Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
d397458f
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
338
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d397458f
编写于
5月 19, 2020
作者:
D
dingminghui
提交者:
jackzhang235
5月 21, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix(cast): fix precision error in mlu cast
caused by wrong data type in io_copy
上级
cb3f16ff
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
102 addition
and
65 deletion
+102
-65
lite/core/mir/mlu_postprocess_pass.cc
lite/core/mir/mlu_postprocess_pass.cc
+53
-5
lite/core/mir/subgraph/subgraph_pass.cc
lite/core/mir/subgraph/subgraph_pass.cc
+0
-33
lite/kernels/mlu/bridges/lrn_op.cc
lite/kernels/mlu/bridges/lrn_op.cc
+1
-1
lite/kernels/mlu/io_copy_compute.cc
lite/kernels/mlu/io_copy_compute.cc
+29
-8
lite/kernels/mlu/subgraph_compute.h
lite/kernels/mlu/subgraph_compute.h
+19
-18
未找到文件。
lite/core/mir/mlu_postprocess_pass.cc
浏览文件 @
d397458f
...
@@ -40,6 +40,10 @@ Node* MLUPostprocessPass::InsertCastBefore(const std::string& op_type,
...
@@ -40,6 +40,10 @@ Node* MLUPostprocessPass::InsertCastBefore(const std::string& op_type,
cast_arg
->
AsArg
().
type
=
cast_type
;
cast_arg
->
AsArg
().
type
=
cast_type
;
inst_node
->
AsStmt
().
op
()
->
scope
()
->
Var
(
cast_arg_name
);
inst_node
->
AsStmt
().
op
()
->
scope
()
->
Var
(
cast_arg_name
);
VLOG
(
4
)
<<
"insert cast before subgraph"
;
VLOG
(
4
)
<<
"curent node type: "
<<
cur_node
->
AsArg
().
type
->
name
()
<<
" cast to node type: "
<<
cast_type
->
name
();
// create the stmt node
// create the stmt node
auto
*
cast_inst
=
graph
->
NewInstructNode
();
auto
*
cast_inst
=
graph
->
NewInstructNode
();
// create op
// create op
...
@@ -89,13 +93,16 @@ Node* MLUPostprocessPass::InsertCastBefore(const std::string& op_type,
...
@@ -89,13 +93,16 @@ Node* MLUPostprocessPass::InsertCastBefore(const std::string& op_type,
const
Type
*
in_arg_ty
=
kernel
->
GetInputDeclType
(
"Input"
);
const
Type
*
in_arg_ty
=
kernel
->
GetInputDeclType
(
"Input"
);
const
Type
*
out_arg_ty
=
kernel
->
GetOutputDeclType
(
"Out"
);
const
Type
*
out_arg_ty
=
kernel
->
GetOutputDeclType
(
"Out"
);
if
(
TargetCompatibleTo
(
*
in_arg_ty
,
*
cur_node
->
AsArg
().
type
)
&&
if
(
TargetCompatibleTo
(
*
in_arg_ty
,
*
cur_node
->
AsArg
().
type
)
&&
TargetCompatibleTo
(
*
out_arg_ty
,
*
cast_type
))
{
TargetCompatibleTo
(
*
out_arg_ty
,
*
cast_type
)
&&
PrecisionCompatible
(
*
in_arg_ty
,
*
cur_node
->
AsArg
().
type
)
&&
PrecisionCompatible
(
*
out_arg_ty
,
*
cast_type
))
{
is_found
=
true
;
is_found
=
true
;
}
}
}
else
{
}
else
{
CHECK
(
0
)
<<
"Unsupport cast type"
;
CHECK
(
0
)
<<
"Unsupport cast type"
;
}
}
if
(
is_found
)
{
if
(
is_found
)
{
VLOG
(
4
)
<<
"insert kernel: "
<<
kernel
->
name
();
selected_kernels
.
emplace_back
(
std
::
move
(
kernel
));
selected_kernels
.
emplace_back
(
std
::
move
(
kernel
));
// we pick the kernel
// we pick the kernel
cast_inst
->
AsStmt
(
op_type
,
std
::
move
(
selected_kernels
),
cast_op
);
cast_inst
->
AsStmt
(
op_type
,
std
::
move
(
selected_kernels
),
cast_op
);
...
@@ -125,6 +132,9 @@ Node* MLUPostprocessPass::InsertCastAfter(const std::string& op_type,
...
