\n\t"
"vmlal.s16 q11, d7, d4[1]\n\t"
"vmlal.s16 q12, d6, d4[2]\n\t"
"vmlal.s16 q13, d7, d4[2]\n\t"
"vmlal.s16 q14, d6, d4[3]\n\t"
"vmlal.s16 q15, d7, d4[3]\n\t"
"4: \n\t"
"vst1.32 {q8, q9}, [%[c]], %[step] \n\t"
"vst1.32 {q10, q11}, [%[c]], %[step] \n\t"
"vst1.32 {q12, q13}, [%[c]], %[step] \n\t"
"vst1.32 {q14, q15}, [%[c]] \n\t"
:
: [a_ptr] "r"(a_ptr), [b_ptr] "r"(b_ptr), [c] "r"(c), [kc1] "r"(kc1),
[kc3] "r"(kc3), [kc5] "r"(kc5), [kc6] "r"(kc6), [step] "r"(step)
: "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", "q8",
"q9", "q10", "q11", "q12", "q13", "q14", "q15");
#endif // __aarch64__
#endif // __ARM_NEON
}
// 8 bits int small block inner product
void Gemm::AddDot6x8(int32_t k, const int8_t *a, const int8_t *b, int32_t *c,
int32_t ldc) {
#if __ARM_NEON
#if __aarch64__
// TODO
#else
const int8_t *a_ptr, *b_ptr;
a_ptr = a;
b_ptr = b;
int32_t kc1 = k >> 3;
int32_t kc2 = k & 7;
int32_t kc3 = kc2 >> 2;
int32_t kc4 = kc2 & 3;
int32_t kc5 = kc4 >> 1;
int32_t kc6 = kc4 & 1;
int32_t step = sizeof(int32_t) * ldc;
asm volatile(
// q4-q15: save 48 results
"pld [%[a_ptr]] \n\t"
"pld [%[b_ptr]] \n\t"
"pld [%[b_ptr], #64] \n\t"
"vmov.s32 q4, #0 \n\t"
"vmov.s32 q5, q4 \n\t"
"vmov.s32 q6, q4 \n\t"
"vmov.s32 q7, q4 \n\t"
"vmov.s32 q8, q4 \n\t"
"vmov.s32 q9, q4 \n\t"
"vmov.s32 q10, q4 \n\t"
"vmov.s32 q11, q4 \n\t"
"vmov.s32 q12, q4 \n\t"
"vmov.s32 q13, q4 \n\t"
"vmov.s32 q14, q4 \n\t"
"vmov.s32 q15, q4 \n\t"
"mov r0, #12 \n\t"
"subs %[kc1], %[kc1], #1 \n\t"
"blt 1f \n\t"
"0: \n\t"
"pld [%[a_ptr], #64] \n\t"
"pld [%[b_ptr], #128] \n\t"
"vld1.s8 {d0-d2}, [%[a_ptr]]! \n\t" // A 4 cols
"vld1.s8 {d3}, [%[b_ptr]]! \n\t" // B 1st row
"vmovl.s8 q2, d0 \n\t"
"vmovl.s8 q3, d3 \n\t"
"vmlal.s16 q4, d6, d4[0]\n\t"
"vmlal.s16 q5, d7, d4[0]\n\t"
"vmlal.s16 q6, d6, d4[1]\n\t"
"vmlal.s16 q7, d7, d4[1]\n\t"
"vmlal.s16 q8, d6, d4[2]\n\t"
"vmlal.s16 q9, d7, d4[2]\n\t"
"vmlal.s16 q10, d6, d4[3]\n\t"
"vmlal.s16 q11, d7, d4[3]\n\t"
"vmlal.s16 q12, d6, d5[0]\n\t"
"vmlal.s16 q13, d7, d5[0]\n\t"
"vmlal.s16 q14, d6, d5[1]\n\t"
"vmlal.s16 q15, d7, d5[1]\n\t"
"vld1.s8 {d3}, [%[b_ptr]]! \n\t" // B 2nd row
"vmovl.s8 q3, d3 \n\t"
"vmlal.s16 q4, d6, d5[2]\n\t"
"vmlal.s16 q5, d7, d5[2]\n\t"
"vmlal.s16 q6, d6, d5[3]\n\t"
"vmlal.s16 q7, d7, d5[3]\n\t"
"vmovl.s8 q2, d1 \n\t"
"vmlal.s16 q8, d6, d4[0]\n\t"
"vmlal.s16 q9, d7, d4[0]\n\t"
"vmlal.s16 q10, d6, d4[1]\n\t"
"vmlal.s16 q11, d7, d4[1]\n\t"
"vmlal.s16 q12, d6, d4[2]\n\t"
"vmlal.s16 q13, d7, d4[2]\n\t"
"vmlal.s16 q14, d6, d4[3]\n\t"
"vmlal.s16 q15, d7, d4[3]\n\t"
"vld1.s8 {d3}, [%[b_ptr]]! \n\t" // B 3th row
"vmovl.s8 q3, d3 \n\t"
"vmlal.s16 q4, d6, d5[0]\n\t"
"vmlal.s16 q5, d7, d5[0]\n\t"
"vmlal.s16 q6, d6, d5[1]\n\t"
"vmlal.s16 q7, d7, d5[1]\n\t"
"vmlal.s16 q8, d6, d5[2]\n\t"
"vmlal.s16 q9, d7, d5[2]\n\t"
"vmlal.s16 q10, d6, d5[3]\n\t"
"vmlal.s16 q11, d7, d5[3]\n\t"
"vmovl.s8 q2, d2 \n\t"
"vmlal.s16 q12, d6, d4[0]\n\t"
"vmlal.s16 q13, d7, d4[0]\n\t"
"vmlal.s16 q14, d6, d4[1]\n\t"
"vmlal.s16 q15, d7, d4[1]\n\t"
"vld1.s8 {d3}, [%[b_ptr]]! \n\t" // B 4th row
"vmovl.s8 q3, d3 \n\t"
"vmlal.s16 q4, d6, d4[2]\n\t"
"vmlal.s16 q5, d7, d4[2]\n\t"
"vmlal.s16 q6, d6, d4[3]\n\t"
"vmlal.s16 q7, d7, d4[3]\n\t"
"vmlal.s16 q8, d6, d5[0]\n\t"
"vmlal.s16 q9, d7, d5[0]\n\t"
"vmlal.s16 q10, d6, d5[1]\n\t"
"vmlal.s16 q11, d7, d5[1]\n\t"
"vmlal.s16 q12, d6, d5[2]\n\t"
"vmlal.s16 q13, d7, d5[2]\n\t"
"vmlal.s16 q14, d6, d5[3]\n\t"
"vmlal.s16 q15, d7, d5[3]\n\t"
"vld1.s8 {d0-d2}, [%[a_ptr]]! \n\t" // A 4 cols
"vld1.s8 {d3}, [%[b_ptr]]! \n\t" // B 1st row
"vmovl.s8 q2, d0 \n\t"
"vmovl.s8 q3, d3 \n\t"
"vmlal.s16 q4, d6, d4[0]\n\t"
"vmlal.s16 q5, d7, d4[0]\n\t"
"vmlal.s16 q6, d6, d4[1]\n\t"
"vmlal.s16 q7, d7, d4[1]\n\t"
"vmlal.s16 q8, d6, d4[2]\n\t"
"vmlal.s16 q9, d7, d4[2]\n\t"
"vmlal.s16 q10, d6, d4[3]\n\t"
"vmlal.s16 q11, d7, d4[3]\n\t"
"vmlal.s16 q12, d6, d5[0]\n\t"
"vmlal.s16 q13, d7, d5[0]\n\t"
"vmlal.s16 q14, d6, d5[1]\n\t"
"vmlal.s16 q15, d7, d5[1]\n\t"
"vld1.s8 {d3}, [%[b_ptr]]! \n\t" // B 2nd row
"vmovl.s8 q3, d3 \n\t"
"vmlal.s16 q4, d6, d5[2]\n\t"
"vmlal.s16 q5, d7, d5[2]\n\t"
"vmlal.s16 q6, d6, d5[3]\n\t"
"vmlal.s16 q7, d7, d5[3]\n\t"
"vmovl.s8 q2, d1 \n\t"
"vmlal.s16 q8, d6, d4[0]\n\t"
"vmlal.s16 q9, d7, d4[0]\n\t"
"vmlal.s16 q10, d6, d4[1]\n\t"
"vmlal.s16 q11, d7, d4[1]\n\t"
"vmlal.s16 q12, d6, d4[2]\n\t"
"vmlal.s16 q13, d7, d4[2]\n\t"
"vmlal.s16 q14, d6, d4[3]\n\t"
"vmlal.s16 q15, d7, d4[3]\n\t"
"vld1.s8 {d3}, [%[b_ptr]]! \n\t" // B 3th row
"vmovl.s8 q3, d3 \n\t"
"vmlal.s16 q4, d6, d5[0]\n\t"
"vmlal.s16 q5, d7, d5[0]\n\t"
"vmlal.s16 q6, d6, d5[1]\n\t"
"vmlal.s16 q7, d7, d5[1]\n\t"
"vmlal.s16 q8, d6, d5[2]\n\t"
"vmlal.s16 q9, d7, d5[2]\n\t"
"vmlal.s16 q10, d6, d5[3]\n\t"
"vmlal.s16 q11, d7, d5[3]\n\t"
"vmovl.s8 q2, d2 \n\t"
"vmlal.s16 q12, d6, d4[0]\n\t"
"vmlal.s16 q13, d7, d4[0]\n\t"
"vmlal.s16 q14, d6, d4[1]\n\t"
"vmlal.s16 q15, d7, d4[1]\n\t"
"vld1.s8 {d3}, [%[b_ptr]]! \n\t" // B 4th row
"vmovl.s8 q3, d3 \n\t"
"vmlal.s16 q4, d6, d4[2]\n\t"
"vmlal.s16 q5, d7, d4[2]\n\t"
"vmlal.s16 q6, d6, d4[3]\n\t"
"vmlal.s16 q7, d7, d4[3]\n\t"
"vmlal.s16 q8, d6, d5[0]\n\t"
"vmlal.s16 q9, d7, d5[0]\n\t"
"vmlal.s16 q10, d6, d5[1]\n\t"
"vmlal.s16 q11, d7, d5[1]\n\t"
"vmlal.s16 q12, d6, d5[2]\n\t"
"vmlal.s16 q13, d7, d5[2]\n\t"
"vmlal.s16 q14, d6, d5[3]\n\t"
"vmlal.s16 q15, d7, d5[3]\n\t"
"subs %[kc1], %[kc1], #1 \n\t"
"bge 0b \n\t"
"1: \n\t" // last <8 rows
"subs %[kc3], %[kc3], #1 \n\t"
"blt 2f \n\t"
"vld1.s8 {d0-d2}, [%[a_ptr]]! \n\t" // A 4 cols
"vld1.s8 {d3}, [%[b_ptr]]! \n\t" // B 1st row
"vmovl.s8 q2, d0 \n\t"
"vmovl.s8 q3, d3 \n\t"
"vmlal.s16 q4, d6, d4[0]\n\t"
"vmlal.s16 q5, d7, d4[0]\n\t"
"vmlal.s16 q6, d6, d4[1]\n\t"
"vmlal.s16 q7, d7, d4[1]\n\t"
"vmlal.s16 q8, d6, d4[2]\n\t"
"vmlal.s16 q9, d7, d4[2]\n\t"
"vmlal.s16 q10, d6, d4[3]\n\t"
"vmlal.s16 q11, d7, d4[3]\n\t"
"vmlal.s16 q12, d6, d5[0]\n\t"
"vmlal.s16 q13, d7, d5[0]\n\t"
"vmlal.s16 q14, d6, d5[1]\n\t"
"vmlal.s16 q15, d7, d5[1]\n\t"
"vld1.s8 {d3}, [%[b_ptr]]! \n\t" // B 2nd row
"vmovl.s8 q3, d3 \n\t"
"vmlal.s16 q4, d6, d5[2]\n\t"
"vmlal.s16 q5, d7, d5[2]\n\t"
"vmlal.s16 q6, d6, d5[3]\n\t"
"vmlal.s16 q7, d7, d5[3]\n\t"
"vmovl.s8 q2, d1 \n\t"
"vmlal.s16 q8, d6, d4[0]\n\t"
"vmlal.s16 q9, d7, d4[0]\n\t"
"vmlal.s16 q10, d6, d4[1]\n\t"
"vmlal.s16 q11, d7, d4[1]\n\t"
"vmlal.s16 q12, d6, d4[2]\n\t"
"vmlal.s16 q13, d7, d4[2]\n\t"
"vmlal.s16 q14, d6, d4[3]\n\t"
"vmlal.s16 q15, d7, d4[3]\n\t"
"vld1.s8 {d3}, [%[b_ptr]]! \n\t" // B 3th row
"vmovl.s8 q3, d3 \n\t"
"vmlal.s16 q4, d6, d5[0]\n\t"
"vmlal.s16 q5, d7, d5[0]\n\t"
"vmlal.s16 q6, d6, d5[1]\n\t"
"vmlal.s16 q7, d7, d5[1]\n\t"
"vmlal.s16 q8, d6, d5[2]\n\t"
"vmlal.s16 q9, d7, d5[2]\n\t"
"vmlal.s16 q10, d6, d5[3]\n\t"
"vmlal.s16 q11, d7, d5[3]\n\t"
"vmovl.s8 q2, d2 \n\t"
"vmlal.s16 q12, d6, d4[0]\n\t"
"vmlal.s16 q13, d7, d4[0]\n\t"
"vmlal.s16 q14, d6, d4[1]\n\t"
"vmlal.s16 q15, d7, d4[1]\n\t"
"vld1.s8 {d3}, [%[b_ptr]]! \n\t" // B 4th row
"vmovl.s8 q3, d3 \n\t"
"vmlal.s16 q4, d6, d4[2]\n\t"
"vmlal.s16 q5, d7, d4[2]\n\t"
"vmlal.s16 q6, d6, d4[3]\n\t"
"vmlal.s16 q7, d7, d4[3]\n\t"
"vmlal.s16 q8, d6, d5[0]\n\t"
"vmlal.s16 q9, d7, d5[0]\n\t"
"vmlal.s16 q10, d6, d5[1]\n\t"
"vmlal.s16 q11, d7, d5[1]\n\t"
"vmlal.s16 q12, d6, d5[2]\n\t"
"vmlal.s16 q13, d7, d5[2]\n\t"
"vmlal.s16 q14, d6, d5[3]\n\t"
"vmlal.s16 q15, d7, d5[3]\n\t"
"2: \n\t" // last <4 rows
"subs %[kc5], %[kc5], #1 \n\t"
"blt 3f \n\t"
"vld1.s8 {d0, d1}, [%[a_ptr]], r0 \n\t"
"vld1.s8 {d3}, [%[b_ptr]]! \n\t" // B 1st row
"vmovl.s8 q2, d0 \n\t"
"vmovl.s8 q3, d3 \n\t"
"vmlal.s16 q4, d6, d4[0]\n\t"
"vmlal.s16 q5, d7, d4[0]\n\t"
"vmlal.s16 q6, d6, d4[1]\n\t"
"vmlal.s16 q7, d7, d4[1]\n\t"
"vmlal.s16 q8, d6, d4[2]\n\t"
"vmlal.s16 q9, d7, d4[2]\n\t"
"vmlal.s16 q10, d6, d4[3]\n\t"
"vmlal.s16 q11, d7, d4[3]\n\t"
"vmlal.s16 q12, d6, d5[0]\n\t"
"vmlal.s16 q13, d7, d5[0]\n\t"
"vmlal.s16 q14, d6, d5[1]\n\t"
"vmlal.s16 q15, d7, d5[1]\n\t"
"vld1.s8 {d3}, [%[b_ptr]]! \n\t" // B 2nd row
"vmovl.s8 q3, d3 \n\t"
"vmlal.s16 q4, d6, d5[2]\n\t"
"vmlal.s16 q5, d7, d5[2]\n\t"
"vmlal.s16 q6, d6, d5[3]\n\t"
"vmlal.s16 q7, d7, d5[3]\n\t"
"vmovl.s8 q2, d1 \n\t"
"vmlal.s16 q8, d6, d4[0]\n\t"
"vmlal.s16 q9, d7, d4[0]\n\t"
"vmlal.s16 q10, d6, d4[1]\n\t"
"vmlal.s16 q11, d7, d4[1]\n\t"
"vmlal.s16 q12, d6, d4[2]\n\t"
"vmlal.s16 q13, d7, d4[2]\n\t"
"vmlal.s16 q14, d6, d4[3]\n\t"
"vmlal.s16 q15, d7, d4[3]\n\t"
"3: \n\t" // last <2 rows
"subs %[kc6], %[kc6], #1 \n\t"
"blt 4f \n\t"
"vld1.s8 {d0}, [%[a_ptr]] \n\t"
"vld1.s8 {d3}, [%[b_ptr]] \n\t"
"vmovl.s8 q2, d0 \n\t"
"vmovl.s8 q3, d3 \n\t"
"vmlal.s16 q4, d6, d4[0]\n\t"
"vmlal.s16 q5, d7, d4[0]\n\t"
"vmlal.s16 q6, d6, d4[1]\n\t"
"vmlal.s16 q7, d7, d4[1]\n\t"
"vmlal.s16 q8, d6, d4[2]\n\t"
"vmlal.s16 q9, d7, d4[2]\n\t"
"vmlal.s16 q10, d6, d4[3]\n\t"
"vmlal.s16 q11, d7, d4[3]\n\t"
"vmlal.s16 q12, d6, d5[0]\n\t"
"vmlal.s16 q13, d7, d5[0]\n\t"
"vmlal.s16 q14, d6, d5[1]\n\t"
"vmlal.s16 q15, d7, d5[1]\n\t"
"4: \n\t"
"vst1.32 {q4, q5}, [%[c]], %[step] \n\t"
"vst1.32 {q6, q7}, [%[c]], %[step] \n\t"
"vst1.32 {q8, q9}, [%[c]], %[step] \n\t"
"vst1.32 {q10, q11}, [%[c]], %[step] \n\t"
"vst1.32 {q12, q13}, [%[c]], %[step] \n\t"
"vst1.32 {q14, q15}, [%[c]] \n\t"
:
: [a_ptr] "r"(a_ptr), [b_ptr] "r"(b_ptr), [c] "r"(c), [kc1] "r"(kc1),
[kc3] "r"(kc3), [kc5] "r"(kc5), [kc6] "r"(kc6), [step] "r"(step)
: "cc", "memory", "r0", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
"q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15");
#endif // __aarch64__
#endif // __ARM_NEON
}
// 8 bits int inner product
void Gemm::InnerKernelWithBias(int32_t mc, int32_t nc, int8_t alpha,
const int8_t *a, const int8_t *b, int8_t beta,
int32_t *c, int32_t *C, int32_t ldc, bool relu,
int8_t *bias) {
#pragma omp parallel for
for (int32_t j = 0; j < nc; j += NR) {
for (int32_t i = 0; i < mc; i += MR_INT8) {
// AddDot6x8(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
AddDot4x8(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
}
}
if (alpha != 1) {
WriteWithAlphaBeta(mc, nc, c, C, ldc);
return;
}
if (beta == 0) {
WriteBasic(mc, nc, c, C, ldc);
return;
}
if (beta == 1 && !relu) {
if (bias == nullptr) {
WriteWithAdd(mc, nc, c, C, ldc);
} else {
WriteWithAddV1(mc, nc, c, C, ldc, bias);
}
return;
}
if (beta == 1 && relu) {
if (bias == nullptr) {
WriteWithAddRelu(mc, nc, c, C, ldc);
} else {
WriteWithAddReluV1(mc, nc, c, C, ldc, bias);
}
return;
}
}
// 8 bits int PackMatrixA_4r
void Gemm::PackMatrixA_4r(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
int32_t lda, int8_t *buffer) {
const int8_t *a0, *a1, *a2, *a3;
for (int32_t i = 0; i < m - m_tail; i += MR_INT8) {
a0 = A + i * lda;
a1 = A + (i + 1) * lda;
a2 = A + (i + 2) * lda;
a3 = A + (i + 3) * lda;
for (int32_t j = 0; j < k; ++j) {
*buffer++ = *a0++;
*buffer++ = *a1++;
*buffer++ = *a2++;
*buffer++ = *a3++;
}
}
if (m_tail != 0) {
a0 = &A(m - m_tail, 0);
a1 = a0 + lda;
a2 = a0 + 2 * lda;
a3 = a0 + 3 * lda;
switch (m_tail) {
case 1:
a1 = zero_int8;
case 2:
a2 = zero_int8;
case 3:
a3 = zero_int8;
break;
default:
break;
}
for (int j = 0; j < k; ++j) {
*buffer++ = *a0++;
*buffer++ = *a1++;
*buffer++ = *a2++;
*buffer++ = *a3++;
}
}
}
