Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
d46f3d0d
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d46f3d0d
编写于
6月 20, 2018
作者:
L
liuruilong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add conv_add_relu op
上级
0ff7c56a
变更
27
显示空白变更内容
内联
并排
Showing
27 changed file
with
811 addition
and
113 deletion
+811
-113
CMakeLists.txt
CMakeLists.txt
+8
-2
src/common/types.cpp
src/common/types.cpp
+2
-1
src/operators/conv_op.cpp
src/operators/conv_op.cpp
+2
-1
src/operators/conv_op.h
src/operators/conv_op.h
+0
-7
src/operators/depthwise_conv_op.cpp
src/operators/depthwise_conv_op.cpp
+2
-1
src/operators/fusion_conv_add.cpp
src/operators/fusion_conv_add.cpp
+2
-1
src/operators/fusion_conv_add.h
src/operators/fusion_conv_add.h
+2
-9
src/operators/fusion_conv_add_relu_op.cpp
src/operators/fusion_conv_add_relu_op.cpp
+41
-0
src/operators/fusion_conv_add_relu_op.h
src/operators/fusion_conv_add_relu_op.h
+21
-7
src/operators/fusion_fc_op.h
src/operators/fusion_fc_op.h
+1
-1
src/operators/kernel/arm/conv_add_kernel.cpp
src/operators/kernel/arm/conv_add_kernel.cpp
+2
-2
src/operators/kernel/arm/conv_add_relu_kernel.cpp
src/operators/kernel/arm/conv_add_relu_kernel.cpp
+117
-0
src/operators/kernel/conv_add_kernel.h
src/operators/kernel/conv_add_kernel.h
+4
-65
src/operators/kernel/conv_add_relu_kernel.h
src/operators/kernel/conv_add_relu_kernel.h
+43
-0
src/operators/kernel/mali/batchnorm_kernel.cpp
src/operators/kernel/mali/batchnorm_kernel.cpp
+31
-0
src/operators/kernel/mali/conv_kernel.cpp
src/operators/kernel/mali/conv_kernel.cpp
+1
-0
src/operators/math/conv_func.h
src/operators/math/conv_func.h
+103
-0
src/operators/math/gemm.cpp
src/operators/math/gemm.cpp
+337
-1
src/operators/math/gemm.h
src/operators/math/gemm.h
+6
-0
src/operators/math/math_function.cpp
src/operators/math/math_function.cpp
+12
-4
src/operators/math/math_function.h
src/operators/math/math_function.h
+1
-1
src/operators/op_param.h
src/operators/op_param.h
+11
-1
test/CMakeLists.txt
test/CMakeLists.txt
+4
-0
test/executor_for_test.h
test/executor_for_test.h
+6
-2
test/framework/test_load.cpp
test/framework/test_load.cpp
+4
-3
test/operators/test_conv_add_relu_op.cpp
test/operators/test_conv_add_relu_op.cpp
+44
-0
test/operators/test_cov_op.cpp
test/operators/test_cov_op.cpp
+4
-4
未找到文件。
CMakeLists.txt
浏览文件 @
d46f3d0d
...
...
@@ -12,9 +12,13 @@ option(FPGA "fpga" OFF)
if
(
CPU
)
add_definitions
(
-DPADDLE_MOBILE_CPU
)
elseif
(
MALI_GPU
)
endif
()
if
(
MALI_GPU
)
add_definitions
(
-DPADDLE_MOBILE_MALI_GPU
)
elseif
(
FPGA
)
endif
()
if
(
FPGA
)
add_definitions
(
-DPADDLE_MOBILE_FPGA
)
endif
()
...
...
@@ -94,6 +98,7 @@ if (googlenet)
add_definitions
(
-DPOOL_OP
)
add_definitions
(
-DRELU_OP
)
add_definitions
(
-DFUSION_CONVADD_OP
)
add_definitions
(
-DFUSION_CONVADD_RELU_OP
)
elseif
(
mobilenet
)
add_definitions
(
-DCONV_OP
)
add_definitions
(
-DELEMENTWISEADD_OP
)
...
...
@@ -145,6 +150,7 @@ else ()
add_definitions
(
-DSIGMOID_OP
)
add_definitions
(
-DSOFTMAX_OP
)
add_definitions
(
-DTRANSPOSE_OP
)
add_definitions
(
-DFUSION_CONVADD_RELU_OP
)
endif
()
if
(
IS_IOS
)
...
...
src/common/types.cpp
浏览文件 @
d46f3d0d
...
...
@@ -63,6 +63,7 @@ std::unordered_map<
{
G_OP_TYPE_MULTICLASS_NMS
,
{{
"BBoxes"
,
"Scores"
},
{
"Out"
}}},
{
G_OP_TYPE_FC
,
{{
"X"
,
"Y"
,
"Z"
},
{
"Out"
}}},
{
G_OP_TYPE_RESHAPE
,
{{
"X"
},
{
"Out"
}}},
{
G_OP_TYPE_DEPTHWISE_CONV
,
{{
"Input"
},
{
"Output"
}}}};
{
G_OP_TYPE_DEPTHWISE_CONV
,
{{
"Input"
},
{
"Output"
}}},
{
G_OP_TYPE_FUSION_CONV_ADD_RELU
,
{{
"Input"
},
{
"Out"
}}}};
}
// namespace paddle_mobile
src/operators/conv_op.cpp
浏览文件 @
d46f3d0d
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include "operators/conv_op.h"
#include <vector>
#include "framework/op_proto_maker.h"
#include "operators/math/conv_func.h"
#include "framework/op_registry.h"
namespace
paddle_mobile
{
...
...
@@ -38,7 +39,7 @@ void ConvOp<Dtype, T>::InferShape() const {
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
filter_dims
[
0
]});
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
output_shape
.
push_back
(
ConvOutputSize
(
in_dims
[
i
+
2
],
filter_dims
[
i
+
2
],
output_shape
.
push_back
(
math
::
ConvOutputSize
(
in_dims
[
i
+
2
],
filter_dims
[
i
+
2
],
dilations
[
i
],
paddings
[
i
],
strides
[
i
]));
}
...
...
src/operators/conv_op.h
浏览文件 @
d46f3d0d
...
...
@@ -43,13 +43,6 @@ class ConvOp
private:
};
inline
int
ConvOutputSize
(
int
input_size
,
int
filter_size
,
int
dilation
,
int
padding
,
int
stride
)
{
const
int
dkernel
=
dilation
*
(
filter_size
-
1
)
+
1
;
int
output_size
=
(
input_size
+
2
*
padding
-
dkernel
)
/
stride
+
1
;
return
output_size
;
}
}
// namespace operators
}
// namespace paddle_mobile
...