@@ -125,6 +132,9 @@ Node* MLUPostprocessPass::InsertCastAfter(const std::string& op_type,
auto
*
var
=
inst_node
->
AsStmt
().
op
()
->
scope
()
->
Var
(
cast_arg_name
);
auto
*
var
=
inst_node
->
AsStmt
().
op
()
->
scope
()
->
Var
(
cast_arg_name
);
// for CastAfter manully set the tensor's type
// for CastAfter manully set the tensor's type
var
->
GetMutable
<
paddle
::
lite
::
Tensor
>
();
var
->
GetMutable
<
paddle
::
lite
::
Tensor
>
();
VLOG
(
4
)
<<
"insert cast after subgraph"
;
VLOG
(
4
)
<<
"curent node type: "
<<
cur_node
->
AsArg
().
type
->
name
()
<<
" cast to node type: "
<<
cast_type
->
name
();
// create the stmt node
// create the stmt node
auto
*
cast_inst
=
graph
->
NewInstructNode
();
auto
*
cast_inst
=
graph
->
NewInstructNode
();
...
@@ -174,7 +184,9 @@ Node* MLUPostprocessPass::InsertCastAfter(const std::string& op_type,
...
@@ -174,7 +184,9 @@ Node* MLUPostprocessPass::InsertCastAfter(const std::string& op_type,
const
Type
*
in_arg_ty
=
kernel
->
GetInputDeclType
(
"Input"
);
const
Type
*
in_arg_ty
=
kernel
->
GetInputDeclType
(
"Input"
);
const
Type
*
out_arg_ty
=
kernel
->
GetOutputDeclType
(
"Out"
);
const
Type
*
out_arg_ty
=
kernel
->
GetOutputDeclType
(
"Out"
);
if
(
TargetCompatibleTo
(
*
in_arg_ty
,
*
cast_type
)
&&
if
(
TargetCompatibleTo
(
*
in_arg_ty
,
*
cast_type
)
&&
TargetCompatibleTo
(
*
out_arg_ty
,
*
cur_node
->
AsArg
().
type
))
{
TargetCompatibleTo
(
*
out_arg_ty
,
*
cur_node
->
AsArg
().
type
)
&&
PrecisionCompatible
(
*
in_arg_ty
,
*
cur_node
->
AsArg
().
type
)
&&
PrecisionCompatible
(
*
out_arg_ty
,
*
cast_type
))
{
is_found
=
true
;
is_found
=
true
;
}
}
}
else
{
}
else
{
...
@@ -323,10 +335,9 @@ void MLUPostprocessPass::GetSubgraphOpArgType(Node* inst_node,
...
@@ -323,10 +335,9 @@ void MLUPostprocessPass::GetSubgraphOpArgType(Node* inst_node,
CHECK
(
subgraph_precision
==
PRECISION
(
kFloat
)
||
CHECK
(
subgraph_precision
==
PRECISION
(
kFloat
)
||
subgraph_precision
==
PRECISION
(
kFP16
))
subgraph_precision
==
PRECISION
(
kFP16
))
<<
"Mlu node has unsupport precision"
;
<<
"Mlu node has unsupport precision"
;
VLOG
(
4
)
<<
"picked kernel precision: "
<<
PrecisionToStr
(
subgraph_precision
);
*
arg_type
=
LiteType
::
GetTensorTy
(
*
arg_type
=
LiteType
::
GetTensorTy
(
subgraph_target
,
subgraph_precision
,
subgraph_layout
);
subgraph_target
,
subgraph_precision
,
subgraph_layout
);
VLOG
(
4
)
<<
"picked subgraph kernel type: "
<<
(
*
arg_type
)
->
name
();
break
;
break
;
}
}
}
}
...
@@ -726,7 +737,7 @@ std::pair<bool, std::string> CheckOutputAndInsert(
...
@@ -726,7 +737,7 @@ std::pair<bool, std::string> CheckOutputAndInsert(
return
std
::
make_pair
(
do_insert
,
cur_node
);
return
std
::
make_pair
(
do_insert
,
cur_node
);
}
}
// insert cast op on mlu, to avoid cast on cpu
, invoke before first run
// insert cast op on mlu, to avoid cast on cpu
void
MLUPostprocessPass
::
AdjustSubgraph
(
Node
*
subgraph_node
,
void
MLUPostprocessPass
::
AdjustSubgraph
(
Node
*
subgraph_node
,
const
Type
*
subgraph_type
)
{
const
Type
*
subgraph_type
)
{
auto
subgraph_op
=
subgraph_node
->
AsStmt
().
op
();
auto
subgraph_op
=
subgraph_node
->
AsStmt
().
op
();
...