// 8 bits int PackMatrixA_6r
void Gemm::PackMatrixA_6r(int32_t m, int32_t k, int32_t m_tail, const int8_t *A,
int32_t lda, int8_t *buffer) {
const int32_t i_length = m - m_tail;
for (int32_t i = 0; i < i_length; i += MR_INT8) {
const int8_t *a0 = A + i * lda;
const int8_t *a1 = A + (i + 1) * lda;
const int8_t *a2 = A + (i + 2) * lda;
const int8_t *a3 = A + (i + 3) * lda;
const int8_t *a4 = A + (i + 4) * lda;
const int8_t *a5 = A + (i + 5) * lda;
int8_t *local_buffer = buffer + i * k;
for (int32_t j = 0; j < k; ++j) {
*local_buffer++ = *a0++;
*local_buffer++ = *a1++;
*local_buffer++ = *a2++;
*local_buffer++ = *a3++;
*local_buffer++ = *a4++;
*local_buffer++ = *a5++;
}
}
if (m_tail != 0) {
const int8_t *a0 = &A(i_length, 0);
const int8_t *a1 = a0 + lda;
const int8_t *a2 = a0 + 2 * lda;
const int8_t *a3 = a0 + 3 * lda;
const int8_t *a4 = a0 + 4 * lda;
const int8_t *a5 = a0 + 5 * lda;
int8_t *local_buffer = buffer + i_length * k;
switch (m_tail) {
case 1:
a1 = zero_int8;
case 2:
a2 = zero_int8;
case 3:
a3 = zero_int8;
case 4:
a4 = zero_int8;
case 5:
a5 = zero_int8;
break;
default:
break;
}
for (int32_t j = 0; j < k; ++j) {
*local_buffer++ = *a0++;
*local_buffer++ = *a1++;
*local_buffer++ = *a2++;
*local_buffer++ = *a3++;
*local_buffer++ = *a4++;
*local_buffer++ = *a5++;
}
}
}
// 8 bits int PackMatrixB
void Gemm::PackMatrixB_8c(int32_t k, int32_t n, int32_t n_tail, const int8_t *B,
int32_t ldb, int8_t *buffer) {
const int32_t j_length = n - n_tail;
for (int32_t j = 0; j < j_length; j += NR) {
int8_t *local_buffer = buffer + j * k;
for (int32_t i = 0; i < k; ++i) {
const int8_t *b0 = &B(i, j);
#if __ARM_NEON
#if __aarch64__
// TODO
#else
asm volatile(
// "pld [%[b0]] \n\t"
"vld1.s8 {d0}, [%[b0]] \n\t"
"vst1.s8 {d0}, [%[local_buffer]]! \n\t"
: [local_buffer] "+r"(local_buffer)
: [b0] "r"(b0)
: "memory", "q0");
#endif // __aarch64__
#else
*local_buffer++ = *b0++;
*local_buffer++ = *b0++;
*local_buffer++ = *b0++;
*local_buffer++ = *b0++;
*local_buffer++ = *b0++;
*local_buffer++ = *b0++;
*local_buffer++ = *b0++;
*local_buffer++ = *b0++;
#endif // __ARM_NEON
}
}
if (n_tail != 0) {
int8_t *local_buffer = buffer + j_length * k;
for (int32_t i = 0; i < k; ++i) {
const int8_t *b0 = &B(i, j_length);
for (int32_t j = j_length; j < n; ++j) {
*local_buffer++ = *b0++;
}
for (int32_t j = n; j < j_length + NR; ++j) {
*local_buffer++ = 0;
}
}
}
}
// 8 bits int matrix product (m*k x k*n)
void Gemm::Sgemm(int32_t m, int32_t n, int32_t k, int8_t alpha, const int8_t *A,
int32_t lda, const int8_t *B, int32_t ldb, int8_t beta,
int32_t *C, int32_t ldc, bool relu, int8_t *bias) {
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int32_t L1 = 32 * 1024;
int32_t L2 = 512 * 1024;
KC = k;
MC = L1 / (KC * sizeof(int8_t));
NC = L2 / (KC * sizeof(int8_t));
// make sure MC is multiple of MR_INT8, and NC is multiple of NR
if (MC == 0) {
MC = MR_INT8;
} else {
int32_t mblock_num = (m + MC - 1) / MC;
MC = (m + mblock_num - 1) / mblock_num;
MC = (MC + MR_INT8 - 1) / MR_INT8 * MR_INT8;
}
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
if (NC == 0) {
NC = NR;
} else {
int32_t nblock_num = (n + NC - 1) / NC;
NC = (n + nblock_num - 1) / nblock_num;
NC = (NC + NR - 1) / NR * NR;
}
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA_int8 = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * MC * KC));
packedB_int8 = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * KC * NC));
packedC_int8 = static_cast<int32_t *>(
paddle_mobile::memory::Alloc(sizeof(int32_t) * MC * NC));
zero_int8 =
static_cast<int8_t *>(paddle_mobile::memory::Alloc(sizeof(int8_t) * KC));
memset(static_cast<void *>(zero_int8), 0, sizeof(int8_t) * KC);
int32_t mc, nc;
for (int32_t j = 0; j < n; j += NC) {
nc = s_min(n - j, NC);
PackMatrixB_8c(KC, nc, nc % NR, &B(0, j), ldb, packedB_int8);
for (int32_t i = 0; i < m; i += MC) {
mc = s_min(m - i, MC);
// PackMatrixA_6r(mc, KC, mc % MR_INT8, &A(i, 0), lda, packedA_int8);
PackMatrixA_4r(mc, KC, mc % MR_INT8, &A(i, 0), lda, packedA_int8);
if (bias == nullptr) {
InnerKernelWithBias(mc, nc, alpha, packedA_int8, packedB_int8, beta,
packedC_int8, &C(i, j), ldc, relu, nullptr);
} else {
InnerKernelWithBias(mc, nc, alpha, packedA_int8, packedB_int8, beta,
packedC_int8, &C(i, j), ldc, relu, bias + i);
}
}
}
paddle_mobile::memory::Free(packedA_int8);
paddle_mobile::memory::Free(packedB_int8);
paddle_mobile::memory::Free(packedC_int8);
paddle_mobile::memory::Free(zero_int8);
}
// 8 bits int write back
// C = alpha * A * B + beta * C
void Gemm::WriteWithAlphaBeta(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
int32_t ldc) {}
// C = A * B, 8位 int32_t
void Gemm::WriteBasic(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
int32_t ldc) {
#if __ARM_NEON
#if __aarch64__
// TODO
#else
int32_t nc1 = nc >> 4;
int32_t _nc1 = nc & 15;
int32_t step = sizeof(int32_t) * ldc;
int32_t step1 = sizeof(int32_t) * (NC - (nc1 << 4));
int32_t volatile m = mc;
int32_t *volatile c_ptr, *volatile C_ptr;
int32_t *C0, *c0;
c_ptr = c;
C_ptr = C;
if (nc1 > 0) {
asm volatile(
"subs %[mc], %[mc], #1 \n\t"
"blt end_mc_%= \n\t"
"loop_mc_%=: \n\t"
"mov r6, %[C_ptr] \n\t"
"mov r5, %[nc1] \n\t"
"subs r5, r5, #1 \n\t"
"blt end_nc1_%= \n\t"
"loop_nc1_%=: \n\t"
"vld1.32 {q0, q1}, [%[c_ptr]]! \n\t"
"vst1.32 {q0, q1}, [r6]! \n\t"
"vld1.32 {q2, q3}, [%[c_ptr]]! \n\t"
"vst1.32 {q2, q3}, [r6]! \n\t"
"subs r5, r5, #1 \n\t"
"bge loop_nc1_%= \n\t"
"end_nc1_%=: \n\t"
"add %[C_ptr], %[C_ptr], %[step] \n\t"
"add %[c_ptr], %[c_ptr], %[step1] \n\t"
"subs %[mc], %[mc], #1 \n\t"
"bge loop_mc_%= \n\t"
"end_mc_%=: \n\t"
:
: [C_ptr] "r"(C_ptr), [c_ptr] "r"(c_ptr), [mc] "r"(m), [nc1] "r"(nc1),
[step] "r"(step), [step1] "r"(step1)
: "memory", "r5", "r6", "q0", "q1", "q2", "q3");
}
if (_nc1 != 0) {
for (int32_t i = 0; i < mc; i++) {
C0 = C_ptr + nc1 * 16 + i * ldc;
c0 = c_ptr + nc1 * 16 + i * NC;
for (int32_t j = 0; j < _nc1; j++) {
*C0++ = *c0++;
}
}
}
#endif // __aarch64__
#endif // __ARM_NEON
}
// C = A * B + C
void Gemm::WriteWithAdd(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
int32_t ldc) {}
// C = A * B + bias
void Gemm::WriteWithAddV1(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
int32_t ldc, int8_t *bias) {}
// C = A * B + C, relu(C)
void Gemm::WriteWithAddRelu(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
int32_t ldc) {}
// C = A * B + bias, relu(C)
void Gemm::WriteWithAddReluV1(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
int32_t ldc, int8_t *bias) {}
} // namespace math
} // namespace operators
} // namespace paddle_mobile
......@@ -28,91 +28,240 @@ namespace math {
* [input_channels, filter_height, filter_width, output_height,
* output_width]
*/
template <class T>
class Im2ColFunctor<ColFormat::kCFO, CPU, T> {
public:
void operator()(const framework::Tensor &im, const std::vector<int> &dilation,
const std::vector<int> &stride,
const std::vector<int> &padding, framework::Tensor *col) {
// PADDLE_ENFORCE(im.dims().size() == 3);
// PADDLE_ENFORCE(col->dims().size() == 5);
template <>
void Im2ColFunctor<ColFormat::kCFO, CPU, float>::operator()(
const framework::Tensor &im, const std::vector<int> &dilation,
const std::vector<int> &stride, const std::vector<int> &padding,
framework::Tensor *col) {
int im_channels = im.dims()[0];
int im_height = im.dims()[1];
int im_width = im.dims()[2];
int filter_height = col->dims()[1];
int filter_width = col->dims()[2];
int col_height = col->dims()[3];
int col_width = col->dims()[4];
int channels_col = im_channels * filter_height * filter_width;
const float *im_data = im.data<float>();
float *col_data = col->data<float>();
#if __ARM_NEON
const int osize = col_height;
const int isize = im_height;
bool pad1 = padding[0] > 0;
bool pad2 =
(pad1 && padding[1] &&
(((isize - 2 * padding[0] + filter_height) % stride[0] == 0) ? 1 : 0));
int fill = isize % 2;
if (stride[0] == 1 && filter_height == 3 && pad1 && pad2 &&
dilation[0] == 1 && im_height > 2 && im_height == im_width) {
for (int c = 0; c < im_channels; ++c) {
int oosize = osize * osize;
int nk4 = osize / 4;
int mk4 = osize % 4;
float *col0 = col_data + 0 * oosize + 2 * osize + 2;
float *col1 = col_data + 1 * oosize + 2 * osize + 1;
float *col2 = col_data + 2 * oosize + 2 * osize;
float *col3 = col_data + 3 * oosize + osize + 2;
float *col4 = col_data + 4 * oosize + osize + 1;
float *col5 = col_data + 5 * oosize + osize;
float *col6 = col_data + 6 * oosize + 2;
float *col7 = col_data + 7 * oosize + 1;
float *col8 = col_data + 8 * oosize;
float32x4_t im1;
const float *im_tmp_data = im_data + osize + 1;
int rrsize = oosize - osize - 1;
int nr4 = rrsize / 4;
int mr4 = rrsize % 4;
for (int i = 0; i < nr4; ++i) {
im1 = vld1q_f32(im_tmp_data);
vst1q_f32(col0, im1);
vst1q_f32(col1, im1);
vst1q_f32(col2, im1);
vst1q_f32(col3, im1);
vst1q_f32(col4, im1);
vst1q_f32(col5, im1);
vst1q_f32(col6, im1);
vst1q_f32(col7, im1);
vst1q_f32(col8, im1);
col0 += 4;
col1 += 4;
col2 += 4;
col3 += 4;
col4 += 4;
col5 += 4;
col6 += 4;
col7 += 4;
col8 += 4;
im_tmp_data += 4;
}
for (int i = 0; i < mr4; ++i) {
*col0 = *im_tmp_data;
*col1 = *im_tmp_data;
*col2 = *im_tmp_data;
*col3 = *im_tmp_data;
*col4 = *im_tmp_data;
*col5 = *im_tmp_data;
*col6 = *im_tmp_data;
*col7 = *im_tmp_data;
*col8 = *im_tmp_data;
col0++;
col1++;
col2++;
col3++;
col4++;
col5++;
col6++;
col7++;
col8++;
im_tmp_data++;
}
int im_channels = im.dims()[0];
int im_height = im.dims()[1];
int im_width = im.dims()[2];
int filter_height = col->dims()[1];
int filter_width = col->dims()[2];
int col_height = col->dims()[3];
int col_width = col->dims()[4];
// PADDLE_ENFORCE_EQ((im_height + padding[0] + padding[2]
// -
// ((dilation[0] * (filter_height - 1)
// + 1))) /
// stride[0] +
// 1,
// col_height,
// "Output_height and
// padding(padding_up, padding_down)
// are " "inconsistent.");
// PADDLE_ENFORCE_EQ((im_width + padding[1] + padding[3]
// -
// ((dilation[1] * (filter_width - 1)
// + 1))) /
// stride[1] +
// 1,
// col_width,
// "Output_height and
// padding(padding_up, padding_down)
// are " "inconsistent.");
im_tmp_data = im_data + 1;
col0 = col_data + 0 * oosize + osize + 2;
col1 = col_data + 1 * oosize + osize + 1;
col2 = col_data + 2 * oosize + osize;
col3 = col_data + 3 * oosize + 2;
col4 = col_data + 4 * oosize + 1;
col5 = col_data + 5 * oosize;
for (int i = 0; i < nk4; i++) {
im1 = vld1q_f32(im_tmp_data);
vst1q_f32(col0, im1);
vst1q_f32(col1, im1);
vst1q_f32(col2, im1);
vst1q_f32(col3, im1);
vst1q_f32(col4, im1);
vst1q_f32(col5, im1);
col0 += 4;
col1 += 4;
col2 += 4;
col3 += 4;
col4 += 4;
col5 += 4;
im_tmp_data += 4;
}
int channels_col = im_channels * filter_height * filter_width;
const T *im_data = im.data<T>();
T *col_data = col->data<T>();
#if __ARM_NEON
const int osize = col_height;
const int isize = im_height;
bool pad1 = padding[0] > 0;
bool pad2 =
(pad1 && padding[1] &&
(((isize - 2 * padding[0] + filter_height) % stride[0] == 0) ? 1 : 0));
int fill = isize % 2;
if (stride[0] == 1 && filter_height == 3 && pad1 && pad2 &&
dilation[0] == 1 && im_height > 2 && im_height == im_width) {
for (int c = 0; c < im_channels; ++c) {