...
src/operators/depthwise_conv_op.cpp
浏览文件 @
d46f3d0d
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include "operators/depthwise_conv_op.h"
#include <vector>
#include "framework/op_proto_maker.h"
#include "operators/math/conv_func.h"
#include "framework/op_registry.h"
#include "operators/conv_op.h"
...
...
@@ -39,7 +40,7 @@ void DepthwiseConvOp<Dtype, T>::InferShape() const {
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
filter_dims
[
0
]});
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
output_shape
.
push_back
(
ConvOutputSize
(
in_dims
[
i
+
2
],
filter_dims
[
i
+
2
],
output_shape
.
push_back
(
math
::
ConvOutputSize
(
in_dims
[
i
+
2
],
filter_dims
[
i
+
2
],
dilations
[
i
],
paddings
[
i
],
strides
[
i
]));
}
...
...
src/operators/fusion_conv_add.cpp
浏览文件 @
d46f3d0d
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#ifdef FUSION_CONVADD_OP
#include "operators/math/conv_func.h"
#include "operators/fusion_conv_add.h"
namespace
paddle_mobile
{
...
...
@@ -35,7 +36,7 @@ void FushionConvAddOp<Dtype, T>::InferShape() const {
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
filter_dims
[
0
]});
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
output_shape
.
push_back
(
ConvOutputSize
(
in_dims
[
i
+
2
],
filter_dims
[
i
+
2
],
output_shape
.
push_back
(
math
::
ConvOutputSize
(
in_dims
[
i
+
2
],
filter_dims
[
i
+
2
],
dilations
[
i
],
paddings
[
i
],
strides
[
i
]));
}
...
...
src/operators/fusion_conv_add.h
浏览文件 @
d46f3d0d
...
...
@@ -18,10 +18,10 @@ limitations under the License. */
#include <string>
#include <vector>
#include "framework/operator.h"
#include "framework/program/program-optimize/fusion_op_register.h"
#include "op_param.h"
#include "framework/operator.h"
#include "operators/kernel/conv_add_kernel.h"
#include "framework/program/program-optimize/fusion_op_register.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -67,13 +67,6 @@ class FushionConvAddOp : public framework::OperatorWithKernel<
protected:
};
inline
int
ConvOutputSize
(
int
input_size
,
int
filter_size
,
int
dilation
,
int
padding
,
int
stride
)
{
const
int
dkernel
=
dilation
*
(
filter_size
-
1
)
+
1
;
int
output_size
=
(
input_size
+
2
*
padding
-
dkernel
)
/
stride
+
1
;
return
output_size
;
}
#ifdef PADDLE_MOBILE_CPU
static
framework
::
FusionOpRegistrar
convadd_registrar
(
new
FusionConvAddMatcher
());
...
...
src/operators/fusion_conv_add_relu_op.cpp
浏览文件 @
d46f3d0d
...
...
@@ -15,5 +15,46 @@ limitations under the License. */
#ifdef CONVADDRELU_OP
#include "fusion_conv_add_relu_op.h"
#include "operators/math/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
Dtype
,
typename
T
>
void
FusionConvAddReluOp
<
Dtype
,
T
>::
InferShape
()
const
{
auto
in_dims
=
this
->
param_
.
Input
()
->
dims
();
auto
filter_dims
=
this
->
param_
.
Filter
()
->
dims
();
const
std
::
vector
<
int
>
&
strides
=
this
->
param_
.
Strides
();
std
::
vector
<
int
>
paddings
=
this
->
param_
.
Paddings
();
int
groups
=
this
->
param_
.
Groups
();
std
::
vector
<
int
>
dilations
=
this
->
param_
.
Dilations
();
PADDLE_MOBILE_ENFORCE
((
in_dims
.
size
()
==
filter_dims
.
size
()
&&
dilations
.
size
()
==
paddings
.
size
()
&&
paddings
.
size
()
==
strides
.
size
()),
"ConvParam is not suitable"
);
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
filter_dims
[
0
]});
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
output_shape
.
push_back
(
math
::
ConvOutputSize
(
in_dims
[
i
+
2
],
filter_dims
[
i
+
2
],
dilations
[
i
],
paddings
[
i
],
strides
[
i
]));
}
framework
::
DDim
ddim
=
framework
::
make_ddim
(
output_shape
);
this
->
param_
.
Output
()
->
Resize
(
ddim
);
}
}
}
namespace
ops
=
paddle_mobile
::
operators
;
#ifdef PADDLE_MOBILE_CPU
USE_OP_CPU
(
fusion_conv_add_relu
);
REGISTER_OPERATOR_CPU
(
fusion_conv_add_relu
,
ops
::
FusionConvAddReluOp
);
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
#endif
#ifdef PADDLE_MOBILE_FPGA
#endif
#endif
src/operators/fusion_conv_add_relu_op.h
浏览文件 @
d46f3d0d
...
...
@@ -17,6 +17,8 @@ limitations under the License. */
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
#include "operators/kernel/conv_add_relu_kernel.h"
#include "framework/program/program-optimize/fusion_op_register.h"
namespace
paddle_mobile
{
...
...
@@ -33,22 +35,34 @@ class FushionConvAddReluOpMatcher : public framework::FusionOpMatcher {
void
FolderNodes
(
framework
::
Node
*
node
,
std
::
vector
<
std
::
shared_ptr
<
framework
::
Node
>>
*
removed_nodes
)
{
std
::
vector
<
std
::
shared_ptr
<
framework
::
OpDesc
>>
origin_descs
=
node
->
OpDescs
(
node_
.
Depth
());
node
->
Folder
(
node_
.
Depth
(),
Type
(),
{{
G_OP_TYPE_ELEMENTWISE_ADD
,
{
"Y"
,
"
Z
"
}}},
removed_nodes
);
{{
G_OP_TYPE_ELEMENTWISE_ADD
,
{
"Y"
,
"
Y
"
}}},
removed_nodes
);
}
std
::
string
Type
()
{
return
G_OP_TYPE_FUSION_CONV_ADD_RELU
;
}
};
class
ConvAddReluOp
{
template
<
typename
DeviceType
,
typename
T
>
class
FusionConvAddReluOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
,
FushionConvAddReluParam
,
operators
::
ConvAddReluKernel
<
DeviceType
,
T
>>
{
public:
private:
FusionConvAddReluOp
(
const
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
,
FushionConvAddReluParam
,
operators
::
ConvAddReluKernel
<
DeviceType
,
T
>>
(
type
,
inputs
,
outputs
,
attrs
,
scope
)
{}
using
framework
::
OperatorWithKernel
<
DeviceType
,
FushionConvAddReluParam
,
operators
::
ConvAddReluKernel
<
DeviceType
,
T
>>::
OperatorWithKernel
;
void
InferShape
()
const
override
;
protected:
};
#ifdef PADDLE_MOBILE_CPU
// static framework::FusionOpRegistrar fusion_conv_add_relu_registrar(
// new FushionConvAddReluOpMatcher());
//static framework::FusionOpRegistrar fusion_conv_add_relu_registrar(new FushionConvAddReluOpMatcher());
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
#endif
...