@@ -820,6 +831,42 @@ void MLUPostprocessPass::AdjustSubgraph(Node* subgraph_node,
...
@@ -820,6 +831,42 @@ void MLUPostprocessPass::AdjustSubgraph(Node* subgraph_node,
op
->
SetSubBlock
(
new_block_desc
);
op
->
SetSubBlock
(
new_block_desc
);
}
}
void
ModifyValidPlaces
(
SSAGraph
*
graph
,
bool
use_mlu_cast
)
{
// remove invalid places, since only support X86, host, MLU
auto
v_places
=
graph
->
valid_places
();
for
(
auto
it
=
v_places
.
begin
();
it
!=
v_places
.
end
();)
{
if
(
it
->
target
!=
TARGET
(
kMLU
)
&&
it
->
target
!=
TARGET
(
kHost
)
&&
it
->
target
!=
TARGET
(
kX86
))
{
it
=
v_places
.
erase
(
it
);
}
else
{
++
it
;
}
}
if
(
use_mlu_cast
)
{
// insert mlu float place for float io copy, no effect to subgraph type
v_places
.
emplace_back
(
TARGET
(
kMLU
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNHWC
));
}
else
{
// add x86 NHWC place for cpu cast
std
::
set
<
paddle
::
lite_api
::
PrecisionType
>
prec_set
{};
for
(
auto
&
place
:
v_places
)
{
prec_set
.
insert
(
place
.
precision
);
}
if
(
lite
::
TargetWrapperMlu
::
UseFirstConv
())
{
prec_set
.
insert
(
PRECISION
(
kInt8
));
}
for
(
auto
&
prec
:
prec_set
)
{
v_places
.
emplace_back
(
TARGET
(
kX86
),
prec
,
DATALAYOUT
(
kNHWC
));
}
}
graph
->
SetValidPlaces
(
v_places
);
VLOG
(
4
)
<<
"valid places after modified:"
;
for
(
auto
&
p
:
v_places
)
{
VLOG
(
4
)
<<
p
.
DebugString
();
}
}
void
MLUPostprocessPass
::
Apply
(
const
std
::
unique_ptr
<
SSAGraph
>&
graph
)
{
void
MLUPostprocessPass
::
Apply
(
const
std
::
unique_ptr
<
SSAGraph
>&
graph
)
{
// currently for non-persistent input and output args, mlu subgraph op
// currently for non-persistent input and output args, mlu subgraph op
// only support float16/float32 data type
// only support float16/float32 data type
...
@@ -842,6 +889,7 @@ void MLUPostprocessPass::Apply(const std::unique_ptr<SSAGraph>& graph) {
...
@@ -842,6 +889,7 @@ void MLUPostprocessPass::Apply(const std::unique_ptr<SSAGraph>& graph) {
g_stream_id
=
static_cast
<
int
>
(
reinterpret_cast
<
int64_t
>
(
graph
.
get
()));
g_stream_id
=
static_cast
<
int
>
(
reinterpret_cast
<
int64_t
>
(
graph
.
get
()));
bool
use_mlu_cast
=
GetBoolFromEnv
(
"LITE_MLU_CAST"
);
bool
use_mlu_cast
=
GetBoolFromEnv
(
"LITE_MLU_CAST"
);
ModifyValidPlaces
(
graph
.
get
(),
use_mlu_cast
);
// insert io_copy, layout and precision cast of subgraph's inputs and outputs
// insert io_copy, layout and precision cast of subgraph's inputs and outputs
for
(
auto
&
node
:
graph
->
mutable_nodes
())
{
for
(
auto
&
node
:
graph
->
mutable_nodes
())
{
if
(
node
.
IsStmt
()
&&
node
.
AsStmt
().
op_type
()
==
"subgraph"
)
{
if
(
node
.
IsStmt
()
&&
node
.
AsStmt
().
op_type
()
==
"subgraph"
)
{
...
...
lite/core/mir/subgraph/subgraph_pass.cc
浏览文件 @
d397458f
...
@@ -84,39 +84,6 @@ void RKNPUSubgraphPass::Apply(const std::unique_ptr<SSAGraph>& graph) {
...