int oosize = osize * osize;
int nk4 = osize / 4;
int mk4 = osize % 4;
float *col0 = col_data + 0 * oosize + 2 * osize + 2;
float *col1 = col_data + 1 * oosize + 2 * osize + 1;
float *col2 = col_data + 2 * oosize + 2 * osize;
float *col3 = col_data + 3 * oosize + osize + 2;
float *col4 = col_data + 4 * oosize + osize + 1;
float *col5 = col_data + 5 * oosize + osize;
float *col6 = col_data + 6 * oosize + 2;
float *col7 = col_data + 7 * oosize + 1;
float *col8 = col_data + 8 * oosize;
float32x4_t im1;
const float *im_tmp_data = im_data + osize + 1;
int rrsize = oosize - osize - 1;
int nr4 = rrsize / 4;
int mr4 = rrsize % 4;
for (int i = 0; i < nr4; ++i) {
im1 = vld1q_f32(im_tmp_data);
vst1q_f32(col0, im1);
vst1q_f32(col1, im1);
vst1q_f32(col2, im1);
vst1q_f32(col3, im1);
vst1q_f32(col4, im1);
vst1q_f32(col5, im1);
vst1q_f32(col6, im1);
vst1q_f32(col7, im1);
vst1q_f32(col8, im1);
for (int i = 0; i < mk4; i++) {
*col0 = *im_tmp_data;
*col1 = *im_tmp_data;
*col2 = *im_tmp_data;
*col3 = *im_tmp_data;
*col4 = *im_tmp_data;
*col5 = *im_tmp_data;
col0++;
col1++;
col2++;
col3++;
col4++;
col5++;
im_tmp_data++;
}
// fill 0 1 11;
for (int i = 0; i < osize; ++i) {
col_data[0 * oosize + i * osize] = 0.0;
col_data[3 * oosize + i * osize] = 0.0;
col_data[6 * oosize + i * osize] = 0.0;
col_data[2 * oosize + osize - 1 + i * osize] = 0.0;
col_data[5 * oosize + osize - 1 + i * osize] = 0.0;
col_data[8 * oosize + osize - 1 + i * osize] = 0.0;
}
col_data[0 * oosize + osize + 1] = im_data[0];
col_data[3 * oosize + 1] = im_data[0];
col_data[6 * oosize + 1] = im_data[osize];
col_data[1 * oosize + osize] = im_data[0];
col_data[4 * oosize] = im_data[0];
col_data[7 * oosize] = im_data[osize];
float32x4_t zero4;
zero4 = vdupq_n_f32(0.0);
auto col_z0 = col_data;
auto col_z1 = col_data + oosize;
auto col_z2 = col_data + 2 * oosize;
auto col_z6 = col_data + 6 * oosize + osize * (osize - 1);
auto col_z7 = col_data + 7 * oosize + osize * (osize - 1);
auto col_z8 = col_data + 8 * oosize + osize * (osize - 1);
for (int i = 0; i < nk4; ++i) {
vst1q_f32(col_z0, zero4);
vst1q_f32(col_z1, zero4);
vst1q_f32(col_z2, zero4);
vst1q_f32(col_z6, zero4);
vst1q_f32(col_z7, zero4);
vst1q_f32(col_z8, zero4);
col_z0 += 4;
col_z1 += 4;
col_z2 += 4;
col_z6 += 4;
col_z7 += 4;
col_z8 += 4;
}
for (int i = 0; i < mk4; ++i) {
col_z0[i] = 0.0;
col_z1[i] = 0.0;
col_z2[i] = 0.0;
col_z6[i] = 0.0;
col_z7[i] = 0.0;
col_z8[i] = 0.0;
}
col_data += 9 * oosize;
im_data += isize * isize;
}
} else if (stride[0] == 2 && filter_height == 3 && pad1 && dilation[0] == 1 &&
im_height > 2 && im_height == im_width) {
for (int c = 0; c < im_channels; ++c) {
int oosize = osize * osize;
int nk4 = osize / 4;
int mk4 = osize % 4;
// 3 2 3 1 0 1 3 2 3
float *col0 = col_data + 0 * oosize + osize + 1;
float *col1 = col_data + 1 * oosize + osize;
float *col2 = col_data + 2 * oosize + osize;
float *col3 = col_data + 3 * oosize + 1;
float *col4 = col_data + 4 * oosize;
float *col5 = col_data + 5 * oosize;
float *col6 = col_data + 6 * oosize + 1;
float *col7 = col_data + 7 * oosize;
float *col8 = col_data + 8 * oosize;
float32x4x2_t im01;
float32x4x2_t im23;
const float *im_tmp_data0 = im_data;
const float *im_tmp_data2 = im_data + isize;
for (int j = 0; j < osize; ++j) {
for (int i = 0; i < nk4; ++i) {
im01 = vld2q_f32(im_tmp_data0);
im23 = vld2q_f32(im_tmp_data2);
vst1q_f32(col0, im23.val[1]);
vst1q_f32(col1, im23.val[0]);
vst1q_f32(col2, im23.val[1]);
vst1q_f32(col3, im01.val[1]);
vst1q_f32(col4, im01.val[0]);
vst1q_f32(col5, im01.val[1]);
vst1q_f32(col6, im23.val[1]);
vst1q_f32(col7, im23.val[0]);
vst1q_f32(col8, im23.val[1]);
col0 += 4;
col1 += 4;
......@@ -124,18 +273,21 @@ class Im2ColFunctor<ColFormat::kCFO, CPU, T> {
col7 += 4;
col8 += 4;
im_tmp_data += 4;
im_tmp_data0 += 8;
im_tmp_data2 += 8;
}
for (int i = 0; i < mr4; ++i) {
*col0 = *im_tmp_data;
*col1 = *im_tmp_data;
*col2 = *im_tmp_data;
*col3 = *im_tmp_data;
*col4 = *im_tmp_data;
*col5 = *im_tmp_data;
*col6 = *im_tmp_data;
*col7 = *im_tmp_data;
*col8 = *im_tmp_data;
const float *im_tmp_data1 = im_tmp_data0 + 1;
const float *im_tmp_data3 = im_tmp_data2 + 1;
for (int i = 0; i < mk4; ++i) {
*col0 = *im_tmp_data3;
*col1 = *im_tmp_data2;
*col2 = *im_tmp_data3;
*col3 = *im_tmp_data1;
*col4 = *im_tmp_data0;
*col5 = *im_tmp_data1;
*col6 = *im_tmp_data3;
*col7 = *im_tmp_data2;
*col8 = *im_tmp_data3;
col0++;
col1++;
......@@ -146,271 +298,215 @@ class Im2ColFunctor<ColFormat::kCFO, CPU, T> {
col6++;
col7++;
col8++;
im_tmp_data++;
im_tmp_data0 += 2;
im_tmp_data1 += 2;
im_tmp_data2 += 2;
im_tmp_data3 += 2;
}
im_tmp_data = im_data + 1;
col0 = col_data + 0 * oosize + osize + 2;
col1 = col_data + 1 * oosize + osize + 1;
col2 = col_data + 2 * oosize + osize;
col3 = col_data + 3 * oosize + 2;
col4 = col_data + 4 * oosize + 1;
col5 = col_data + 5 * oosize;
for (int i = 0; i < nk4; i++) {
im1 = vld1q_f32(im_tmp_data);
vst1q_f32(col0, im1);
vst1q_f32(col1, im1);
vst1q_f32(col2, im1);
vst1q_f32(col3, im1);
vst1q_f32(col4, im1);
vst1q_f32(col5, im1);
col0 += 4;
col1 += 4;
col2 += 4;
col3 += 4;
col4 += 4;
col5 += 4;
im_tmp_data += 4;
}
for (int i = 0; i < mk4; i++) {
*col0 = *im_tmp_data;
*col1 = *im_tmp_data;
*col2 = *im_tmp_data;
*col3 = *im_tmp_data;
*col4 = *im_tmp_data;
*col5 = *im_tmp_data;
col0++;
col1++;
col2++;
col3++;
col4++;
col5++;
im_tmp_data++;
}
// fill 0 1 11;
for (int i = 0; i < osize; ++i) {
col_data[0 * oosize + i * osize] = 0.0;
col_data[3 * oosize + i * osize] = 0.0;
col_data[6 * oosize + i * osize] = 0.0;
im_tmp_data0 += (isize - fill);
im_tmp_data2 += (isize - fill);
}
for (int i = 0; i < osize; ++i) {
col_data[0 * oosize + i * osize] = 0.0;
col_data[3 * oosize + i * osize] = 0.0;
col_data[6 * oosize + i * osize] = 0.0;
if (pad2) {
col_data[2 * oosize + osize - 1 + i * osize] = 0.0;
col_data[5 * oosize + osize - 1 + i * osize] = 0.0;
col_data[8 * oosize + osize - 1 + i * osize] = 0.0;
}
col_data[0 * oosize + osize + 1] = im_data[0];
col_data[3 * oosize + 1] = im_data[0];
col_data[6 * oosize + 1] = im_data[osize];
col_data[1 * oosize + osize] = im_data[0];
col_data[4 * oosize] = im_data[0];
col_data[7 * oosize] = im_data[osize];
float32x4_t zero4;
zero4 = vdupq_n_f32(0.0);
auto col_z0 = col_data;
auto col_z1 = col_data + oosize;
auto col_z2 = col_data + 2 * oosize;
auto col_z6 = col_data + 6 * oosize + osize * (osize - 1);
auto col_z7 = col_data + 7 * oosize + osize * (osize - 1);
auto col_z8 = col_data + 8 * oosize + osize * (osize - 1);
for (int i = 0; i < nk4; ++i) {
vst1q_f32(col_z0, zero4);
vst1q_f32(col_z1, zero4);
vst1q_f32(col_z2, zero4);
}
float32x4_t zero4;
zero4 = vdupq_n_f32(0.0);
auto col_z0 = col_data;
auto col_z1 = col_data + oosize;
auto col_z2 = col_data + 2 * oosize;
auto col_z6 = col_data + 6 * oosize + osize * (osize - 1);
auto col_z7 = col_data + 7 * oosize + osize * (osize - 1);
auto col_z8 = col_data + 8 * oosize + osize * (osize - 1);
for (int i = 0; i < nk4; ++i) {
vst1q_f32(col_z0, zero4);
vst1q_f32(col_z1, zero4);
vst1q_f32(col_z2, zero4);
if (pad2) {
vst1q_f32(col_z6, zero4);
vst1q_f32(col_z7, zero4);
vst1q_f32(col_z8, zero4);
col_z0 += 4;
col_z1 += 4;
col_z2 += 4;
col_z6 += 4;
col_z7 += 4;
col_z8 += 4;
}
col_z0 += 4;
col_z1 += 4;
col_z2 += 4;
col_z6 += 4;
col_z7 += 4;
col_z8 += 4;
}
for (int i = 0; i < mk4; ++i) {
col_z0[i] = 0.0;
col_z1[i] = 0.0;
col_z2[i] = 0.0;
for (int i = 0; i < mk4; ++i) {
col_z0[i] = 0.0;
col_z1[i] = 0.0;
col_z2[i] = 0.0;
if (pad2) {
col_z6[i] = 0.0;
col_z7[i] = 0.0;
col_z8[i] = 0.0;
}
col_data += 9 * oosize;
im_data += isize * isize;
}
} else if (stride[0] == 2 && filter_height == 3 && pad1 &&
dilation[0] == 1 && im_height > 2 && im_height == im_width) {
for (int c = 0; c < im_channels; ++c) {
int oosize = osize * osize;
int nk4 = osize / 4;
int mk4 = osize % 4;
// 3 2 3 1 0 1 3 2 3
float *col0 = col_data + 0 * oosize + osize + 1;
float *col1 = col_data + 1 * oosize + osize;
float *col2 = col_data + 2 * oosize + osize;
float *col3 = col_data + 3 * oosize + 1;
float *col4 = col_data + 4 * oosize;
float *col5 = col_data + 5 * oosize;
float *col6 = col_data + 6 * oosize + 1;
float *col7 = col_data + 7 * oosize;
float *col8 = col_data + 8 * oosize;
float32x4x2_t im01;
float32x4x2_t im23;
const float *im_tmp_data0 = im_data;
const float *im_tmp_data2 = im_data + isize;
for (int j = 0; j < osize; ++j) {
for (int i = 0; i < nk4; ++i) {
im01 = vld2q_f32(im_tmp_data0);
im23 = vld2q_f32(im_tmp_data2);
vst1q_f32(col0, im23.val[1]);
vst1q_f32(col1, im23.val[0]);
vst1q_f32(col2, im23.val[1]);
vst1q_f32(col3, im01.val[1]);
vst1q_f32(col4, im01.val[0]);
vst1q_f32(col5, im01.val[1]);
vst1q_f32(col6, im23.val[1]);
vst1q_f32(col7, im23.val[0]);
vst1q_f32(col8, im23.val[1]);
col0 += 4;
col1 += 4;
col2 += 4;
col3 += 4;
col4 += 4;
col5 += 4;
col6 += 4;
col7 += 4;
col8 += 4;
im_tmp_data0 += 8;
im_tmp_data2 += 8;
}
const float *im_tmp_data1 = im_tmp_data0 + 1;
const float *im_tmp_data3 = im_tmp_data2 + 1;
for (int i = 0; i < mk4; ++i) {
*col0 = *im_tmp_data3;
*col1 = *im_tmp_data2;
*col2 = *im_tmp_data3;
*col3 = *im_tmp_data1;
*col4 = *im_tmp_data0;
*col5 = *im_tmp_data1;
*col6 = *im_tmp_data3;
*col7 = *im_tmp_data2;
*col8 = *im_tmp_data3;
col0++;
col1++;
col2++;
col3++;
col4++;
col5++;
col6++;
col7++;
col8++;
im_tmp_data0 += 2;
im_tmp_data1 += 2;
im_tmp_data2 += 2;
im_tmp_data3 += 2;
}
im_tmp_data0 += (isize - fill);
im_tmp_data2 += (isize - fill);
}
for (int i = 0; i < osize; ++i) {
col_data[0 * oosize + i * osize] = 0.0;
col_data[3 * oosize + i * osize] = 0.0;
col_data[6 * oosize + i * osize] = 0.0;
if (pad2) {
col_data[2 * oosize + osize - 1 + i * osize] = 0.0;
col_data[5 * oosize + osize - 1 + i * osize] = 0.0;
col_data[8 * oosize + osize - 1 + i * osize] = 0.0;
}
}
float32x4_t zero4;
zero4 = vdupq_n_f32(0.0);
auto col_z0 = col_data;
auto col_z1 = col_data + oosize;
auto col_z2 = col_data + 2 * oosize;
auto col_z6 = col_data + 6 * oosize + osize * (osize - 1);
auto col_z7 = col_data + 7 * oosize + osize * (osize - 1);
auto col_z8 = col_data + 8 * oosize + osize * (osize - 1);
for (int i = 0; i < nk4; ++i) {
vst1q_f32(col_z0, zero4);
vst1q_f32(col_z1, zero4);
vst1q_f32(col_z2, zero4);
if (pad2) {
vst1q_f32(col_z6, zero4);
vst1q_f32(col_z7, zero4);
vst1q_f32(col_z8, zero4);
}
col_z0 += 4;
col_z1 += 4;
col_z2 += 4;
col_z6 += 4;
col_z7 += 4;
col_z8 += 4;
}
col_data[1 * oosize + osize] = im_data[isize];
for (int i = 1; i < osize; ++i) {
col_data[3 * oosize + i] = im_data[(i - 1) * stride[0] + 1];
}
col_data[4 * oosize] = im_data[0];
col_data[7 * oosize] = im_data[isize];
for (int i = 0; i < mk4; ++i) {
col_z0[i] = 0.0;
col_z1[i] = 0.0;
col_z2[i] = 0.0;
if (pad2) {
col_z6[i] = 0.0;
col_z7[i] = 0.0;
col_z8[i] = 0.0;
}
}
col_data += 9 * oosize;
im_data += isize * isize;
}
} else {
for (int c = 0; c < channels_col; ++c) {
int w_offset = c % filter_width;
int h_offset = (c / filter_width) % filter_height;
int c_im = c / (filter_width * filter_height);
for (int h = 0; h < col_height; ++h) {
int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0];
for (int w = 0; w < col_width; ++w) {