...
src/operators/fusion_fc_op.h
浏览文件 @
d46f3d0d
...
...
@@ -70,7 +70,7 @@ class FushionFcOp : public framework::OperatorWithKernel<
static
framework
::
FusionOpRegistrar
fc_registrar
(
new
FusionFcMatcher
());
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
static
framework
::
FusionOpRegistrar
fc_registrar
(
new
FusionFcMatcher
());
//
static framework::FusionOpRegistrar fc_registrar(new FusionFcMatcher());
#endif
#ifdef PADDLE_MOBILE_FPGA
#endif
...
...
src/operators/kernel/arm/conv_add_kernel.cpp
浏览文件 @
d46f3d0d
...
...
@@ -26,7 +26,7 @@ void ConvAddKernel<CPU, float>::Compute(
Tensor
bias
=
*
param
.
Bias
();
int
axis
=
param
.
Axis
();
Tensor
*
output
=
param
.
Output
();
expand_bias
(
bias
,
axis
,
output
->
dims
());
math
::
expand_bias
(
bias
,
axis
,
output
->
dims
());
output
->
ShareDataWith
(
bias
);
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
...
...
@@ -50,7 +50,7 @@ void ConvAddKernel<CPU, float>::Compute(
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
bool
is_expand
=
math
::
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
...
...
src/operators/kernel/arm/conv_add_relu_kernel.cpp
0 → 100644
浏览文件 @
d46f3d0d
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADD_RELU_OP
#include "operators/kernel/conv_add_relu_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
void
ConvAddReluKernel
<
CPU
,
float
>::
Compute
(
const
FushionConvAddReluParam
&
param
)
const
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
bias
=
*
param
.
Bias
();
int
axis
=
param
.
Axis
();
Tensor
*
output
=
param
.
Output
();
math
::
expand_bias
(
bias
,
axis
,
output
->
dims
());
output
->
ShareDataWith
(
bias
);
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int
>
dilations
=
param
.
Dilations
();
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
math
::
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
float
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
// convolution operator: im2col(or vol2col) + gemm
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
),
true
);
}
}
}
template
class
ConvAddReluKernel
<
CPU
,
float
>;
}
}
#endif
src/operators/kernel/conv_add_kernel.h
浏览文件 @
d46f3d0d
...
...
@@ -21,11 +21,12 @@ limitations under the License. */
#include <arm_neon.h>
#endif
#include "framework/ddim.h"
#include "operators/op_param.h"
#include "framework/operator.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/vol2col.h"
#include "operators/op_param.h"
#include "operators/math/conv_func.h"
#include "operators/math/math_function.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -33,75 +34,13 @@ namespace operators {
using
framework
::
DDim
;
using
framework
::
OpKernelBase
;
template
<
typename
DeviceType
,
typename
T
>
class
ConvAddKernel
:
public
OpKernelBase
<
DeviceType
,
FushionConvAddParam
>
{
public:
void
Compute
(
const
FushionConvAddParam
&
param
)
const
;
};
inline
void
expand_bias
(
Tensor
&
bias
,
int
axis
,
const
DDim
&
dDim
)
{
auto
bias_ptr
=
bias
.
data
<
float
>
();
const
DDim
bias_ddim
=
bias
.
dims
();
PADDLE_MOBILE_ENFORCE
(
bias
.
dims
().
size
()
==
1
,
"the bias tensor's dims size != 1"
)
DDim
outer_ddim
=
paddle_mobile
::
framework
::
slice_ddim
(
dDim
,
0
,
axis
+
1
);
DDim
inner_ddim
=
paddle_mobile
::
framework
::
slice_ddim
(
dDim
,
axis
+
1
,
dDim
.
size
());
int
outer_size
=
paddle_mobile
::
framework
::
product
(
outer_ddim
);
int
inner_size
=
paddle_mobile
::
framework
::
product
(
inner_ddim
);
bias
.
Resize
(
dDim
);
auto
new_ptr
=
bias
.
mutable_data
<
float
>
();
int
axis_size
=
dDim
[
axis
];
#if __ARM_NEON
for
(
int
i
=
0
;
i
<
outer_size
;
++
i
)
{
int
inner_num
=
inner_size
>>
4
;
int
remain
=
inner_size
-
(
inner_num
<<
4
);
float
v_bias
=
bias_ptr
[
i
*
axis_size
/
outer_size
];
for
(;
inner_num
>
0
;
inner_num
--
)
{
float32x4_t
v_newptr1
=
vdupq_n_f32
(
v_bias
);
float32x4_t
v_newptr2
=
vdupq_n_f32
(
v_bias
);
float32x4_t
v_newptr3
=
vdupq_n_f32
(
v_bias
);
float32x4_t
v_newptr4
=
vdupq_n_f32
(
v_bias
);
vst1q_f32
(
new_ptr
,
v_newptr1
);
new_ptr
+=
4
;
vst1q_f32
(
new_ptr
,
v_newptr2
);
new_ptr
+=
4
;
vst1q_f32
(
new_ptr
,
v_newptr3
);
new_ptr
+=
4
;
vst1q_f32
(
new_ptr
,
v_newptr4
);
new_ptr
+=
4
;
}
for
(;
remain
>
0
;
remain
--
)
{
*
new_ptr
=
v_bias
;
new_ptr
++
;
}
}
#else
for
(
int
i
=
0
;
i
<
outer_size
;
++
i
)
{
float
v_bias
=
bias_ptr
[
i
*
axis_size
/
outer_size
];
for
(
int
j
=
0
;
j
<
inner_size
;
++
j
)
{
new_ptr
[
i
*
inner_size
+
j
]
=
v_bias
;
}
}
#endif
}
inline
bool
IsExpand
(
const
std
::
vector
<
int64_t
>
&
filter_dim
,
const
std
::
vector
<
int
>
&
strides
,
const
std
::
vector
<
int
>
&
paddings
,
const
std
::
vector
<
int
>
&
dilations
)
{
bool
filter_1
=
true
,
strides_1
=
true
,
padding_0
=
true
,
dilation_1
=
true
;
for
(
size_t
j
=
0
;
j
<
strides
.
size
();
++
j
)
{
filter_1
=
filter_1
&&
(
static_cast
<
int
>
(
filter_dim
[
j
+
2
])
==
1
);
strides_1
=
strides_1
&&
(
strides
[
j
]
==
1
);
padding_0
=
padding_0
&&
(
paddings
[
j
]
==
0
);
dilation_1
=
dilation_1
&&
(
dilations
[
j
]
==
1
);
}
return
!