@@ -84,39 +84,6 @@ void RKNPUSubgraphPass::Apply(const std::unique_ptr<SSAGraph>& graph) {
}
}
void
MLUSubgraphPass
::
Apply
(
const
std
::
unique_ptr
<
SSAGraph
>&
graph
)
{
void
MLUSubgraphPass
::
Apply
(
const
std
::
unique_ptr
<
SSAGraph
>&
graph
)
{
#ifdef LITE_WITH_MLU
// remove invalid places, since only support X86, host, MLU
auto
v_places
=
graph
->
valid_places
();
for
(
auto
it
=
v_places
.
begin
();
it
!=
v_places
.
end
();)
{
if
(
it
->
target
!=
TARGET
(
kMLU
)
&&
it
->
target
!=
TARGET
(
kHost
)
&&
it
->
target
!=
TARGET
(
kX86
))
{
it
=
v_places
.
erase
(
it
);
}
else
{
++
it
;
}
}
// add x86 NHWC place
std
::
vector
<
paddle
::
lite_api
::
PrecisionType
>
precisions
{
PRECISION
(
kFloat
),
PRECISION
(
kFP16
)};
if
(
lite
::
TargetWrapperMlu
::
UseFirstConv
())
precisions
.
emplace_back
(
PRECISION
(
kInt8
));
for
(
auto
&
prec
:
precisions
)
{
auto
is_x86_nhwc
=
[
prec
](
const
Place
&
it
)
{
return
it
.
layout
==
DATALAYOUT
(
kNHWC
)
&&
it
.
target
==
TARGET
(
kX86
)
&&
it
.
precision
==
prec
;
};
if
(
std
::
find_if
(
v_places
.
cbegin
(),
v_places
.
cend
(),
is_x86_nhwc
)
==
v_places
.
end
())
{
v_places
.
emplace_back
(
Place
{
TARGET
(
kX86
),
prec
,
DATALAYOUT
(
kNHWC
)});
}
}
graph
->
SetValidPlaces
(
v_places
);
VLOG
(
4
)
<<
"valid places after modified:"
;
for
(
auto
&
p
:
v_places
)
{
VLOG
(
4
)
<<
p
.
DebugString
();
}
#endif
std
::
unordered_set
<
std
::
string
>
supported_lists
;
std
::
unordered_set
<
std
::
string
>
supported_lists
;
#define USE_SUBGRAPH_BRIDGE(op_type, target) supported_lists.insert(#op_type);
#define USE_SUBGRAPH_BRIDGE(op_type, target) supported_lists.insert(#op_type);
#include "lite/kernels/mlu/bridges/paddle_use_bridges.h"
#include "lite/kernels/mlu/bridges/paddle_use_bridges.h"
...
...
lite/kernels/mlu/bridges/lrn_op.cc
浏览文件 @
d397458f
...
@@ -51,7 +51,7 @@ int LrnConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -51,7 +51,7 @@ int LrnConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
local_size
=
op_info
->
GetAttr
<
int
>
(
"n"
);
auto
local_size
=
op_info
->
GetAttr
<
int
>
(
"n"
);
CHECK
(
op_info
->
HasAttr
(
"input_scale"
));
CHECK
(
op_info
->
HasAttr
(
"input_scale"
));
auto
input_scale
=
op_info
->
GetAttr
<
float
>
(
"input_scale"
);
auto
input_scale
=
op_info
->
GetAttr
<
float
>
(
"input_scale"
);
std
::
cout
<<
"input scale: "
<<
input_scale
<<
std
::
endl
;
VLOG
(
5
)
<<
"lrn input scale: "
<<
input_scale
;
cnmlLrnOpParam_t
param
;
cnmlLrnOpParam_t
param
;
cnmlBaseOp_t
lrn_op
;
cnmlBaseOp_t
lrn_op
;
...
...
lite/kernels/mlu/io_copy_compute.cc
浏览文件 @
d397458f
...
@@ -41,6 +41,8 @@ class IoCopyHostToMluCompute
...
@@ -41,6 +41,8 @@ class IoCopyHostToMluCompute
auto
mem_size
=
param
.
x
->
memory_size
();
auto
mem_size
=
param
.
x
->
memory_size
();
// LOG(INFO) << "copy size " << mem_size;
// LOG(INFO) << "copy size " << mem_size;
auto
*
data
=
param
.
y
->
mutable_data
(
TARGET
(
kMLU
),
mem_size
);
auto
*
data
=
param
.
y
->
mutable_data
(
TARGET
(
kMLU
),
mem_size
);
VLOG
(
6
)
<<
"io_copy host to mlu] memory size: "
<<
mem_size
<<
" precision type: "
<<
PrecisionToStr
(
Precision
);
param
.
y
->
set_precision
(
param
.
x
->
precision
());
param
.
y
->
set_precision
(
param
.
x
->
precision
());
CopyFromHostSync
(
data
,
param
.
x
->
raw_data
(),
mem_size
);
CopyFromHostSync
(
data
,
param
.
x
->
raw_data
(),
mem_size
);
}
}
...