int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1];
int col_idx = (c * col_height + h) * col_width + w;
int im_idx = (im_row_idx + c_im * im_height) * im_width + im_col_idx;
col_data[1 * oosize + osize] = im_data[isize];
for (int i = 1; i < osize; ++i) {
col_data[3 * oosize + i] = im_data[(i - 1) * stride[0] + 1];
col_data[col_idx] = (im_row_idx < 0 || im_row_idx >= im_height ||
im_col_idx < 0 || im_col_idx >= im_width)
? static_cast<float>(0)
: im_data[im_idx];
}
col_data[4 * oosize] = im_data[0];
col_data[7 * oosize] = im_data[isize];
col_data += 9 * oosize;
im_data += isize * isize;
}
}
}
#else
for (int c = 0; c < channels_col; ++c) {
int w_offset = c % filter_width;
int h_offset = (c / filter_width) % filter_height;
int c_im = c / (filter_width * filter_height);
for (int h = 0; h < col_height; ++h) {
int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0];
for (int w = 0; w < col_width; ++w) {
int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1];
int col_idx = (c * col_height + h) * col_width + w;
int im_idx = (im_row_idx + c_im * im_height) * im_width + im_col_idx;
col_data[col_idx] = (im_row_idx < 0 || im_row_idx >= im_height ||
im_col_idx < 0 || im_col_idx >= im_width)
? static_cast<float>(0)
: im_data[im_idx];
}
}
}
#endif
}
void ExtractToImg(const int8_t *im_data, int8_t *col_data, const int im_height,
const int im_width, const int col_height, const int col_width,
const int padding_h, const int padding_w, const int stride_h,
const int stride_w, const int kh, const int kw) {
int h = padding_h - kh;
int w = padding_w - kw;
int col_start_height = h > 0 ? (h + stride_h - 1) / stride_h : 0;
int col_start_width = w > 0 ? (w + stride_w - 1) / stride_w : 0;
int start_height = kh + col_start_height * stride_h - padding_h;
int start_width = kw + col_start_width * stride_w - padding_w;
int end_height = (col_height - col_start_height) * stride_h + start_height;
end_height = end_height > im_height ? im_height : end_height;
int end_width = (col_width - col_start_width) * stride_w + start_width;
end_width = end_width > im_width ? im_width : end_width;
int extract = (end_width - start_width + stride_w - 1) / stride_w;
im_data += start_height * im_width + start_width;
col_data += col_start_height * col_width + col_start_width;
for (int i = start_height; i < end_height; i += stride_h) {
if (stride_w == 1) {
memcpy(col_data, im_data, extract * sizeof(int8_t));
} else if (stride_w == 2) {
int s = 0;
#if __ARM_NEON
for (; s < extract - 15; s += 16) {
int8x16x2_t img = vld2q_s8(im_data + s * 2);
vst1q_s8(col_data + s, img.val[0]);
}
#endif
for (; s < extract; ++s) {
col_data[s] = im_data[s * 2];
}
} else if (stride_w == 3) {
int s = 0;
#if __ARM_NEON
for (; s < extract - 15; s += 16) {
int8x16x3_t img = vld3q_s8(im_data + s * 3);
vst1q_s8(col_data + s, img.val[0]);
}
#endif
for (; s < extract; ++s) {
col_data[s] = im_data[s * 3];
}
} else if (stride_w == 4) {
int s = 0;
#if __ARM_NEON
for (; s < extract - 15; s += 16) {
int8x16x4_t img = vld4q_s8(im_data + s * 4);
vst1q_s8(col_data + s, img.val[0]);
}
#endif
for (; s < extract; ++s) {
col_data[s] = im_data[s * 4];
}
} else {
for (int c = 0; c < channels_col; ++c) {
int w_offset = c % filter_width;
int h_offset = (c / filter_width) % filter_height;
int c_im = c / (filter_width * filter_height);
for (int h = 0; h < col_height; ++h) {
int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0];
for (int w = 0; w < col_width; ++w) {
int im_col_idx =
w * stride[1] - padding[1] + w_offset * dilation[1];
int col_idx = (c * col_height + h) * col_width + w;
int im_idx =
(im_row_idx + c_im * im_height) * im_width + im_col_idx;
col_data[col_idx] = (im_row_idx < 0 || im_row_idx >= im_height ||
im_col_idx < 0 || im_col_idx >= im_width)
? static_cast<T>(0)
: im_data[im_idx];
}
PADDLE_MOBILE_THROW_EXCEPTION("stride_w must be one of 1, 2, 3 and 4.");
}
im_data += im_width * stride_h;
col_data += col_width;
}
}
/*
* im = [input_channels, input_height, input_width]
* col =
* [input_channels, filter_height, filter_width, output_height,
* output_width]
*/
template <>
void Im2ColFunctor<ColFormat::kCFO, CPU, int8_t>::operator()(
const framework::Tensor &im, const std::vector<int> &dilation,
const std::vector<int> &stride, const std::vector<int> &padding,
framework::Tensor *col) {
int im_channels = im.dims()[0];
int im_height = im.dims()[1];
int im_width = im.dims()[2];
int filter_height = col->dims()[1];
int filter_width = col->dims()[2];
int col_height = col->dims()[3];
int col_width = col->dims()[4];
int channels_col = im_channels * filter_height * filter_width;
const int8_t *im_data = im.data<int8_t>();
int8_t *col_data = col->data<int8_t>();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
if (stride[0] <= 4 && dilation[0] == 1 && dilation[0] == dilation[1]) {
// pad 0
memset(col_data, 0, col->numel() * sizeof(int8_t));
for (int ic = 0; ic < im_channels; ++ic) {
for (int kh = 0; kh < filter_height; ++kh) {
for (int kw = 0; kw < filter_width; ++kw) {
ExtractToImg(im_data, col_data, im_height, im_width, col_height,
col_width, padding[0], padding[1], stride[0], stride[1],
kh, kw);
col_data += col_height * col_width;
}
}
im_data += im_height * im_width;
}
#else
} else {
#endif
for (int c = 0; c < channels_col; ++c) {
int w_offset = c % filter_width;
int h_offset = (c / filter_width) % filter_height;
......@@ -424,14 +520,15 @@ class Im2ColFunctor<ColFormat::kCFO, CPU, T> {
col_data[col_idx] = (im_row_idx < 0 || im_row_idx >= im_height ||
im_col_idx < 0 || im_col_idx >= im_width)
? static_cast<T>(0)
? static_cast<int8_t>(0)
: im_data[im_idx];
}
}
}
#endif
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
}
};
#endif
}
/*
* im = [input_channels, input_height, input_width]
......@@ -456,27 +553,6 @@ class Col2ImFunctor<ColFormat::kCFO, CPU, T> {
int col_height = col.dims()[3];
int col_width = col.dims()[4];
// PADDLE_ENFORCE_EQ((im_height + padding[0] + padding[2]
// -
// ((dilation[0] * (filter_height - 1)
// + 1))) /
// stride[0] +
// 1,
// col_height,
// "Output_height and
// padding(padding_up, padding_down)
// are " "inconsistent.");
// PADDLE_ENFORCE_EQ((im_width + padding[1] + padding[3]
// -
// ((dilation[1] * (filter_width - 1)
// + 1))) /
// stride[1] +
// 1,
// col_width,
// "Output_height and
// padding(padding_up, padding_down)
// are " "inconsistent.");
int channels_col = im_channels * filter_height * filter_width;
T *im_data = im->data<T>();
......@@ -503,9 +579,9 @@ class Col2ImFunctor<ColFormat::kCFO, CPU, T> {
};
template class Im2ColFunctor<ColFormat::kCFO, CPU, float>;
// template class Im2ColFunctor<ColFormat::kCFO, CPU, double>;
template class Im2ColFunctor<ColFormat::kCFO, CPU, int8_t>;
template class Col2ImFunctor<ColFormat::kCFO, CPU, float>;
template class Col2ImFunctor<ColFormat::kCFO, CPU, double>;
template class Col2ImFunctor<ColFormat::kCFO, CPU, int8_t>;
/*
* im = [input_channels, input_height, input_width]
......@@ -519,8 +595,6 @@ class Im2ColFunctor<ColFormat::kOCF, CPU, T> {
void operator()(const framework::Tensor &im, const std::vector<int> &dilation,
const std::vector<int> &stride,
const std::vector<int> &padding, framework::Tensor *col) {
// PADDLE_ENFORCE(im.dims().size() == 3);
// PADDLE_ENFORCE(col->dims().size() == 5);
int im_channels = im.dims()[0];
int im_height = im.dims()[1];
int im_width = im.dims()[2];
......@@ -528,18 +602,6 @@ class Im2ColFunctor<ColFormat::kOCF, CPU, T> {
int filter_width = col->dims()[4];
int col_height = col->dims()[0];
int col_width = col->dims()[1];
// PADDLE_ENFORCE_EQ(
// (im_height + padding[0] + padding[2] -
// filter_height) / stride[0]
// + 1, col_height, "Output_height and
// padding(padding_up,
// padding_down) are " "inconsistent.");
// PADDLE_ENFORCE_EQ(
// (im_width + padding[1] + padding[3] -
// filter_width) / stride[1] +
// 1, col_width, "col_width and padding(padding_left,
// padding_right)
// are " "inconsistent.");
const T *im_data = im.data<T>();
T *col_data = col->data<T>();
......@@ -589,8 +651,6 @@ class Col2ImFunctor<ColFormat::kOCF, CPU, T> {
const std::vector<int> &dilation,
const std::vector<int> &stride,
const std::vector<int> &padding, framework::Tensor *im) {
// PADDLE_ENFORCE(im->dims().size() == 3);
// PADDLE_ENFORCE(col.dims().size() == 5);
int im_channels = im->dims()[0];
int im_height = im->dims()[1];
int im_width = im->dims()[2];
......@@ -599,19 +659,6 @@ class Col2ImFunctor<ColFormat::kOCF, CPU, T> {
int col_height = col.dims()[0];
int col_width = col.dims()[1];
// PADDLE_ENFORCE_EQ(
// (im_height + padding[0] + padding[2] -
// filter_height) / stride[0]
// + 1, col_height, "Output_height and
// padding(padding_up,
// padding_down) are " "inconsistent.");
// PADDLE_ENFORCE_EQ(
// (im_width + padding[1] + padding[3] -
// filter_width) / stride[1] +
// 1, col_width, "col_width and padding(padding_left,
// padding_right)
// are " "inconsistent.");
T *im_data = im->data<T>();
const T *col_data = col.data<T>();
......@@ -651,9 +698,7 @@ class Col2ImFunctor<ColFormat::kOCF, CPU, T> {
};
template class Im2ColFunctor<ColFormat::kOCF, CPU, float>;
template class Im2ColFunctor<ColFormat::kOCF, CPU, double>;
template class Col2ImFunctor<ColFormat::kOCF, CPU, float>;
template class Col2ImFunctor<ColFormat::kOCF, CPU, double>;
} // namespace math
} // namespace operators
......
......@@ -15,12 +15,31 @@ limitations under the License. */
#include "operators/math/math_function.h"
#include <cstring>
#include <string>
#include "framework/data_type.h"
#include "framework/tensor.h"
#include "operators/math/gemm.h"
namespace paddle_mobile {
namespace operators {
namespace math {
struct TensorSetConstant {
TensorSetConstant(framework::Tensor *tensor, float value)
: tensor_(tensor), value_(value) {}
template <typename T>
void apply() const {
auto *begin = tensor_->mutable_data<T>();
std::fill(begin, begin + tensor_->numel(), static_cast<T>(value_));
}
framework::Tensor *tensor_;
float value_;
};
void set_constant(framework::Tensor *tensor, float value) {
framework::VisitDataType(framework::ToDataType(tensor->type()),
TensorSetConstant(tensor, value));
}
template <>
void matmul<float>(const framework::Tensor &matrix_a, bool trans_a,
const framework::Tensor &matrix_b, bool trans_b, float alpha,
......@@ -135,7 +154,7 @@ template <typename T>
struct ClearTensor<CPU, T> {
void operator()(framework::Tensor *tensor) {
auto size = tensor->numel();
auto *tensor_data = tensor->data<float>();
auto *tensor_data = tensor->data<T>();
memset((void *)tensor_data, 0, sizeof(T) * size); // NOLINT
}
};
......@@ -151,9 +170,9 @@ struct RowwiseAdd<CPU, T> {
PADDLE_MOBILE_ENFORCE((output->dims() == in_dims),
"output->dims() must be equal to in_dims.");
auto *input_data = input.data<float>();
auto *out_data = output->data<float>();
auto *vec_data = vector.data<float>();
auto *input_data = input.data<T>();
auto *out_data = output->data<T>();
auto *vec_data = vector.data<T>();
for (int64_t i = 0; i < in_dims[0]; ++i) {
for (int64_t j = 0; j < size; ++j) {
out_data[i * size + j] = input_data[i * size + j] + vec_data[j];
......