(
filter_1
&&
strides_1
&&
padding_0
&&
dilation_1
);
}
}
// namespace operators
}
// namespace paddle_mobile
...
...
src/operators/kernel/conv_add_relu_kernel.h
0 → 100644
浏览文件 @
d46f3d0d
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef FUSION_CONVADD_RELU_OP
#include <vector>
#include "framework/ddim.h"
#include "framework/operator.h"
#include "operators/op_param.h"
#include "operators/math/im2col.h"
#include "operators/math/vol2col.h"
#include "operators/math/conv_func.h"
#include "operators/math/math_function.h"
namespace
paddle_mobile
{
namespace
operators
{
using
framework
::
DDim
;
using
framework
::
OpKernelBase
;
template
<
typename
DeviceType
,
typename
T
>
class
ConvAddReluKernel
:
public
OpKernelBase
<
DeviceType
,
FushionConvAddReluParam
>
{
public:
void
Compute
(
const
FushionConvAddReluParam
&
param
)
const
;
};
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/mali/batchnorm_kernel.cpp
0 → 100644
浏览文件 @
d46f3d0d
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef BATCHNORM_OP
#pragma once
#include "operators/kernel/batchnorm_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
void
BatchNormKernel
<
GPU_MALI
,
float
>::
Compute
(
const
BatchNormParam
&
param
)
const
{
}
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/mali/conv_kernel.cpp
浏览文件 @
d46f3d0d
...
...
@@ -23,6 +23,7 @@ template <>
void
ConvKernel
<
GPU_MALI
,
float
>::
Compute
(
const
ConvParam
&
param
)
const
{
// ArmConvImplement imp;
// imp.Compute(param);
param
.
Output
()
->
mutable_data
<
float
>
()[
0
]
=
100.0
;
}
template
class
ConvKernel
<
GPU_MALI
,
float
>;
...
...
src/operators/math/conv_func.h
0 → 100644
浏览文件 @
d46f3d0d
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#if __ARM_NEON
#include <arm_neon.h>
#endif
#include "framework/ddim.h"
#include "framework/tensor.h"
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
using
framework
::
DDim
;
using
framework
::
Tensor
;
inline
int
ConvOutputSize
(
int
input_size
,
int
filter_size
,
int
dilation
,
int
padding
,
int
stride
)
{
const
int
dkernel
=
dilation
*
(
filter_size
-
1
)
+
1
;
int
output_size
=
(
input_size
+
2
*
padding
-
dkernel
)
/
stride
+
1
;
return
output_size
;
}
inline
void
expand_bias
(
Tensor
&
bias
,
int
axis
,
const
DDim
&
dDim
)
{
auto
bias_ptr
=
bias
.
data
<
float
>
();
const
DDim
bias_ddim
=
bias
.
dims
();
PADDLE_MOBILE_ENFORCE
(
bias
.
dims
().
size
()
==
1
,
"the bias tensor's dims size != 1"
)
DDim
outer_ddim
=
paddle_mobile
::
framework
::
slice_ddim
(
dDim
,
0
,
axis
+
1
);
DDim
inner_ddim
=
paddle_mobile
::
framework
::
slice_ddim
(
dDim
,
axis
+
1
,
dDim
.
size
());
int
outer_size
=
paddle_mobile
::
framework
::
product
(
outer_ddim
);
int
inner_size
=
paddle_mobile
::
framework
::
product
(
inner_ddim
);
bias
.
Resize
(
dDim
);
auto
new_ptr
=
bias
.
mutable_data
<
float
>
();
int
axis_size
=
dDim
[
axis
];
#if __ARM_NEON
for
(
int
i
=
0
;
i
<
outer_size
;
++
i
)
{
int
inner_num
=
inner_size
>>
4
;
int
remain
=
inner_size
-
(
inner_num
<<
4
);
float
v_bias
=
bias_ptr
[
i
*
axis_size
/
outer_size
];
for
(;
inner_num
>
0
;
inner_num
--
)
{
float32x4_t
v_newptr1
=
vdupq_n_f32
(
v_bias
);
float32x4_t
v_newptr2
=
vdupq_n_f32
(
v_bias
);
float32x4_t
v_newptr3
=
vdupq_n_f32
(
v_bias
);
float32x4_t
v_newptr4
=
vdupq_n_f32
(
v_bias
);
vst1q_f32
(
new_ptr
,
v_newptr1
);
new_ptr
+=
4
;
vst1q_f32
(
new_ptr
,
v_newptr2
);
new_ptr
+=
4
;
vst1q_f32
(
new_ptr
,
v_newptr3
);
new_ptr
+=
4
;
vst1q_f32
(
new_ptr
,
v_newptr4
);
new_ptr
+=
4
;
}
for
(;
remain
>
0
;
remain
--
)
{
*
new_ptr
=
v_bias
;
new_ptr
++
;
}
}
#else
for
(
int
i
=
0
;
i
<
outer_size
;
++
i
)
{
float
v_bias
=
bias_ptr
[
i
*
axis_size
/
outer_size
];
for
(
int
j
=
0
;
j
<
inner_size
;
++
j
)
{
new_ptr
[
i
*
inner_size
+
j
]
=
v_bias
;
}
}
#endif
}
inline
bool
IsExpand
(
const
std
::
vector
<
int64_t
>
&
filter_dim
,
const
std
::
vector
<
int
>
&
strides
,
const
std
::
vector
<
int
>
&
paddings
,
const
std
::
vector
<
int
>
&
dilations
)
{
bool
filter_1
=
true
,
strides_1
=
true
,
padding_0
=
true
,
dilation_1
=
true
;
for
(
size_t
j
=
0
;
j
<
strides
.
size
();
++
j
)
{
filter_1
=
filter_1
&&
(
static_cast
<
int
>
(
filter_dim
[
j
+
2
])
==
1
);
strides_1
=
strides_1
&&
(
strides
[
j
]
==
1
);
padding_0
=
padding_0
&&
(
paddings
[
j
]
==
0
);
dilation_1
=
dilation_1
&&
(
dilations
[
j
]
==
1
);
}
return
!
(
filter_1
&&
strides_1
&&
padding_0
&&
dilation_1
);
}
}
}
}
src/operators/math/gemm.cpp
浏览文件 @
d46f3d0d
...