......@@ -15,17 +15,20 @@ limitations under the License. */
#pragma once
#include <cmath>
#include <string>
#include "framework/tensor.h"
namespace paddle_mobile {
namespace operators {
namespace math {
void set_constant(framework::Tensor *tensor, float value);
template <typename T>
void matmul(const framework::Tensor &matrix_a, bool trans_a,
const framework::Tensor &matrix_b, bool trans_b, T alpha,
framework::Tensor *matrix_out, T beta, bool relu = false,
float *bias = nullptr);
T *bias = nullptr);
template <typename T>
void matmulWithBn(const framework::Tensor &matrix_a, bool trans_a,
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cstring>
#include <string>
#include "operators/math/gemm.h"
#include "operators/math/math_function.h"
namespace paddle_mobile {
namespace operators {
namespace math {
template <>
void matmul<int8_t>(const framework::Tensor &matrix_a, bool trans_a,
const framework::Tensor &matrix_b, bool trans_b,
int8_t alpha, framework::Tensor *matrix_out, int8_t beta,
bool relu, int8_t *bias) {
auto dim_a = matrix_a.dims();
auto dim_b = matrix_b.dims();
auto dim_out = matrix_out->dims();
PADDLE_MOBILE_ENFORCE(
dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
"The input and output of matmul be matrix");
int32_t M = dim_out[0];
int32_t N = dim_out[1];
int32_t K = (!trans_a) ? dim_a[1] : dim_a[0];
Gemm gemm;
if (trans_a) {
int32_t numel = matrix_a.numel();
int32_t m = matrix_a.dims()[0];
int32_t n = matrix_a.dims()[1];
int8_t *tmp = (int8_t *)(matrix_a.data<int8_t>()); // NOLINT
int8_t *a = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * numel));
int32_t index = 0;
for (int32_t j = 0; j < n; j++) {
for (int32_t i = 0; i < m; i++) {
a[index++] = tmp[i * n + j];
}
}
gemm.Sgemm(M, N, K, alpha, a, K, matrix_b.data<int8_t>(), N, beta,
matrix_out->data<int32_t>(), N, relu, bias);
} else {
gemm.Sgemm(M, N, K, alpha, matrix_a.data<int8_t>(), K,
matrix_b.data<int8_t>(), N, beta, matrix_out->data<int32_t>(), N,
relu, bias);
}
}
} // namespace math
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/math/pad.h"
namespace paddle_mobile {
namespace operators {
namespace math {
template <typename T>
class PadFunctor<CPU, T> {
public:
void operator()(const framework::Tensor &input, const int pad_h,
const int pad_w, framework::Tensor *output) {
const T *in_data = input.data<T>();
T *out_data = output->mutable_data<T>();
const framework::DDim &input_shape = input.dims();
const framework::DDim &output_shape = output->dims();
// fill output with 0
memset(out_data, 0, sizeof(T) * output->numel());
// should make sure the shape of output is match with input
for (int i = 0; i < input_shape[0]; ++i) {
for (int c = 0; c < input_shape[1]; ++c) {
out_data += pad_h * output_shape[3];
for (int h = 0; h < input_shape[2]; ++h) {
memcpy(out_data + pad_w, in_data, sizeof(T) * input_shape[3]);
out_data += output_shape[3];
in_data += input_shape[3];
}
out_data += pad_h * output_shape[3];
}
}
}
};
template class PadFunctor<CPU, float>;
template class PadFunctor<CPU, int8_t>;
} // namespace math
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "framework/tensor.h"
namespace paddle_mobile {
namespace operators {
namespace math {
template <typename DeviceType, typename T>
class PadFunctor {
public:
void operator()(const framework::Tensor &input, const int pad_h,
const int pad_w, framework::Tensor *output);
};
} // namespace math
} // namespace operators
} // namespace paddle_mobile
......@@ -32,9 +32,6 @@ class Vol2ColFunctor<CPU, T> {
void operator()(const Tensor &vol, const std::vector<int> &dilations,
const std::vector<int> &strides,
const std::vector<int> &paddings, Tensor *col) const {
// PADDLE_ENFORCE(vol.dims().size() == 4);
// PADDLE_ENFORCE(col->dims().size() == 7);
int input_channels = vol.dims()[0];
int input_depth = vol.dims()[1];
int input_height = vol.dims()[2];
......@@ -48,32 +45,6 @@ class Vol2ColFunctor<CPU, T> {
int channels_col =
input_channels * filter_depth * filter_height * filter_width;
// PADDLE_ENFORCE_EQ((input_depth + 2 * paddings[0] -
// ((dilations[0] * (filter_depth - 1)
// + 1))) /
// strides[0] +
// 1,
// output_depth,
// "input_depth and output_depth are "
// "mismatching.");
// PADDLE_ENFORCE_EQ((input_height + 2 * paddings[1] -
// ((dilations[1] * (filter_height -
// 1) + 1))) /
// strides[1] +
// 1,
// output_height,
// "input_height and output_height are
// "
// "mismatching.");
// PADDLE_ENFORCE_EQ((input_width + 2 * paddings[2] -
// ((dilations[2] * (filter_width - 1)
// + 1))) /
// strides[2] +
// 1,
// output_width,
// "input_width and output_width are "
// "mismatching.");
const T *vol_data = vol.data<T>();
T *col_data = col->data<T>();
......@@ -119,9 +90,6 @@ class Col2VolFunctor<CPU, T> {
void operator()(const Tensor &col, const std::vector<int> &dilations,
const std::vector<int> &strides,
const std::vector<int> &paddings, Tensor *vol) const {
// PADDLE_ENFORCE(vol->dims().size() == 4);
// PADDLE_ENFORCE(col.dims().size() == 7);
int input_channels = vol->dims()[0];
int input_depth = vol->dims()[1];
int input_height = vol->dims()[2];
......@@ -135,31 +103,6 @@ class Col2VolFunctor<CPU, T> {
int channels_col =
input_channels * filter_depth * filter_height * filter_width;
// PADDLE_ENFORCE_EQ((input_depth + 2 * paddings[0] -
// ((dilations[0] * (filter_depth - 1)
// + 1))) /
// strides[0] +
// 1,
// output_depth,
// "input_depth and output_depth are "
// "mismatching.");
// PADDLE_ENFORCE_EQ((input_height + 2 * paddings[1] -
// ((dilations[1] * (filter_height -
// 1) + 1))) /
// strides[1] +
// 1,
// output_height,
// "input_height and output_height are
// "
// "mismatching.");
// PADDLE_ENFORCE_EQ((input_width + 2 * paddings[2] -
// ((dilations[2] * (filter_width - 1)
// + 1))) /
// strides[2] +
// 1,
// output_width,
// "input_width and output_width are "
// "mismatching.");
T *vol_data = vol->data<T>();
const T *col_data = col.data<T>();
......@@ -195,9 +138,9 @@ class Col2VolFunctor<CPU, T> {
};
template class Vol2ColFunctor<CPU, float>;
template class Vol2ColFunctor<CPU, double>;
template class Vol2ColFunctor<CPU, int8_t>;
template class Col2VolFunctor<CPU, float>;
template class Col2VolFunctor<CPU, double>;
template class Col2VolFunctor<CPU, int8_t>;
} // namespace math
} // namespace operators
......
......@@ -546,11 +546,11 @@ class MulParam : OpParam {
#ifdef PADDLE_MOBILE_FPGA
private:
fpga::WrapperConvArgs fpga_conv_args;
fpga::SplitConvArgs fpga_conv_args;
public:
const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif
......@@ -999,6 +999,28 @@ class MultiClassNMSParam : public OpParam {
};
#endif
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
typedef typename DtypeTensorTrait<Dtype>::gtype GType;
typedef typename DtypeTensorTrait<Dtype>::rtype RType;
public:
PolygonBoxTransformParam(const VariableNameMap &inputs,
const VariableNameMap &outputs,
const AttributeMap &attrs, const Scope &scope) {
input_ = InputFrom<GType>(inputs, scope);
output_ = OutputFrom<GType>(outputs, scope);
}
const RType *Input() const { return input_; }
RType *Output() const { return output_; }
private:
RType *input_;
RType *output_;
};
#endif
template <typename Dtype>
class FeedParam : public OpParam {
typedef typename DtypeTensorTrait<Dtype>::gtype GType;
......@@ -1041,6 +1063,42 @@ class FetchParam : public OpParam {
RType *out_;
};
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
typedef typename DtypeTensorTrait<Dtype>::gtype GType;
typedef typename DtypeTensorTrait<Dtype>::rtype RType;
public:
FillConstantParam(const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs,
const Scope &scope) {
out_var_ = OutVarFrom(outputs, scope);
out_ = OutFrom<GType>(outputs, scope);
dtype_ = GetAttr<int>("dtype", attrs);
shape_ = GetAttr<vector<int>>("shape", attrs);
value_ = GetAttr<float>("value", attrs);
}
Variable *OutVar() const { return out_var_; }
RType *Out() const { return out_; }
const int &DataDtype() const { return dtype_; }
const vector<int> &Shape() const { return shape_; }
const float &Value() const { return value_; }
private:
Variable *out_var_;
RType *out_;
int dtype_;
vector<int> shape_;
float value_;
};
#endif
#ifdef TRANSPOSE_OP
template <typename Dtype>
class TransposeParam : public OpParam {
......@@ -1401,11 +1459,11 @@ class FusionFcParam : public OpParam {
#ifdef PADDLE_MOBILE_FPGA
private:
fpga::WrapperConvArgs fpga_conv_args;
fpga::SplitConvArgs fpga_conv_args;
public:
const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
#endif
};
......@@ -1441,11 +1499,11 @@ class FusionConvAddParam : public ConvParam<Dtype> {
#ifdef PADDLE_MOBILE_FPGA
private:
fpga::WrapperConvArgs fpga_conv_args;
fpga::SplitConvArgs fpga_conv_args;
public:
const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
#endif
};
......@@ -1496,11 +1554,11 @@ class FusionConvAddPReluParam : public ConvParam<Dtype> {
#ifdef PADDLE_MOBILE_FPGA
private:
fpga::WrapperConvArgs fpga_conv_args;
fpga::SplitConvArgs fpga_conv_args;
public:
const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif
......@@ -1554,11 +1612,11 @@ class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
#ifdef PADDLE_MOBILE_FPGA
private:
fpga::WrapperConvArgs fpga_conv_args;
fpga::SplitConvArgs fpga_conv_args;
public:
const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif
......@@ -1629,11 +1687,11 @@ class FusionConvAddBNReluParam : public ConvParam<Dtype> {
#ifdef PADDLE_MOBILE_FPGA
private:
fpga::WrapperConvArgs fpga_conv_args;
fpga::SplitConvArgs fpga_conv_args;
public:
const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif
......@@ -1715,11 +1773,11 @@ class FusionConvBNAddReluParam : public ConvParam<Dtype> {
#ifdef PADDLE_MOBILE_FPGA
private:
fpga::WrapperConvArgs fpga_conv_args;
fpga::SplitConvArgs fpga_conv_args;
public:
const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif
......@@ -1782,11 +1840,11 @@ class FusionConvBNParam : public ConvParam<Dtype> {
#ifdef PADDLE_MOBILE_FPGA
private:
fpga::WrapperConvArgs fpga_conv_args;
fpga::SplitConvArgs fpga_conv_args;
public:
const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif
......@@ -1857,11 +1915,11 @@ class FusionConvAddBNParam : public ConvParam<Dtype> {
#ifdef PADDLE_MOBILE_FPGA
private:
fpga::WrapperConvArgs fpga_conv_args;
fpga::SplitConvArgs fpga_conv_args;
public:
const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif
......@@ -1983,11 +2041,11 @@ class FusionConvBNReluParam : public ConvParam<Dtype> {
#ifdef PADDLE_MOBILE_FPGA
private:
fpga::WrapperConvArgs fpga_conv_args;
fpga::SplitConvArgs fpga_conv_args;
public:
const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif
......@@ -2272,6 +2330,7 @@ class ShapeParam : public OpParam {
};
#endif
#ifdef QUANT_OP
template <typename Dtype>
class QuantizeParam : public OpParam {
typedef typename DtypeTensorTrait<Dtype>::gtype GType;
......@@ -2282,14 +2341,12 @@ class QuantizeParam : public OpParam {
const AttributeMap &attrs, const Scope &scope) {
input_ = InputXFrom<GType>(inputs, scope);
out_ = OutFrom<GType>(outputs, scope);
if (HasAttr("is_static", attrs)) {
is_static_ = GetAttr<bool>("is_static", attrs);
}
// online
// scale = max(abs(x))
online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
// offline
if (HasAttr("static_scale", attrs)) {
is_static_ = true;
static_scale_ = GetAttr<float>("static_scale", attrs);
}
// x = round(scale * x)
......@@ -2311,9 +2368,11 @@ class QuantizeParam : public OpParam {
float static_scale_ = 1.0f;
// round method type
// nearest_zero and nearest_even is valid currently
RoundType round_type_ = ROUND_NEAREST_TO_EVEN;
RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
};
#endif
#ifdef DEQUANT_OP
template <typename Dtype>
class DequantizeParam : public OpParam {
typedef typename DtypeTensorTrait<Dtype>::gtype GType;
......@@ -2341,6 +2400,7 @@ class DequantizeParam : public OpParam {
RType *activation_scale_;
float weight_scale_;
};
#endif
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef POLYGONBOXTRANSFORM_OP
#include "operators/polygon_box_transform_op.h"
namespace paddle_mobile {
namespace operators {
template <typename Dtype, typename T>
void PolygonBoxTransformOp<Dtype, T>::InferShape() const {
PADDLE_MOBILE_ENFORCE(this->param_.Input() != nullptr,
"Input (Input) of get_shape op should not be null.");
PADDLE_MOBILE_ENFORCE(this->param_.Output() != nullptr,
"Output (Output) of get_shape op should not be null.");
auto input_dims = this->param_.Input()->dims();
PADDLE_MOBILE_ENFORCE(input_dims.size() == 4, "input's rank must be 4.");
PADDLE_MOBILE_ENFORCE(input_dims[1] % 2 == 0,
"input's second dimension must be even.");
this->param_.Output()->Resize(input_dims);
}
} // namespace operators
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(polygon_box_transform, ops::PolygonBoxTransformOp);
#endif
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef POLYGONBOXTRANSFORM_OP
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/polygon_box_transform_kernel.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
using paddle_mobile::framework::Tensor;
template <typename DeviceType, typename T>
class PolygonBoxTransformOp
: public framework::OperatorWithKernel<
DeviceType, PolygonBoxTransformParam<DeviceType>,
operators::PolygonBoxTransformKernel<DeviceType, T>> {
public:
PolygonBoxTransformOp(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<
DeviceType, PolygonBoxTransformParam<DeviceType>,
operators::PolygonBoxTransformKernel<DeviceType, T>>(
type, inputs, outputs, attrs, scope) {}
using framework::OperatorWithKernel<
DeviceType, PolygonBoxTransformParam<DeviceType>,
operators::PolygonBoxTransformKernel<DeviceType, T>>::OperatorWithKernel;
void InferShape() const override;
protected:
};
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef QUANT_OP
#include "operators/quantize_op.h"
#include <vector>
......@@ -33,3 +35,5 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(quantize, ops::QuantizeOp);
#endif
#endif
......@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef QUANT_OP
#pragma once
#include <string>
......@@ -40,3 +42,5 @@ class QuantizeOp : public framework::OperatorWithKernel<
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -26,7 +26,7 @@ void SumOp<Dtype, T>::InferShape() const {
auto inputs = this->param_.Inputs();
const size_t n = inputs.size();
std::vector<DDim> inputs_dims;
std::vector<framework::DDim> inputs_dims;
inputs_dims.reserve(n);
for (int i = 0; i < n; i++) {
inputs_dims.push_back(inputs[i]->dims());
......@@ -65,7 +65,6 @@ REGISTER_OPERATOR_CPU(sum, ops::SumOp);
REGISTER_OPERATOR_MALI_GPU(sum, ops::ConcatOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(sum, ops::ConcatOp);
#endif
#endif
......@@ -12,6 +12,9 @@ if (CON GREATER -1)
ADD_EXECUTABLE(test-googlenet net/test_googlenet.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-googlenet paddle-mobile)
# gen test
ADD_EXECUTABLE(test-googlenet-quali net/test_googlenet_quali.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-googlenet-quali paddle-mobile)
set(FOUND_MATCH ON)
endif ()
......@@ -61,38 +64,11 @@ endif ()
list(FIND NET "FPGAnets" CON)
if (CON GREATER -1)
ADD_EXECUTABLE(test-resnet net/test_resnet.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-resnet paddle-mobile)
ADD_EXECUTABLE(test-resnet50 fpga/test_resnet50.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-resnet50 paddle-mobile)
ADD_EXECUTABLE(test-fpga-EW fpga/test_fpga_EW.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-fpga-EW paddle-mobile)
ADD_EXECUTABLE(test-fpga-conv fpga/test_fpga_conv.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-fpga-conv paddle-mobile)
ADD_EXECUTABLE(test-fpga-pooling fpga/test_fpga_pooling.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-fpga-pooling paddle-mobile)
ADD_EXECUTABLE(test-fpga-bypass fpga/test_fpga_bypass.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-fpga-bypass paddle-mobile)
ADD_EXECUTABLE(test-fpga-softmax fpga/test_fpga_softmax.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-fpga-softmax paddle-mobile)
ADD_EXECUTABLE(test-fpga-concat fpga/test_fpga_concat.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-fpga-concat paddle-mobile)
ADD_EXECUTABLE(test-tensor-quant fpga/test_tensor_quant.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-tensor-quant paddle-mobile)
ADD_EXECUTABLE(test-fpga-concat-op fpga/test_concat_op.cpp test_helper.h test_include.h)
target_link_libraries(test-fpga-concat-op paddle-mobile)
ADD_EXECUTABLE(test-format-data fpga/test_format_data.cpp test_helper.h test_include.h)
target_link_libraries(test-format-data paddle-mobile)
# ADD_EXECUTABLE(test-resnet net/test_resnet.cpp test_helper.h test_include.h executor_for_test.h)
# target_link_libraries(test-resnet paddle-mobile)
set(FOUND_MATCH ON)
endif ()
......@@ -160,6 +136,10 @@ if (NOT FOUND_MATCH)
ADD_EXECUTABLE(test-googlenet net/test_googlenet.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-googlenet paddle-mobile)
# gen test
ADD_EXECUTABLE(test-googlenet-quali net/test_googlenet_quali.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-googlenet-quali paddle-mobile)
# gen test
ADD_EXECUTABLE(test-conv-op operators/test_cov_op.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-conv-op paddle-mobile)
......@@ -208,6 +188,14 @@ if (NOT FOUND_MATCH)
ADD_EXECUTABLE(test-multiclassnms-op operators/test_multiclass_nms_op.cpp test_helper.h test_include.h)
target_link_libraries(test-multiclassnms-op paddle-mobile)
# gen test
ADD_EXECUTABLE(test-polygon-box-transform-op operators/test_polygon_box_transform_op.cpp test_helper.h test_include.h)
target_link_libraries(test-polygon-box-transform-op paddle-mobile)
# gen test
ADD_EXECUTABLE(test-fill-constant-op operators/test_fill_constant_op.cpp test_helper.h test_include.h)
target_link_libraries(test-fill-constant-op paddle-mobile)
# gen test
ADD_EXECUTABLE(test-reshape-op operators/test_reshape_op.cpp test_helper.h test_include.h)
target_link_libraries(test-reshape-op paddle-mobile)
......@@ -232,6 +220,10 @@ if (NOT FOUND_MATCH)
ADD_EXECUTABLE(test-dequantize-op operators/test_dequantize_op.cpp test_helper.h test_include.h)
target_link_libraries(test-dequantize-op paddle-mobile)
# test int8 conv op
ADD_EXECUTABLE(test-int8-conv-op operators/test_int8_conv_op.cpp test_helper.h test_include.h)
target_link_libraries(test-int8-conv-op paddle-mobile)
# gen test log
ADD_EXECUTABLE(test-log common/test_log.cpp)
target_link_libraries(test-log paddle-mobile)
......@@ -244,6 +236,10 @@ if (NOT FOUND_MATCH)
ADD_EXECUTABLE(test-loadmemory framework/test_load_memory.cpp)
target_link_libraries(test-loadmemory paddle-mobile)
# gen test log
ADD_EXECUTABLE(test-loadmemory-inference framework/test_load_memory_inference_api.cpp)
target_link_libraries(test-loadmemory-inference paddle-mobile)
ADD_EXECUTABLE(test-inference-api framework/test_inference_api.cpp)
target_link_libraries(test-inference-api paddle-mobile)
......@@ -266,6 +262,10 @@ if (NOT FOUND_MATCH)
ADD_EXECUTABLE(test-gemm-accuracy common/test_gemm_accuracy.cpp)
target_link_libraries(test-gemm-accuracy paddle-mobile)
# gen test
ADD_EXECUTABLE(test-gemm-int8-accuracy common/test_gemm_int8_accuracy.cpp)
target_link_libraries(test-gemm-int8-accuracy paddle-mobile)
# gen test
ADD_EXECUTABLE(test-gemm-perf common/test_gemm_perf.cpp)
target_link_libraries(test-gemm-perf paddle-mobile)
......