...
@@ -175,7 +175,48 @@ void InnerKernel(int m, int n, int k, float alpha, const float *A, int lda,
}
}
// 计算一个更小的 4 * 4 的 C 矩阵分块
// 分块矩阵乘法
void
InnerKernel_relu
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
int
first_time
,
bool
relu
=
false
)
{
int
Buff_A_M
=
m
;
int
Buff_B_N
=
n
;
int
_mc
=
m
%
MR
;
int
_nc
=
n
%
NR
;
if
(
_mc
!=
0
)
{
Buff_A_M
=
m
+
(
MR
-
_mc
);
}
if
(
_nc
!=
0
)
{
Buff_B_N
=
n
+
(
NR
-
_nc
);
}
float
packedA
[
MC
*
KC
];
static
float
packedB
[
KC
*
NC
];
if
(
first_time
)
{
PackMatrixB_
(
k
,
n
,
_nc
,
B
,
ldb
,
packedB
);
}
PackMatrixA_
(
m
,
k
,
_mc
,
A
,
lda
,
packedA
);
int
i
,
j
,
mc
,
nc
;
// B 取 4 列, 打包预热
for
(
j
=
0
;
j
<
Buff_B_N
;
j
+=
NR
)
{
nc
=
(
n
-
j
)
<
NR
?
_nc
:
NR
;
// A 取 4 行,打包预热
for
(
i
=
0
;
i
<
Buff_A_M
;
i
+=
MR
)
{
mc
=
(
m
-
i
)
<
MR
?
_mc
:
MR
;
AddDot4x4_relu
(
k
,
alpha
,
&
packedA
[
i
*
k
],
4
,
&
packedB
[
j
*
k
],
k
,
beta
,
&
C
(
i
,
j
),
ldc
,
mc
,
nc
,
relu
);
}
}
}
//计算一个更小的 4 * 4 的 C 矩阵分块
#if defined(IOS)
void
AddDot4x4
(
int
k
,
float
alpha
,
const
float
*
a
,
int
lda
,
const
float
*
b
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
int
mc
,
int
nc
)
{
...
...
@@ -226,6 +267,60 @@ void AddDot4x4(int k, float alpha, const float *a, int lda, const float *b,
}
}
}
void
AddDot4x4_relu
(
int
k
,
float
alpha
,
const
float
*
a
,
int
lda
,
const
float
*
b
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
int
mc
,
int
nc
,
bool
relu
=
false
)
{
// init C
float32x4_t
cv0
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv1
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv2
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv3
=
vdupq_n_f32
(
0.0
);
float32x4_t
av
;
float32x4_t
bv
;
float32x2_t
av01
;
float32x2_t
av23
;
for
(
int
p
=
0
;
p
<
k
;
p
+=
1
)
{
av
=
vld1q_f32
(
a
);
bv
=
vld1q_f32
(
b
);
av01
=
vget_low_f32
(
av
);
cv0
=
vmlaq_lane_f32
(
cv0
,
bv
,
av01
,
0
);
cv1
=
vmlaq_lane_f32
(
cv1
,
bv
,
av01
,
1
);
av23
=
vget_high_f32
(
av
);
cv2
=
vmlaq_lane_f32
(
cv2
,
bv
,
av23
,
0
);
cv3
=
vmlaq_lane_f32
(
cv3
,
bv
,
av23
,
1
);
a
+=
MR
;
b
+=
NR
;
}
float32x4x4_t
cv
=
{
cv0
,
cv1
,
cv2
,
cv3
};
int
i
,
j
;
for
(
i
=
0
;
i
<
mc
;
++
i
)
{
for
(
j
=
0
;
j
<
nc
;
++
j
)
{
if
(
beta
==
0.0
)
{
C
(
i
,
j
)
=
0.0
;
}
else
if
(
beta
!=
1.0
)
{
C
(
i
,
j
)
*=
beta
;
}
if
(
j
==
0
)
{
C
(
i
,
j
)
+=
alpha
*
vgetq_lane_f32
(
cv
.
val
[
i
],
0
);
}
else
if
(
j
==
1
)
{
C
(
i
,
j
)
+=
alpha
*
vgetq_lane_f32
(
cv
.
val
[
i
],
1
);
}
else
if
(
j
==
2
)
{
C
(
i
,
j
)
+=
alpha
*
vgetq_lane_f32
(
cv
.
val
[
i
],
2
);
}
else
if
(
j
==
3
)
{
C
(
i
,
j
)
+=
alpha
*
vgetq_lane_f32
(
cv
.
val
[
i
],
3
);
}
if
(
C
(
i
,
j
)
<
0
)
{
C
(
i
,
j
)
=
0
;
}
}
}
}
#elif defined(ARMV7)
void
AddDot4x4
(
int
k
,
float
alpha
,
const
float
*
a
,
int
lda
,
const
float
*
b
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
int
mc
,
int
nc
)
{
...
...
@@ -361,6 +456,155 @@ void AddDot4x4(int k, float alpha, const float *a, int lda, const float *b,
}
}
}
void
AddDot4x4_relu
(
int
k
,
float
alpha
,
const
float
*
a
,
int
lda
,
const
float
*
b
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
int
mc
,
int
nc
,
bool
relu
=
false
)
{
int
kc1
=
k
/
2
,
kc2
=
k
%
2
;
int
bytes_ldc
=
4
*
ldc
;
int
flag_alpha
=
(
alpha
==
1.0
)
?
1
:
2
;
int
flag_beta
;
if
(
beta
==
0.0
)
{
flag_beta
=
0
;
}
else
if
(
beta
==
1.0
)
{
flag_beta
=
1
;
}
else
{
flag_beta
=
2
;
}
asm
volatile
(
"vmov.f32 q10, #0.0
\n\t
"
"vmov.f32 q11, #0.0
\n\t
"
"vmov.f32 q12, #0.0
\n\t
"
"vmov.f32 q13, #0.0
\n\t
"
"vmov.f32 q14, #0.0
\n\t
"
"subs %[kc1], %[kc1], #1
\n\t
"
"blt end_kc1_%=
\n\t
"
"loop_kc1_%=:
\n\t
"
"vld1.32 {q0, q1}, [%[a]]!
\n\t
"
"vld1.32 {q2, q3}, [%[b]]!
\n\t
"
"vmla.f32 q10, q2, d0[0]
\n\t
"
"vmla.f32 q11, q2, d0[1]
\n\t
"
"vmla.f32 q12, q2, d1[0]
\n\t
"
"vmla.f32 q13, q2, d1[1]
\n\t
"
"vmla.f32 q10, q3, d2[0]
\n\t
"
"vmla.f32 q11, q3, d2[1]
\n\t
"
"vmla.f32 q12, q3, d3[0]
\n\t
"
"vmla.f32 q13, q3, d3[1]
\n\t
"
"subs %[kc1], %[kc1], #1
\n\t
"
"bge loop_kc1_%=
\n\t
"
"end_kc1_%=:
\n\t
"
"subs %[kc2], %[kc2], #1
\n\t
"
"blt end_kc2_%=
\n\t
"
"vld1.32 {q0}, [%[a]]!
\n\t
"
"vld1.32 {q1}, [%[b]]!
\n\t
"
"vmla.f32 q10, q1, d0[0]
\n\t
"
"vmla.f32 q11, q1, d0[1]
\n\t
"
"vmla.f32 q12, q1, d1[0]
\n\t
"
"vmla.f32 q13, q1, d1[1]
\n\t
"
"end_kc2_%=:
\n\t
"
"cmp %[mc], #4
\n\t
"
"bne temp_%=
\n\t
"
"cmp %[nc], #4
\n\t
"
"bne temp_%=
\n\t
"
"vmov.f32 d8[0], %[alpha]
\n\t
"
"vmov.f32 d8[1], %[beta]
\n\t
"
"cmp %[flag_alpha], #1
\n\t
"
"bne alpha_%=
\n\t
"
"alpha_%=:
\n\t
"
"vmul.f32 q10, q10, d8[0]
\n\t
"
"vmul.f32 q11, q11, d8[0]
\n\t
"
"vmul.f32 q12, q12, d8[0]
\n\t
"
"vmul.f32 q13, q13, d8[0]
\n\t
"
"beta_%=:
\n\t
"
"cmp %[flag_beta], #0
\n\t
"
"beq memory_%=
\n\t
"
"mov r4, %[C]
\n\t
"
"mov r6, %[bytes_ldc]
\n\t
"
"vld1.32 {q0}, [r4], r6
\n\t
"
"vld1.32 {q1}, [r4], r6
\n\t
"
"vld1.32 {q2}, [r4], r6
\n\t
"
"vld1.32 {q3}, [r4]
\n\t
"
"cmp %[flag_beta], #1
\n\t
"
"beq beta_eq1_%=
\n\t
"
"bne beta_ne1_%=
\n\t
"
"beta_eq1_%=:
\n\t
"
"vadd.f32 q10, q10, q0
\n\t
"
"vadd.f32 q11, q11, q1
\n\t
"
"vadd.f32 q12, q12, q2
\n\t
"
"vadd.f32 q13, q13, q3
\n\t
"
"b memory_%=
\n\t
"
"beta_ne1_%=:
\n\t
"
"vmla.f32 q10, q0, d8[1]
\n\t
"
"vmla.f32 q11, q1, d8[1]
\n\t
"
"vmla.f32 q12, q2, d8[1]
\n\t
"
"vmla.f32 q13, q3, d8[1]
\n\t
"
"memory_%=:
\n\t
"
"vmax.f32 q10, q10, q14
\n\t
"
"vmax.f32 q11, q11, q14
\n\t
"
"vmax.f32 q12, q12, q14
\n\t
"
"vmax.f32 q13, q13, q14
\n\t
"
"mov r5, %[C]
\n\t
"
"mov r6, %[bytes_ldc]
\n\t
"
"vst1.32 {q10}, [r5], r6
\n\t
"
"vst1.32 {q11}, [r5], r6
\n\t
"
"vst1.32 {q12}, [r5], r6
\n\t
"
"vst1.32 {q13}, [r5]
\n\t
"
"b end_%=
\n\t
"
"temp_%=:
\n\t
"
"vst1.32 {q10, q11}, [%[ab]]!
\n\t
"
"vst1.32 {q12, q13}, [%[ab]]
\n\t
"
"end_%=:
\n\t
"
:
:
[
a
]
"r"
(
a
),
[
b
]
"r"
(
b
),
[
C
]
"r"
(
C
),
[
ab
]
"r"
(
ab
),
[
kc1
]
"r"
(
kc1
),
[
kc2
]
"r"
(
kc2
),
[
mc
]
"r"
(
mc
),
[
nc
]
"r"
(
nc
),
[
alpha
]
"r"
(
alpha
),
[
beta
]
"r"
(
beta
),
[
bytes_ldc
]
"r"
(
bytes_ldc
),
[
flag_alpha
]
"r"
(
flag_alpha
),
[
flag_beta
]
"r"
(
flag_beta
)
:
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
);
if
(
mc
!=
MR
||
nc
!=
NR
)
{
int
i
,
j
;
for
(
i
=
0
;
i
<
mc
;
++
i
)
{
for
(
j
=
0
;
j
<
nc
;
++
j
)
{
if
(
beta
==
0.0
)
{
if
(
alpha
!=
1.0
)
{
C
(
i
,
j
)
=
alpha
*
ab
[
i
*
MR
+
j
];
}
else
{
C
(
i
,
j
)
=
ab
[
i
*
MR
+
j
];
}
}
else
{
if
(
beta
!=
1.0
)
{
C
(
i
,
j
)
*=
beta
;
}
if
(
alpha
!=
1.0
)
{
C
(
i
,
j
)
+=
alpha
*
ab
[
i
*
MR
+
j
];
}
else
{
C
(
i
,
j
)
+=
ab
[
i
*
MR
+
j
];
}
}
if
(
relu
)
{
if
(
C
(
i
,
j
)
<
0
)
{
C
(
i
,
j
)
=
0
;
}
}
}
}
}
}
#else
void
AddDot4x4
(
int
k
,
float
alpha
,
const
float
*
a
,
int
lda
,
const
float
*
b
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
int
mc
,
int
nc
)
{
...
...