......@@ -84,7 +84,7 @@ int do_sgemm(int m, int n, int k, bool relu, int t1, int t2, int pr) {
}
paddle_mobile::operators::math::Gemm gemm;
gemm.SgemmWithBn(m, n, k, 0.9, a, lda, b, ldb, 0.3, c, ldc, relu, scale, bias,
gemm.SgemmWithBn(m, n, k, 1, a, lda, b, ldb, 0.3, c, ldc, relu, scale, bias,
nullptr);
int eq = 0;
int neq = 0;
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <random>
#include "../test_helper.h"
#include "common/log.h"
#include "memory/t_malloc.h"
#include "operators/math/gemm.h"
#define a(i, j) a[(i)*lda + (j)]
#define b(i, j) b[(i)*ldb + (j)]
#define c(i, j) c[(i)*ldc + (j)]
#define c1(i, j) c1[(i)*ldc + (j)]
using std::default_random_engine;
using std::uniform_int_distribution;
void print_matirx(int m, int n, int ldc, int32_t *c) {
for (int i = 0; i < m; ++i) {
std::cout << c(i, 0);
for (int j = 1; j < n; ++j) {
std::cout << " | " << c(i, j);
}
std::cout << std::endl;
}
std::cout << std::endl;
}
void print_matirx(int m, int n, int ldc, int8_t *c) {
for (int i = 0; i < m; ++i) {
std::cout << static_cast<int32_t>(c(i, 0));
for (int j = 1; j < n; ++j) {
std::cout << " | " << static_cast<int32_t>(c(i, j));
}
std::cout << std::endl;
}
std::cout << std::endl;
}
int do_sgemm(int m, int n, int k, bool relu, int pr) {
int lda = k;
int ldb = n;
int ldc = n;
default_random_engine e;
uniform_int_distribution<int8_t> pixel(-127, 127);
int8_t *a = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * m * k));
int8_t *b = static_cast<int8_t *>(
paddle_mobile::memory::Alloc(sizeof(int8_t) * k * n));
int32_t *c = static_cast<int32_t *>(
paddle_mobile::memory::Alloc(sizeof(int32_t) * m * n));
int32_t *c1 = static_cast<int32_t *>(
paddle_mobile::memory::Alloc(sizeof(int32_t) * m * n));
for (int i = 0; i < m * k; ++i) {
a[i] = pixel(e);
}
for (int i = 0; i < k * n; ++i) {
b[i] = pixel(e);
}
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
int32_t r = 0;
for (int p = 0; p < k; p++) {
r += static_cast<int32_t>(a(i, p)) * static_cast<int32_t>(b(p, j));
}
c1(i, j) = r;
}
}
paddle_mobile::operators::math::Gemm gemm;
gemm.Sgemm(m, n, k, static_cast<int8_t>(1), a, lda, b, ldb,
static_cast<int8_t>(0), c, ldc, relu, nullptr);
int eq = 0;
int neq = 0;
for (int i = 0; i < m * n; ++i) {
if (c[i] == c1[i]) {
++eq;
} else {
++neq;
}
}
if (pr > 0) {
std::cout << "A:" << std::endl;
print_matirx(m, k, lda, a);
std::cout << "B:" << std::endl;
print_matirx(k, n, ldb, b);
std::cout << "C:" << std::endl;
print_matirx(m, n, ldc, c);
std::cout << "C1:" << std::endl;
print_matirx(m, n, ldc, c1);
}
std::cout << "mnk=" << m << " " << n << " " << k << " relu=" << relu
<< " eq=" << eq << " neq=" << neq << std::endl;
paddle_mobile::memory::Free(a);
paddle_mobile::memory::Free(b);
paddle_mobile::memory::Free(c);
paddle_mobile::memory::Free(c1);
return 0;
}
int main() {
do_sgemm(9, 9, 9, false, 10);
do_sgemm(10, 6, 12, false, 0);
do_sgemm(512, 256, 384, false, 0);
do_sgemm(1366, 768, 256, false, 0);
do_sgemm(1255, 755, 333, false, 0);
do_sgemm(555, 777, 999, false, 0);
do_sgemm(1024, 1024, 1024, false, 0);
return 0;
}
......@@ -28,13 +28,11 @@ limitations under the License. */
int main() {
paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
paddle_mobile.SetThreadNum(4);
Tensor aa, bb, cc, scale, bias;
paddle_mobile.SetThreadNum(1);
Tensor aa, bb, cc;
auto aaptr = aa.mutable_data<float>({m, k});
auto bbptr = bb.mutable_data<float>({k, n});
auto ccptr = cc.mutable_data<float>({m, n});
auto scaleptr = scale.mutable_data<float>({m});
auto biasptr = bias.mutable_data<float>({m});
for (int i = 0; i < m * k; ++i) {
aaptr[i] = 2;
......@@ -45,23 +43,55 @@ int main() {
for (int i = 0; i < m * n; ++i) {
ccptr[i] = 2;
}
for (int i = 0; i < m; ++i) {
scaleptr[i] = 1;
biasptr[i] = 0;
Tensor aa_int8, bb_int8, cc_int8;
auto aaptr_int8 = aa_int8.mutable_data<int8_t>({m, k});
auto bbptr_int8 = bb_int8.mutable_data<int8_t>({k, n});
auto ccptr_int8 = cc_int8.mutable_data<int32_t>({m, n});
for (int i = 0; i < m * k; ++i) {
aaptr_int8[i] = static_cast<int8_t>(2);
}
for (int i = 0; i < k * n; ++i) {
bbptr_int8[i] = static_cast<int8_t>(2);
}
for (int i = 0; i < m * n; ++i) {
ccptr_int8[i] = static_cast<int32_t>(2);
}
auto time1 = time();
// float
// warm-up 10 times
for (int j = 0; j < 10; ++j) {
paddle_mobile::operators::math::matmul<float>(
aa, false, bb, false, static_cast<float>(1), &cc, static_cast<float>(0),
false, biasptr);
false, nullptr);
}
// paddle_mobile::operators::math::matmulWithBn<float>(
// aa, false, bb, false, static_cast<float>(1), &cc,
// static_cast<float>(0), true, &scale, &bias, 0);
auto time1 = time();
for (int j = 0; j < 10; ++j) {
paddle_mobile::operators::math::matmul<float>(
aa, false, bb, false, static_cast<float>(1), &cc, static_cast<float>(0),
false, nullptr);
}
auto time2 = time();
std::cout << "gemm cost :" << time_diff(time1, time2) / 10 << "ms\n";
std::cout << "float gemm cost :" << time_diff(time1, time2) / 10 << "ms\n";
// int8_t
// warm-up 10 times
for (int j = 0; j < 10; ++j) {
paddle_mobile::operators::math::matmul<int8_t>(
aa_int8, false, bb_int8, false, static_cast<int8_t>(1), &cc_int8,
static_cast<int8_t>(0), false, nullptr);
}
auto time3 = time();
for (int j = 0; j < 10; ++j) {
paddle_mobile::operators::math::matmul<int8_t>(
aa_int8, false, bb_int8, false, static_cast<int8_t>(1), &cc_int8,
static_cast<int8_t>(0), false, nullptr);
}
auto time4 = time();
std::cout << "int8_t gemm cost :" << time_diff(time3, time4) / 10 << "ms\n";
return 0;
}
......@@ -11,30 +11,107 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include "../test_include.h"
static const char *g_resnet_combine = "../models/resnet50";
#include "fpga/api.h"
void readStream(std::string filename, float *buf) {
std::ifstream in;
in.open(filename, std::ios::in);
if (!in.is_open()) {
std::cout << "open File Failed." << std::endl;
return;
}
string strOne;
int i = 0;
while (!in.eof()) {
in >> buf[i];
i++;
}
in.close();
}
void convert_to_chw(int16_t **data_in, int channel, int height, int width,
int16_t *data_tmp) {
int64_t amount_per_side = width * height;
for (int h = 0; h < height; h++) {
for (int w = 0; w < width; w++) {
for (int c = 0; c < channel; c++) {
*(data_tmp + c * amount_per_side + width * h + w) = *((*data_in)++);
}
}
}
}
void dump(std::string filename, const Tensor input_tensor) {
auto dataptr = input_tensor.data<float>();
std::ofstream out(filename.c_str());
float result = 0;
for (int i = 0; i < input_tensor.numel(); ++i) {
result = paddle_mobile::fpga::fp16_2_fp32(dataptr[i]);
out << result << std::endl;
}
out.close();
}
void dump_stride(std::string filename, const Tensor input_tensor,
const int dumpnum) {
int c = (input_tensor.dims())[1];
int h = (input_tensor.dims())[2];
int w = (input_tensor.dims())[3];
auto data_ptr = input_tensor.data<float>();
int16_t *data_tmp = (int16_t *)malloc(c * h * w * sizeof(int16_t));
int16_t *data_ptr_16 = (int16_t *)data_ptr;
convert_to_chw(&data_ptr_16, c, h, w, data_tmp);
// const int16_t *dataptr = input_tensor.data<int16_t>();
std::ofstream out(filename.c_str());
float result = 0;
int stride = input_tensor.numel() / dumpnum;
stride = stride > 0 ? stride : 1;
for (int i = 0; i < input_tensor.numel(); i += stride) {
result = paddle_mobile::fpga::fp16_2_fp32(data_tmp[i]);
out << result << std::endl;
}
out.close();
free(data_tmp);
}
static const char *g_resnet50 = "../models/resnet50";
const std::string g_image_src_float = "../images/image_src_float";
int main() {
DLOG << paddle_mobile::fpga::open_device();
paddle_mobile::fpga::open_device();
paddle_mobile::PaddleMobile<paddle_mobile::FPGA> paddle_mobile;
// if (paddle_mobile.Load(std::string(g_resnet_combine) + "/model",
// std::string(g_resnet_combine) + "/params", true)) {
if (paddle_mobile.Load(std::string(g_resnet_combine), true)) {
std::vector<int64_t> dims{1, 3, 224, 224};
if (paddle_mobile.Load(std::string(g_resnet50), true)) {
Tensor input_tensor;
SetupTensor<float>(&input_tensor, {1, 3, 224, 224}, static_cast<float>(0),
static_cast<float>(1));
std::vector<float> input(input_tensor.data<float>(),
input_tensor.data<float>() + input_tensor.numel());
readStream(g_image_src_float,
input_tensor.mutable_data<float>({1, 3, 224, 224}));
paddle_mobile.FeedData(input_tensor);
paddle_mobile.Predict_To(-1);
// paddle_mobile.Predict_From(73);
// paddle_mobile.Predict_From_To(72, 73);
/*for(int i = 0; i < 73; i++)
{
auto tensor_ptr = paddle_mobile.FetchResult(i);
std::string saveName = "resnet50_result_" + std::to_string (i);
paddle_mobile::fpga::fpga_invalidate((*tensor_ptr).data<float>(),
tensor_ptr->numel()); dump_stride(saveName, (*tensor_ptr), 20);
//dump(saveName, (*tensor_ptr));
}*/
DLOG << "Computation done";
/*std::shared_ptr<Tensor> output_tensor = paddle_mobile.FetchResult(73);
(*output_tensor).dump<float>("resnet50_result_73");
output_tensor = paddle_mobile.FetchResult(74);
(*output_tensor).dump<float>("resnet50_result_74");*/
std::shared_ptr<Tensor> output_tensor = paddle_mobile.FetchResult(74);
float max = 0;
auto data_ptr = output_tensor->data<float>();
int maximumIdx = 0;
for (int i = 0; i < (*output_tensor).numel(); i++) {
if (data_ptr[i] > max) {
maximumIdx = i;
max = data_ptr[i];
}
}
std::cout << "index : " << maximumIdx << ", value : " << max
<< std::endl;
std::cout << "Computation done" << std::endl;
return 0;
}
}
......@@ -58,9 +58,9 @@ int main() {
size_t sizeBuf = ReadBuffer(model_path.c_str(), &bufModel);
uint8_t *bufParams = nullptr;
DLOG << "sizeBuf: " << sizeBuf;
std::cout << "sizeBuf: " << sizeBuf << std::endl;
size_t sizeParams = ReadBuffer(params_path.c_str(), &bufParams);
DLOG << "sizeParams: " << sizeParams;
std::cout << "sizeParams: " << sizeParams << std::endl;
paddle_mobile.LoadCombinedMemory(sizeBuf, bufModel, sizeParams, bufParams);
return 0;
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include <iostream>
#include "../test_helper.h"
#include "io/paddle_inference_api.h"
static size_t ReadBuffer(const char *file_name, uint8_t **out) {
FILE *fp;
fp = fopen(file_name, "rb");
PADDLE_MOBILE_ENFORCE(fp != nullptr, " %s open failed !", file_name);
fseek(fp, 0, SEEK_END);
auto size = static_cast<size_t>(ftell(fp));
rewind(fp);
DLOG << "model size: " << size;
*out = reinterpret_cast<uint8_t *>(malloc(size));
size_t cur_len = 0;
size_t nread;
while ((nread = fread(*out + cur_len, 1, size - cur_len, fp)) != 0) {
cur_len += nread;
}
fclose(fp);
return cur_len;
}
static char *Get_binary_data(std::string filename) {
FILE *file = fopen(filename.c_str(), "rb");
PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
filename.c_str());
fseek(file, 0, SEEK_END);
int64_t size = ftell(file);
PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
rewind(file);
auto *data = new char[size];
size_t bytes_read = fread(data, 1, size, file);
PADDLE_MOBILE_ENFORCE(bytes_read == size,
"read binary file bytes do not match with fseek");
fclose(file);
return data;
}
paddle_mobile::PaddleMobileConfig GetConfig() {
paddle_mobile::PaddleMobileConfig config;
config.precision = paddle_mobile::PaddleMobileConfig::FP32;
config.device = paddle_mobile::PaddleMobileConfig::kCPU;
const std::shared_ptr<paddle_mobile::PaddleModelMemoryPack> &memory_pack =
std::make_shared<paddle_mobile::PaddleModelMemoryPack>();
auto model_path = std::string(g_genet_combine) + "/model";
auto params_path = std::string(g_genet_combine) + "/params";
memory_pack->model_size =
ReadBuffer(model_path.c_str(), &memory_pack->model_buf);
std::cout << "sizeBuf: " << memory_pack->model_size << std::endl;
memory_pack->combined_params_size =
ReadBuffer(params_path.c_str(), &memory_pack->combined_params_buf);
std::cout << "sizeParams: " << memory_pack->combined_params_size << std::endl;
memory_pack->from_memory = true;
config.memory_pack = *memory_pack;
config.thread_num = 4;
return config;
}
int main() {
paddle_mobile::PaddleMobileConfig config = GetConfig();
auto predictor = paddle_mobile::CreatePaddlePredictor<
paddle_mobile::PaddleMobileConfig,
paddle_mobile::PaddleEngineKind::kPaddleMobile>(config);
return 0;
}
......@@ -25,27 +25,31 @@ int main() {
paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
#endif
paddle_mobile.SetThreadNum(4);
bool optimize = true;
paddle_mobile.SetThreadNum(1);
bool optimize = false;
auto time1 = time();
if (paddle_mobile.Load(g_googlenet, optimize)) {
auto time2 = time();
std::cout << "load cost :" << time_diff(time1, time2) << "ms" << std::endl;
std::vector<float> input;
std::vector<float> output;
std::vector<int64_t> dims{1, 3, 224, 224};
GetInput<float>(g_test_image_1x3x224x224, &input, dims);
// 预热十次
for (int i = 0; i < 10; ++i) {
auto vec_result = paddle_mobile.Predict(input, dims);
}
// // 预热十次
// for (int i = 0; i < 10; ++i) {
// output = paddle_mobile.Predict(input, dims);
// }
auto time3 = time();
for (int i = 0; i < 10; ++i) {
auto vec_result = paddle_mobile.Predict(input, dims);
output = paddle_mobile.Predict(input, dims);
}
auto time4 = time();
std::cout << "predict cost :" << time_diff(time3, time4) / 10 << "ms"
<< std::endl;
for (int i = 0; i < output.size(); ++i) {
DLOG << "result[" << i << "] = " << output[i];
}
}
return 0;
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <iostream>
#include "../test_helper.h"
#include "../test_include.h"
int main() {
#ifdef PADDLE_MOBILE_FPGA
paddle_mobile::PaddleMobile<paddle_mobile::FPGA> paddle_mobile;
#endif
#ifdef PADDLE_MOBILE_CPU
paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
#endif
paddle_mobile.SetThreadNum(4);
bool optimize = true;
bool quli = true;
auto time1 = time();
auto isok = paddle_mobile.Load(std::string(g_googlenet_quali) + "/model",
std::string(g_googlenet_quali) + "/params",
optimize, quli);
if (isok) {
auto time2 = time();
std::cout << "load cost :" << time_diff(time1, time2) << "ms" << std::endl;
std::vector<float> input;
std::vector<int64_t> dims{1, 3, 224, 224};
GetInput<float>(g_test_image_1x3x224x224, &input, dims);
// 预热十次
for (int i = 0; i < 10; ++i) {
auto vec_result = paddle_mobile.Predict(input, dims);
}
auto time3 = time();
for (int i = 0; i < 10; ++i) {
auto vec_result = paddle_mobile.Predict(input, dims);
}
auto time4 = time();
std::cout << "predict cost :" << time_diff(time3, time4) / 10 << "ms"
<< std::endl;
}
return 0;
}
......@@ -59,7 +59,7 @@ int TestDequqntizeOp() {
framework::Tensor output_cmp;
output_cmp.Resize(dim);
float dequant_scale = 1.f / (1.27 * 1.74);
float dequant_scale = 1.27 / 1.74;
dequantize(input, dequant_scale, &output_cmp);
const float* output_cmp_data = output_cmp.data<float>();
for (int i = 0; i < output->numel(); ++i) {
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "../test_include.h"
#include "operators/fill_constant_op.h"
namespace paddle_mobile {
namespace framework {
template <typename Dtype>
class TestFillConstantOp {
public:
explicit TestFillConstantOp(const Program<Dtype> p) : program_(p) {
if (use_optimize_) {
to_predict_program_ = program_.optimizeProgram;
} else {
to_predict_program_ = program_.originProgram;
}
const std::vector<std::shared_ptr<BlockDesc>> blocks =
to_predict_program_->Blocks();
for (auto block_desc : blocks) {
std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
for (auto op : ops) {
if (op->Type() == "fill_constant") {
DLOG << " attr size: " << op->GetAttrMap().size();
std::unordered_map<std::string, Attribute> attrs = op->GetAttrMap();
for (std::unordered_map<std::string, Attribute>::iterator it =
attrs.begin();
it != attrs.end(); ++it) {
DLOG << " " << it->first << " " << it->second;
}
DLOG << " inputs size: " << op->GetInputs().size();
DLOG << " outputs size: " << op->GetOutputs().size();
DLOG << " output is : " << op->Output("Out")[0];
output_var_name = op->Output("Out")[0];
std::shared_ptr<operators::FillConstantOp<Dtype, float>> op_ptr =
std::make_shared<operators::FillConstantOp<Dtype, float>>(
op->Type(), op->GetInputs(), op->GetOutputs(),
op->GetAttrMap(), program_.scope);
ops_of_block_[*block_desc.get()].push_back(op_ptr);
}
}
}
}
std::shared_ptr<Tensor> predict() {
auto scope = program_.scope;
Variable *output = scope->Var(output_var_name);
auto *output_tensor = output->GetMutable<LoDTensor>();
std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
out_tensor.reset(output_tensor);
predict(0);
return out_tensor;
}
private:
const framework::Program<Dtype> program_;
std::shared_ptr<ProgramDesc> to_predict_program_;
std::map<framework::BlockDesc,
std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
ops_of_block_;
bool use_optimize_ = false;
string output_var_name;
void predict(int block_id) {
std::shared_ptr<BlockDesc> to_predict_block =
to_predict_program_->Block(block_id);
for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
auto op = ops_of_block_[*to_predict_block.get()][j];
op->Run();
}
}
};
template class TestFillConstantOp<CPU>;
} // namespace framework
} // namespace paddle_mobile
int main() {
DLOG << "----------**********----------";
DLOG << "begin to run FillConstant Test";
paddle_mobile::Loader<paddle_mobile::CPU> loader;
auto program = loader.Load(std::string(g_ocr) + "/model",
std::string(g_ocr) + "/params");
paddle_mobile::framework::TestFillConstantOp<paddle_mobile::CPU>
testFillConstantOp(program);
auto output = testFillConstantOp.predict();
auto *output_ptr = output->data<float>();
DLOG << "output : ";
for (int i = 0; i < output->numel(); ++i) {
DLOG << " index " << i << " : " << output_ptr[i];
}
return 0;
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "../test_helper.h"
#include "../test_include.h"
#include "operators/conv_op.h"
namespace paddle_mobile {
// Reference convolution for checking results:
// accumulate through explicit loops over input, output, and filters.
template <typename Itype, typename Otype>
void conv2d(const framework::Tensor *input, const framework::Tensor *filter,
const framework::AttributeMap &attrs, framework::Tensor *output) {
framework::AttrReader attr_reader(attrs);
std::vector<int> paddings = attr_reader.Get<std::vector<int>>("paddings");
std::vector<int> strides = attr_reader.Get<std::vector<int>>("strides");
std::vector<int> dilations = attr_reader.Get<std::vector<int>>("dilations");
int groups = attr_reader.Get<int>("groups");
int kernel_h = filter->dims()[2];
int kernel_w = filter->dims()[3];
int pad_h = paddings[0];
int pad_w = paddings[1];
int stride_h = strides[0];
int stride_w = strides[1];
int dilation_h = dilations[0];
int dilation_w = dilations[1];
auto in_shape = input->dims();
auto out_shape = output->dims();
const bool has_depth = 0;
int kernel_d, pad_d, stride_d, dilation_d;
if (has_depth) {
kernel_d = kernel_h;
stride_d = stride_h;
pad_d = pad_h;
dilation_d = dilation_h;
} else {
kernel_d = stride_d = dilation_d = 1;
pad_d = 0;
}
// Groups
int o_g = out_shape[1] / groups;
int k_g = in_shape[1] / groups;
int o_head, k_head;
// Convolution
vector<int> weight_offset(4 + has_depth);
vector<int> in_offset(4 + has_depth);
vector<int> out_offset(4 + has_depth);
auto offset = [](const framework::Tensor *input, const vector<int> &indics) {
framework::DDim shape = input->dims();
size_t count = 0;
for (int i = 0; i < indics.size(); ++i) {
count *= shape[i];
count += indics[i];
}
return count;
};
const Itype *in_data = input->data<Itype>();
const Itype *w_data = filter->data<Itype>();
Otype *out_data = output->mutable_data<Otype>();
memset(out_data, 0, output->numel() * sizeof(Otype));
for (int n = 0; n < out_shape[0]; n++) {
for (int g = 0; g < groups; g++) {
o_head = o_g * g;
k_head = k_g * g;
for (int o = 0; o < o_g; o++) {
for (int k = 0; k < k_g; k++) {
for (int z = 0; z < (has_depth ? out_shape[2] : 1); z++) {
for (int y = 0; y < out_shape[2 + has_depth]; y++) {
for (int x = 0; x < out_shape[3 + has_depth]; x++) {
for (int r = 0; r < kernel_d; r++) {
for (int p = 0; p < kernel_h; p++) {
for (int q = 0; q < kernel_w; q++) {
int in_z = z * stride_d - pad_d + r * dilation_d;
int in_y = y * stride_h - pad_h + p * dilation_h;
int in_x = x * stride_w - pad_w + q * dilation_w;
if (in_z >= 0 && in_z < (has_depth ? in_shape[2] : 1) &&
in_y >= 0 && in_y < in_shape[2 + has_depth] &&
in_x >= 0 && in_x < in_shape[3 + has_depth]) {
weight_offset[0] = o + o_head;
weight_offset[1] = k;
if (has_depth) {
weight_offset[2] = r;
}
weight_offset[2 + has_depth] = p;
weight_offset[3 + has_depth] = q;
in_offset[0] = n;
in_offset[1] = k + k_head;
if (has_depth) {
in_offset[2] = in_z;
}
in_offset[2 + has_depth] = in_y;
in_offset[3 + has_depth] = in_x;
out_offset[0] = n;
out_offset[1] = o + o_head;
if (has_depth) {
out_offset[2] = z;
}
out_offset[2 + has_depth] = y;
out_offset[3 + has_depth] = x;
out_data[offset(output, out_offset)] +=
in_data[offset(input, in_offset)] *
w_data[offset(filter, weight_offset)];
}
}
}
}
}
}
}
}
}
}
}
}
template <typename Itype, typename Otype, int Kernel, int Pad, int Stride>
int TestConvOp() {
int kernel_h = Kernel;
int kernel_w = Kernel;
int pad_h = Pad;
int pad_w = Pad;
int stride_h = Stride;
int stride_w = Stride;
int dilation_h = 1;
int dilation_w = 1;
int batch_size = 1;
int input_c = 3;
int input_h = 100;
int input_w = 100;
int output_c = 10;
framework::DDim input_shape =
framework::make_ddim({batch_size, input_c, input_h, input_w});
framework::DDim filter_shape =
framework::make_ddim({output_c, input_c, kernel_h, kernel_w});
VariableNameMap inputs;
VariableNameMap outputs;
auto scope = std::make_shared<framework::Scope>();
inputs["Input"] = std::vector<std::string>({"input"});
inputs["Filter"] = std::vector<std::string>({"filter"});
outputs["Output"] = std::vector<std::string>({"output"});
auto input_var = scope.get()->Var("input");
auto input = input_var->template GetMutable<framework::LoDTensor>();
SetupTensor<Itype>(input, input_shape, -20, 20);
auto filter_var = scope.get()->Var("filter");
auto filter = filter_var->template GetMutable<framework::LoDTensor>();
SetupTensor<Itype>(filter, filter_shape, -20, 20);
auto output_var = scope.get()->Var("output");
framework::AttributeMap attrs;
attrs["strides"].Set<vector<int>>(std::vector<int>({stride_h, stride_w}));
attrs["paddings"].Set<vector<int>>(std::vector<int>({pad_h, pad_w}));
attrs["dilations"].Set<vector<int>>(
std::vector<int>({dilation_h, dilation_w}));
attrs["groups"].Set<int>(1);
auto *op = new operators::ConvOp<CPU, float>("conv2d", inputs, outputs, attrs,
scope);
// struct timespec ts_begin, ts_end;
op->InferShape();
// warmup
// op->Run();
// clock_gettime(CLOCK_MONOTONIC, &ts_begin);
// for (int i = 0; i < 10; ++i) {
op->Run();
// }
// clock_gettime(CLOCK_MONOTONIC, &ts_end);
// uint64_t elapsed = (ts_end.tv_sec - ts_begin.tv_sec) * 1e3 +
// (ts_end.tv_nsec - ts_begin.tv_nsec) / 1e6;
// LOG(kLOG_INFO) << "elapsed: " << elapsed / 10.0 << " ms";
int kernel_extent_h = dilation_h * (kernel_h - 1) + 1;
int kernel_extent_w = dilation_w * (kernel_w - 1) + 1;
int output_h = (input_h + 2 * pad_h - kernel_extent_h) / stride_h + 1;
int output_w = (input_w + 2 * pad_w - kernel_extent_w) / stride_w + 1;
auto output_shape = framework::make_ddim(
std::vector<int>({batch_size, output_c, output_h, output_w}));
framework::Tensor output_cmp;
output_cmp.mutable_data<Otype>(output_shape);
conv2d<Itype, Otype>(input, filter, attrs, &output_cmp);
// compare results
auto output = output_var->template Get<framework::LoDTensor>();
const Otype *output_data = output->data<Otype>();
Otype *output_cmp_data = output_cmp.data<Otype>();
for (int i = 0; i < output->numel(); ++i) {
PADDLE_MOBILE_ENFORCE(output_data[i] == output_cmp_data[i],
"output[%d] = %d, output_cmp[%d] = %d", i,
output_data[i], i, output_cmp_data[i]);
}
delete op;
return 0;
}
} // namespace paddle_mobile
int main() {
// kernel = 7, pad = 0, stride = 2
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=0, stride=2";
paddle_mobile::TestConvOp<int8_t, int32_t, 7, 0, 2>();
// kernel = 7, pad = 1, stride = 2
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=1, stride=2";
paddle_mobile::TestConvOp<int8_t, int32_t, 7, 1, 2>();
// kernel = 7, pad = 3, stride = 2
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=3, stride=2";
paddle_mobile::TestConvOp<int8_t, int32_t, 7, 3, 2>();
// kernel = 7, pad = 0, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=0, stride=1";
paddle_mobile::TestConvOp<int8_t, int32_t, 7, 0, 1>();
// kernel = 7, pad = 1, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=1, stride=1";
paddle_mobile::TestConvOp<int8_t, int32_t, 7, 1, 1>();
// kernel = 7, pad = 3, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=3, stride=1";
paddle_mobile::TestConvOp<int8_t, int32_t, 7, 3, 1>();
// kernel = 7, pad = 5, stride = 3
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=5, stride=3";
paddle_mobile::TestConvOp<int8_t, int32_t, 7, 5, 3>();
// kernel = 7, pad = 3, stride = 4
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=3, stride=4";
paddle_mobile::TestConvOp<int8_t, int32_t, 7, 3, 4>();
LOG(paddle_mobile::kLOG_INFO) << "\n";
// kernel = 3, pad = 0, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=3, pad=0, stride=1";
paddle_mobile::TestConvOp<int8_t, int32_t, 3, 0, 1>();
// kernel = 3, pad = 0, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=0, stride=1";
paddle_mobile::TestConvOp<float, float, 3, 0, 1>();
LOG(paddle_mobile::kLOG_INFO) << "\n";
// kernel = 3, pad = 1, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=3, pad=1, stride=1";
paddle_mobile::TestConvOp<int8_t, int32_t, 3, 1, 1>();
// kernel = 3, pad = 1, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=1, stride=1";
paddle_mobile::TestConvOp<float, float, 3, 1, 1>();
LOG(paddle_mobile::kLOG_INFO) << "\n";