@@ -418,6 +662,70 @@ void AddDot4x4(int k, float alpha, const float *a, int lda, const float *b,
}
}
}
void
AddDot4x4_relu
(
int
k
,
float
alpha
,
const
float
*
a
,
int
lda
,
const
float
*
b
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
int
mc
,
int
nc
,
bool
relu
)
{
float
c
[
16
]
=
{
0
};
float
reg_a0
,
reg_a1
,
reg_a2
,
reg_a3
,
reg_b0
,
reg_b1
,
reg_b2
,
reg_b3
;
for
(
int
p
=
0
;
p
<
k
;
p
+=
1
)
{
reg_b0
=
*
b
++
;
reg_b1
=
*
b
++
;
reg_b2
=
*
b
++
;
reg_b3
=
*
b
++
;
reg_a0
=
*
a
++
;
reg_a1
=
*
a
++
;
reg_a2
=
*
a
++
;
reg_a3
=
*
a
++
;
// first row
c
[
0
]
+=
reg_a0
*
reg_b0
;
c
[
1
]
+=
reg_a0
*
reg_b1
;
c
[
2
]
+=
reg_a0
*
reg_b2
;
c
[
3
]
+=
reg_a0
*
reg_b3
;
// second row
c
[
4
]
+=
reg_a1
*
reg_b0
;
c
[
5
]
+=
reg_a1
*
reg_b1
;
c
[
6
]
+=
reg_a1
*
reg_b2
;
c
[
7
]
+=
reg_a1
*
reg_b3
;
// third row
c
[
8
]
+=
reg_a2
*
reg_b0
;
c
[
9
]
+=
reg_a2
*
reg_b1
;
c
[
10
]
+=
reg_a2
*
reg_b2
;
c
[
11
]
+=
reg_a2
*
reg_b3
;
// fourth row
c
[
12
]
+=
reg_a3
*
reg_b0
;
c
[
13
]
+=
reg_a3
*
reg_b1
;
c
[
14
]
+=
reg_a3
*
reg_b2
;
c
[
15
]
+=
reg_a3
*
reg_b3
;
}
int
i
,
j
;
for
(
i
=
0
;
i
<
mc
;
++
i
)
{
for
(
j
=
0
;
j
<
nc
;
++
j
)
{
if
(
beta
==
0.0
)
{
C
(
i
,
j
)
=
0.0
;
}
else
if
(
beta
!=
1.0
)
{
C
(
i
,
j
)
*=
beta
;
}
if
(
alpha
!=
1.0
)
{
C
(
i
,
j
)
+=
alpha
*
c
[
i
*
MR
+
j
];
}
else
{
C
(
i
,
j
)
+=
c
[
i
*
MR
+
j
];
}
if
(
relu
)
{
if
(
C
(
i
,
j
)
<
0
)
{
C
(
i
,
j
)
=
0
;
}
}
}
}
}
#endif
// 32位 float 矩阵乘法
...
...
@@ -443,6 +751,34 @@ void sgemm(int m, int n, int k, float alpha, const float *A, int lda,
}
}
void
sgemm_relu
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
)
{
int
i
,
j
,
p
,
mc
,
nc
,
kc
;
float
beta_
;
for
(
j
=
0
;
j
<
n
;
j
+=
NC
)
{
nc
=
s_min
(
n
-
j
,
NC
);
for
(
p
=
0
;
p
<
k
;
p
+=
KC
)
{
kc
=
s_min
(
k
-
p
,
KC
);
for
(
i
=
0
;
i
<
m
;
i
+=
MC
)
{
mc
=
s_min
(
m
-
i
,
MC
);
if
(
p
!=
0
)
{
beta_
=
1.0
;
}
else
{
beta_
=
beta
;
}
if
(
p
+
KC
>=
k
)
{
InnerKernel_relu
(
mc
,
nc
,
kc
,
alpha
,
&
A
(
i
,
p
),
lda
,
&
B
(
p
,
j
),
ldb
,
beta_
,
&
C
(
i
,
j
),
ldc
,
i
==
0
,
true
);
}
else
{
InnerKernel
(
mc
,
nc
,
kc
,
alpha
,
&
A
(
i
,
p
),
lda
,
&
B
(
p
,
j
),
ldb
,
beta_
,
&
C
(
i
,
j
),
ldc
,
i
==
0
);
}
}
}
}
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
src/operators/math/gemm.h
浏览文件 @
d46f3d0d
...
...
@@ -57,10 +57,16 @@ void InnerKernel(int m, int n, int k, float alpha, const float *A, int lda,
void
AddDot4x4
(
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
int
mc
,
int
nc
);
void
AddDot4x4_relu
(
int
k
,
float
alpha
,
const
float
*
a
,
int
lda
,
const
float
*
b
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
int
mc
,
int
nc
,
bool
relu
);
// 32位 float 矩阵乘法
void
sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
);
void
sgemm_relu
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
);
// 64位 double 矩阵乘法
void
dgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
double
*
A
,
int
lda
,
const
double
*
B
,
int
ldb
,
float
beta
,
double
*
C
,
int
ldc
);
...
...
src/operators/math/math_function.cpp
浏览文件 @
d46f3d0d
...
...
@@ -22,7 +22,7 @@ namespace math {
template
<
>
void
matmul
<
float
>
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
float
alpha
,
framework
::
Tensor
*
matrix_out
,
float
beta
)
{
framework
::
Tensor
*
matrix_out
,
float
beta
,
bool
relu
)
{
auto
dim_a
=
matrix_a
.
dims
();
auto
dim_b
=
matrix_b
.
dims
();
auto
dim_out
=
matrix_out
->
dims
();
...
...
@@ -41,14 +41,20 @@ void matmul<float>(const framework::Tensor &matrix_a, bool trans_a,
int
N
=
dim_out
[
1
];
int
K
=
(
trans_a
==
false
)
?
dim_a
[
1
]
:
dim_a
[
0
];
if
(
relu
)
{
sgemm_relu
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
);
}
else
{
sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
);
}
}
template
<
>
void
matmul
<
double
>
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
double
alpha
,
framework
::
Tensor
*
matrix_out
,
double
beta
)
{
double
alpha
,
framework
::
Tensor
*
matrix_out
,
double
beta
,
bool
relu
)
{
auto
dim_a
=
matrix_a
.
dims
();
auto
dim_b
=
matrix_b
.
dims
();
auto
dim_out
=
matrix_out
->
dims
();
...
...
@@ -68,6 +74,8 @@ void matmul<double>(const framework::Tensor &matrix_a, bool trans_a,
int
K
=
(
trans_a
==
false
)
?
dim_a
[
1
]
:
dim_a
[
0
];
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
src/operators/math/math_function.h
浏览文件 @
d46f3d0d
...
...
@@ -25,7 +25,7 @@ namespace math {
template
<
typename
T
>
void
matmul
(
const
framework
::
Tensor
&
matrix_a
,
bool
trans_a
,
const
framework
::
Tensor
&
matrix_b
,
bool
trans_b
,
T
alpha
,
framework
::
Tensor
*
matrix_out
,
T
beta
);
framework
::
Tensor
*
matrix_out
,
T
beta
,
bool
relu
=
false
);
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
src/operators/op_param.h
浏览文件 @
d46f3d0d
...
...
@@ -823,7 +823,7 @@ class FushionConvAddParam : public OpParam {
const
int
&
Groups
()
const
{
return
groups
;
}
pr
ivate
:
pr
otected
:
Tensor
*
bias_
;
int
axis_
;
Tensor
*
input_
;
...