// kernel = 5, pad = 0, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=5, pad=0, stride=1";
paddle_mobile::TestConvOp<int8_t, int32_t, 5, 0, 1>();
// kernel = 5, pad = 0, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "float, kernel=5, pad=0, stride=1";
paddle_mobile::TestConvOp<float, float, 5, 0, 1>();
LOG(paddle_mobile::kLOG_INFO) << "\n";
// kernel = 5, pad = 2, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=5, pad=2, stride=1";
paddle_mobile::TestConvOp<int8_t, int32_t, 5, 2, 1>();
// kernel = 5, pad = 2, stride = 1
LOG(paddle_mobile::kLOG_INFO) << "float, kernel=5, pad=2, stride=1";
paddle_mobile::TestConvOp<float, float, 5, 2, 1>();
}
......@@ -12,80 +12,88 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "../test_helper.h"
#include "../test_include.h"
#include "operators/mul_op.h"
int main() {
paddle_mobile::Loader<paddle_mobile::CPU> loader;
auto program = loader.Load(g_resnet);
PADDLE_MOBILE_ENFORCE(program.originProgram != nullptr,
"program file read fail");
Executor4Test<paddle_mobile::CPU,
paddle_mobile::operators::MulOp<paddle_mobile::CPU, float>>
executor(program, "mul");
// 1. input_tensors;
vector<Tensor> input_tensors;
Tensor input1;
auto input1_data = CreateInput<float>(&input1, {3, 2, 1, 1}, 0, 1);
input_tensors.push_back(input1);
Tensor input2;
auto input2_data = CreateInput<float>(&input2, {2, 3}, 0, 1);
input_tensors.push_back(input2);
// 2. input_names
vector<string> input_names({
"pool2d_0.tmp_0",
"fc_0.w_0",
});
// 3. output_names
vector<string> output_names({"fc_0.tmp_0"});
// 4. out_dims;
vector<DDim> out_ddims;
auto out_ddim = paddle_mobile::framework::make_ddim({3, 3});
out_ddims.push_back(out_ddim);
auto output = executor.Predict<LoDTensor>(input_tensors, input_names,
output_names, out_ddims);
auto output0_data = output[0]->data<float>();
auto dim_1 = input1.numel() / input1.dims()[0];
DLOG << " input1 : ";
for (int i = 0; i < input1.dims()[0]; ++i) {
for (int j = 0; j < dim_1; ++j) {
DLOGF("%f ", input1_data[i * dim_1 + j]);
}
DLOGF("\n");
}
auto dim_2 = input2.numel() / input2.dims()[0];
DLOG << " input2 : ";
for (int i = 0; i < input2.dims()[0]; ++i) {
for (int j = 0; j < dim_2; ++j) {
DLOGF("%f ", input2_data[i * dim_2 + j]);
#define a(i, j) a[(i)*lda + (j)]
#define b(i, j) b[(i)*ldb + (j)]
#define c(i, j) c[(i)*ldc + (j)]
namespace paddle_mobile {
using framework::AttributeMap;
using framework::DDim;
using framework::Scope;
using framework::make_ddim;
template <typename I, typename O>
int TestMulOP() {
int32_t m = 1024;
int32_t n = 1024;
int32_t k = 1024;
int32_t lda = k;
int32_t ldb = n;
int32_t ldc = n;
DDim inputA_shape = make_ddim({m, k});
DDim inputB_shape = make_ddim({k, n});
VariableNameMap inputs;
VariableNameMap outputs;
auto scope = std::make_shared<Scope>();
inputs["X"] = std::vector<std::string>({"inputA"});
inputs["Y"] = std::vector<std::string>({"inputB"});
outputs["Out"] = std::vector<std::string>({"output"});
auto inputA_var = scope.get()->Var("inputA");
auto inputA = inputA_var->template GetMutable<framework::LoDTensor>();
SetupTensor<I>(inputA, inputA_shape, -127, 127);
auto inputB_var = scope.get()->Var("inputB");
auto inputB = inputB_var->template GetMutable<framework::LoDTensor>();
SetupTensor<I>(inputB, inputB_shape, -127, 127);
auto output_var = scope.get()->Var("output");
AttributeMap attrs;
attrs["x_num_col_dims"].Set<int>(1);
attrs["y_num_col_dims"].Set<int>(1);
auto *op =
new operators::MulOp<CPU, float>("mul", inputs, outputs, attrs, scope);
op->InferShape();
op->Run();
auto output = output_var->template Get<framework::LoDTensor>();
const O *output_data = output->data<O>();
// compare
O *c = static_cast<O *>(memory::Alloc(sizeof(O) * m * n));
I *a = inputA->data<I>();
I *b = inputB->data<I>();
for (int32_t i = 0; i < m; ++i) {
for (int32_t j = 0; j < n; ++j) {
O r = 0;
for (int32_t p = 0; p < k; p++) {
r += static_cast<O>(a(i, p)) * static_cast<O>(b(p, j));
}
c(i, j) = r;
}
DLOGF("\n");
}
auto dim_output0 = output[0]->numel() / output[0]->dims()[0];
DLOG << " output : ";
for (int i = 0; i < output[0]->dims()[0]; ++i) {
for (int j = 0; j < dim_output0; ++j) {
DLOGF("%f ", output0_data[i * dim_2 + j]);
int32_t eq = 0;
int32_t neq = 0;
for (int32_t i = 0; i < m * n; ++i) {
PADDLE_MOBILE_ENFORCE(
output_data[i] == c[i], "output[%d] = %d, output_cmp[%d] = %d", i,
static_cast<int32_t>(output_data[i]), i, static_cast<int32_t>(c[i]));
if (static_cast<int>(output_data[i] == c[i])) {
++eq;
} else {
++neq;
}
DLOGF("\n");
}
DLOG << "mnk=" << m << " " << n << " " << k << " eq=" << eq
<< " neq=" << neq;
delete op;
return 0;
}
} // namespace paddle_mobile
/// output (3,3)
DLOG << "output memory size : " << output[0]->memory_size();
DLOG << "output numel : " << output[0]->numel();
DLOG << input1_data[0] << " x " << input2_data[0] << " + " << input1_data[1]
<< " x " << input2_data[0 + 3] << " = " << output0_data[0];
int main() {
paddle_mobile::TestMulOP<int8_t, int32_t>();
paddle_mobile::TestMulOP<float, float>();
return 0;
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "../test_include.h"
#include "operators/polygon_box_transform_op.h"
namespace paddle_mobile {
namespace framework {
template <typename Dtype>
class TestPolygonBoxTransformOp {
public:
explicit TestPolygonBoxTransformOp(const Program<Dtype> p) : program_(p) {
if (use_optimize_) {
to_predict_program_ = program_.optimizeProgram;
} else {
to_predict_program_ = program_.originProgram;
}
const std::vector<std::shared_ptr<BlockDesc>> blocks =
to_predict_program_->Blocks();
for (auto block_desc : blocks) {
std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
for (auto op : ops) {
if (op->Type() == "polygon_box_transform") {
DLOG << " attr size: " << op->GetAttrMap().size();
DLOG << " inputs size: " << op->GetInputs().size();
DLOG << " input is : " << op->Input("Input")[0];
input_var_name = op->Input("Input")[0];
DLOG << " outputs size: " << op->GetOutputs().size();
DLOG << " output is : " << op->Output("Output")[0];
output_var_name = op->Output("Output")[0];
std::shared_ptr<operators::PolygonBoxTransformOp<Dtype, float>>
op_ptr = std::make_shared<
operators::PolygonBoxTransformOp<Dtype, float>>(
op->Type(), op->GetInputs(), op->GetOutputs(),
op->GetAttrMap(), program_.scope);
ops_of_block_[*block_desc.get()].push_back(op_ptr);
return;
}
}
}
}
std::shared_ptr<Tensor> predict(const Tensor &t) {
auto scope = program_.scope;
Variable *input_feed_value = scope->Var(input_var_name);
auto tensor_input = input_feed_value->GetMutable<LoDTensor>();
tensor_input->ShareDataWith(t);
Variable *output = scope->Var(output_var_name);
auto *output_tensor = output->GetMutable<LoDTensor>();
std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
out_tensor.reset(output_tensor);
predict(t, 0);
return out_tensor;
}
private:
const framework::Program<Dtype> program_;
std::shared_ptr<ProgramDesc> to_predict_program_;
std::map<framework::BlockDesc,
std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
ops_of_block_;
bool use_optimize_ = false;
string input_var_name;
string output_var_name;
void predict(const Tensor &t, int block_id) {
std::shared_ptr<BlockDesc> to_predict_block =
to_predict_program_->Block(block_id);
for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
auto op = ops_of_block_[*to_predict_block.get()][j];
op->Run();
}
}
};
template class TestPolygonBoxTransformOp<CPU>;
} // namespace framework
} // namespace paddle_mobile
int main() {
DLOG << "----------**********----------";
DLOG << "begin to run PolygonBoxTransform Test";
paddle_mobile::Loader<paddle_mobile::CPU> loader;
auto program = loader.Load(std::string(g_ocr));
paddle_mobile::framework::Tensor input;
SetupTensor<float>(&input, {1, 8, 1, 2}, static_cast<float>(0),
static_cast<float>(1));
auto *input_ptr = input.data<float>();
for (int i = 0; i < 16; ++i) {
*(input_ptr + i) = i;
}
DLOG << "input : ";
for (int i = 0; i < input.numel(); ++i) {
DLOG << " index " << i << " : " << input_ptr[i];
}
paddle_mobile::framework::TestPolygonBoxTransformOp<paddle_mobile::CPU>
testPolygonBoxTransformOp(program);
auto output = testPolygonBoxTransformOp.predict(input);
auto *output_ptr = output->data<float>();
DLOG << "output : ";
for (int i = 0; i < output->numel(); ++i) {
DLOG << " index " << i << " : " << output_ptr[i];
}
return 0;
}
......@@ -18,14 +18,6 @@ limitations under the License. */
namespace paddle_mobile {
// static float g_test_data[50] = {
// -5.55, -5.5, -5.45, -5.0, -4.55, -4.5, -4.45, -4.0, -3.55, -3.5,
// -3.45, -3.01, -2.75, -2.5, -2.501, -2.49, -2.01, -1.75, -1.5, -1.25,
// -1.0, -0.75, -0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0, 1.25,
// 1.5, 1.75, 2.01, 2.49, 2.501, 2.5, 2.75, 3.01, 3.45, 3.5,
// 3.55, 4.0, 4.45, 4.5, 4.55, 5.0, 5.45, 5.5, 5.55, 6.0,
// };
static float find_abs_max(const Tensor *input) {
float max_abs = 0.f;
const float *x = input->data<const float>();
......@@ -60,6 +52,16 @@ static void quantize_round_to_even(const Tensor *input, const float scale,
}
}
static void quantize_round_to_nearest(const Tensor *input, const float scale,
Tensor *output) {
const float *x = input->data<const float>();
int8_t *y = output->mutable_data<int8_t>();
size_t size = input->numel();
for (size_t i = 0; i < size; ++i) {
y[i] = round(x[i] * scale);
}
}
int TestQuqntizeOp() {
framework::DDim dim = framework::make_ddim({1, 3, 224, 224});
......@@ -88,15 +90,16 @@ int TestQuqntizeOp() {
auto output_scale = output_scale_var->template Get<framework::LoDTensor>();
const float *output_scale_data = output_scale->data<float>();
float max_abs = find_abs_max(input);
float output_scale_cmp = 127 / max_abs;
float output_scale_cmp = find_abs_max(input);
PADDLE_MOBILE_ENFORCE(output_scale_cmp == output_scale_data[0],
"output_scale = %.6f, output_scale_cmp = %.6f",
output_scale_cmp, output_scale_data[0]);
framework::Tensor output_cmp;
output_cmp.Resize(dim);
quantize_round_to_even(input, output_scale_cmp, &output_cmp);
float scale = 127 / output_scale_cmp;
// quantize_round_to_even(input, scale, &output_cmp);
quantize_round_to_nearest(input, scale, &output_cmp);
int8_t *output_cmp_data = output_cmp.data<int8_t>();
for (int i = 0; i < output->numel(); ++i) {
PADDLE_MOBILE_ENFORCE(output_data[i] == output_cmp_data[i],
......
......@@ -34,6 +34,7 @@ static const char *g_googlenetv1_combined = "../models/googlenetv1_combine";
static const char *g_mobilenet_detect = "../models/mobilenet-detect";
static const char *g_squeezenet = "../models/squeezenet";
static const char *g_googlenet = "../models/googlenet";
static const char *g_googlenet_quali = "../models/googlenet_combine_quali";
static const char *g_mobilenet = "../models/mobilenet";
static const char *g_alexnet = "../models/alexnet";
static const char *g_inceptionv4 = "../models/inceptionv4";
......
......@@ -118,12 +118,9 @@ if (CON GREATER -1)
set(POOL_OP ON)
set(CONCAT_OP ON)
set(SOFTMAX_OP ON)
set(DROPOUT_OP ON)
set(FUSION_CONVBNRELU_OP ON)
set(FUSION_CONVBN_OP ON)
set(FUSION_CONVADD_OP ON)
set(MUL_OP ON)
set(FOUND_MATCH ON)
endif()
......@@ -191,6 +188,7 @@ if(NOT FOUND_MATCH)
set(ELEMENTWISEADD_OP ON)
set(ELEMENTWISESUB_OP ON)
set(IM2SEQUENCE_OP ON)
set(FILL_CONSTANT_OP ON)
set(FUSION_CONVADD_OP ON)
set(FUSION_CONVADDPRELU_OP ON)
set(FUSION_CONVADDRELU_OP ON)
......@@ -198,6 +196,7 @@ if(NOT FOUND_MATCH)
set(LRN_OP ON)
set(MUL_OP ON)
set(MULTICLASSNMS_OP ON)
set(POLYGONBOXTRANSFORM_OP ON)
set(POOL_OP ON)
set(PRIORBOX_OP ON)
set(RELU_OP ON)
......@@ -225,6 +224,8 @@ if(NOT FOUND_MATCH)
set(SHAPE_OP ON)
set(ELEMENTWISEMUL_OP ON)
set(SUM_OP ON)
set(QUANT_OP ON)
set(DEQUANT_OP ON)
endif()
# option(BATCHNORM_OP "" ON)
......@@ -233,12 +234,14 @@ endif()
# option(CONV_OP "" ON)
# option(DEPTHWISECONV_OP "" ON)
# option(ELEMENTWISEADD_OP "" ON)
# option(FILL_CONSTANT_OP "" ON)
# option(FUSION_CONVADD_OP "" ON)
# option(FUSION_CONVADDRELU_OP "" ON)
# option(FUSION_FC_OP "" ON)
# option(LRN_OP "" ON)
# option(MUL_OP "" ON)
# option(MULTICLASSNMS_OP "" ON)
# option(POLYGONBOXTRANSFORM_OP "" ON)
# option(POOL_OP "" ON)
# option(PRIORBOX_OP "" ON)
# option(RELU_OP "" ON)
......@@ -269,6 +272,9 @@ endif()
if (ELEMENTWISESUB_OP)
add_definitions(-DELEMENTWISESUB_OP)
endif()
if (FILL_CONSTANT_OP)
add_definitions(-DFILL_CONSTANT_OP)
endif()
if (FUSION_CONVADD_OP)
add_definitions(-DFUSION_CONVADD_OP)
endif()
......@@ -293,6 +299,9 @@ endif()
if (MULTICLASSNMS_OP)
add_definitions(-DMULTICLASSNMS_OP)
endif()
if (POLYGONBOXTRANSFORM_OP)
add_definitions(-DPOLYGONBOXTRANSFORM_OP)
endif()
if (POOL_OP)
add_definitions(-DPOOL_OP)
endif()
......@@ -404,3 +413,10 @@ if (SUM_OP)
add_definitions(-DSUM_OP)
endif()
if (QUANT_OP)
add_definitions(-DQUANT_OP)
endif()
if (DEQUANT_OP)
add_definitions(-DDEQUANT_OP)
endif()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册