...
@@ -838,5 +838,15 @@ class FushionConvAddParam : public OpParam {
Print
&
operator
<<
(
Print
&
printer
,
const
FushionConvAddParam
&
conv_param
);
#endif
#ifdef FUSION_CONVADD_RELU_OP
class
FushionConvAddReluParam
:
public
FushionConvAddParam
{
public:
FushionConvAddReluParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
:
FushionConvAddParam
(
inputs
,
outputs
,
attrs
,
scope
)
{
}
};
#endif
}
// namespace operators
}
// namespace paddle_mobile
test/CMakeLists.txt
浏览文件 @
d46f3d0d
...
...
@@ -141,6 +141,10 @@ else ()
ADD_EXECUTABLE
(
test-mobilenet net/test_mobilenet.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-mobilenet paddle-mobile
)
# gen test
ADD_EXECUTABLE
(
test-conv-add-relu-op operators/test_conv_add_relu_op.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-conv-add-relu-op paddle-mobile
)
#add_library(test-lib-size SHARED common/test_lib_size.h common/test_lib_size.cpp)
endif
()
test/executor_for_test.h
浏览文件 @
d46f3d0d
...
...
@@ -42,8 +42,9 @@ using std::vector;
template
<
typename
DeviceType
,
typename
OpType
>
class
Executor4Test
:
public
Executor
<
DeviceType
>
{
public:
Executor4Test
(
Program
<
DeviceType
>
p
,
string
op_type
)
Executor4Test
(
Program
<
DeviceType
>
p
,
string
op_type
,
bool
use_optimize
=
false
)
:
Executor
<
DeviceType
>
()
{
this
->
use_optimize_
=
use_optimize
;
this
->
program_
=
p
;
if
(
this
->
use_optimize_
)
{
this
->
to_predict_program_
=
this
->
program_
.
optimizeProgram
;
...
...
@@ -61,10 +62,13 @@ class Executor4Test : public Executor<DeviceType> {
std
::
vector
<
std
::
shared_ptr
<
OpDesc
>>
ops
=
block_desc
->
Ops
();
for
(
std
::
shared_ptr
<
OpDesc
>
op
:
ops
)
{
if
(
op
->
Type
()
==
op_type
)
{
DLOG
<<
"匹配到: "
<<
op
->
Type
();
/// test first meeting op in program
std
::
shared_ptr
<
paddle_mobile
::
framework
::
OperatorBase
<
DeviceType
>>
op_ptr
=
paddle_mobile
::
framework
::
OpRegistry
<
paddle_mobile
::
CPU
>::
CreateOp
(
op
->
Type
(),
op
->
GetInputs
(),
DeviceType
>::
CreateOp
(
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
this
->
program_
.
scope
);
...
...
test/framework/test_load.cpp
浏览文件 @
d46f3d0d
...
...
@@ -20,8 +20,9 @@ int main() {
// ../../../test/models/googlenet
// ../../../test/models/mobilenet
auto
program
=
loader
.
Load
(
g_mobilenet_ssd
,
false
,
false
);
// loader.Load(g_googlenet_combine + "/model", g_googlenet_combine +
// "/params", true);
program
.
originProgram
->
Description
(
"program desc: "
);
// auto program = loader.Load(g_googlenet_combine + "/model", g_googlenet_combine +
// "/params", true);
// program.originProgram->Description("program desc: ");
return
0
;
}
test/operators/test_conv_add_relu_op.cpp
0 → 100644
浏览文件 @
d46f3d0d
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "../test_include.h"
#include "operators/fusion_conv_add_relu_op.h"
int
main
()
{
paddle_mobile
::
Loader
<
paddle_mobile
::
CPU
>
loader
;
// ../models/image_classification_resnet.inference.model
auto
program
=
loader
.
Load
(
g_googlenet
,
true
);
PADDLE_MOBILE_ENFORCE
(
program
.
originProgram
!=
nullptr
,
"program file read fail"
);
Executor4Test
<
paddle_mobile
::
CPU
,
paddle_mobile
::
operators
::
FusionConvAddReluOp
<
paddle_mobile
::
CPU
,
float
>>
executor
(
program
,
"fusion_conv_add_relu"
,
true
);
paddle_mobile
::
framework
::
Tensor
input
;
GetInput
<
float
>
(
g_test_image_1x3x224x224
,
&
input
,
{
1
,
3
,
224
,
224
});
// // use SetupTensor if not has local input image .
// SetupTensor<float>(&input, {1, 3, 224, 224}, static_cast<float>(0),
// static_cast<float>(1));
auto
out_ddim
=
paddle_mobile
::
framework
::
make_ddim
({
1
,
64
,
112
,
112
});
auto
output
=
executor
.
Predict
(
input
,
"data"
,
"conv2d_0.tmp_2"
,
out_ddim
);
auto
output_ptr
=
output
->
data
<
float
>
();
for
(
int
j
=
0
;
j
<
25
;
++
j
)
{
DLOG
<<
" value of output: "
<<
output_ptr
[
j
];
}
return
0
;
}
test/operators/test_cov_op.cpp
浏览文件 @
d46f3d0d
...
...
@@ -16,15 +16,15 @@ limitations under the License. */
#include "operators/conv_op.h"
int
main
()
{
paddle_mobile
::
Loader
<
paddle_mobile
::
CPU
>
loader
;
paddle_mobile
::
Loader
<
paddle_mobile
::
GPU_MALI
>
loader
;
// ../models/image_classification_resnet.inference.model
auto
program
=
loader
.
Load
(
g_googlenet
);
PADDLE_MOBILE_ENFORCE
(
program
.
originProgram
!=
nullptr
,
"program file read fail"
);
Executor4Test
<
paddle_mobile
::
CPU
,
paddle_mobile
::
operators
::
ConvOp
<
paddle_mobile
::
CPU
,
float
>>
Executor4Test
<
paddle_mobile
::
GPU_MALI
,
paddle_mobile
::
operators
::
ConvOp
<
paddle_mobile
::
GPU_MALI
,
float
>>
executor
(
program
,
"conv2d"
);
paddle_mobile
::
framework
::
Tensor
input
;
...
...
@@ -37,7 +37,7 @@ int main() {
auto
output
=
executor
.
Predict
(
input
,
"data"
,
"conv2d_0.tmp_0"
,
out_ddim
);
auto
output_ptr
=
output
->
data
<
float
>
();
for
(
int
j
=
0
;
j
<
output
->
numel
()
;
++
j
)
{
for
(
int
j
=
0
;
j
<
20
;
++
j
)
{
DLOG
<<
" value of output: "
<<
output_ptr
[
j
];
}
return
0
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录