@@ -80,6 +82,8 @@ class IoCopyMluToHostCompute
...
@@ -80,6 +82,8 @@ class IoCopyMluToHostCompute
CHECK
(
param
.
x
->
target
()
==
TARGET
(
kMLU
));
CHECK
(
param
.
x
->
target
()
==
TARGET
(
kMLU
));
auto
mem_size
=
param
.
x
->
memory_size
();
auto
mem_size
=
param
.
x
->
memory_size
();
auto
*
data
=
param
.
y
->
mutable_data
(
TARGET
(
kHost
),
mem_size
);
auto
*
data
=
param
.
y
->
mutable_data
(
TARGET
(
kHost
),
mem_size
);
VLOG
(
6
)
<<
"io_copy mlu to host] memory size: "
<<
mem_size
<<
" precision type: "
<<
PrecisionToStr
(
Precision
);
// sync queue to ensure process done
// sync queue to ensure process done
auto
&
mlu_context
=
this
->
ctx_
->
template
As
<
MLUContext
>();
auto
&
mlu_context
=
this
->
ctx_
->
template
As
<
MLUContext
>();
...
@@ -105,11 +109,11 @@ REGISTER_LITE_KERNEL(
...
@@ -105,11 +109,11 @@ REGISTER_LITE_KERNEL(
host_to_device_kFloat
)
host_to_device_kFloat
)
.
BindInput
(
"Input"
,
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
k
Any
),
PRECISION
(
k
Float
),
DATALAYOUT
(
kAny
))})
DATALAYOUT
(
kAny
))})
.
BindOutput
(
"Out"
,
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
k
Any
),
PRECISION
(
k
Float
),
DATALAYOUT
(
kAny
))})
DATALAYOUT
(
kAny
))})
.
Finalize
();
.
Finalize
();
...
@@ -122,11 +126,11 @@ REGISTER_LITE_KERNEL(
...
@@ -122,11 +126,11 @@ REGISTER_LITE_KERNEL(
host_to_device_kFP16
)
host_to_device_kFP16
)
.
BindInput
(
"Input"
,
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
k
Any
),
PRECISION
(
k
FP16
),
DATALAYOUT
(
kAny
))})
DATALAYOUT
(
kAny
))})
.
BindOutput
(
"Out"
,
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
k
Any
),
PRECISION
(
k
FP16
),
DATALAYOUT
(
kAny
))})
DATALAYOUT
(
kAny
))})
.
Finalize
();
.
Finalize
();
...
@@ -139,11 +143,11 @@ REGISTER_LITE_KERNEL(
...
@@ -139,11 +143,11 @@ REGISTER_LITE_KERNEL(
device_to_host_kFloat
)
device_to_host_kFloat
)
.
BindInput
(
"Input"
,
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
k
Any
),
PRECISION
(
k
Float
),
DATALAYOUT
(
kAny
))})
DATALAYOUT
(
kAny
))})
.
BindOutput
(
"Out"
,
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
k
Any
),
PRECISION
(
k
Float
),
DATALAYOUT
(
kAny
))})
DATALAYOUT
(
kAny
))})
.
Finalize
();
.
Finalize
();
...
@@ -156,10 +160,27 @@ REGISTER_LITE_KERNEL(
...
@@ -156,10 +160,27 @@ REGISTER_LITE_KERNEL(
device_to_host_kFP16
)
device_to_host_kFP16
)
.
BindInput
(
"Input"
,
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
k
Any
),
PRECISION
(
k
FP16
),
DATALAYOUT
(
kAny
))})
DATALAYOUT
(
kAny
))})
.
BindOutput
(
"Out"
,
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kAny
),
PRECISION
(
kFP16
),
DATALAYOUT
(
kAny
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
io_copy
,
kMLU
,
kInt8
,
kNHWC
,
paddle
::
lite
::
kernels
::
mlu
::
IoCopyMluToHostCompute
<
PRECISION
(
kInt8
)
>
,
device_to_host_kInt8
)
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kMLU
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kAny
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kHost
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kAny
))})
DATALAYOUT
(
kAny
))})
.
Finalize
();
.
Finalize
();
lite/kernels/mlu/subgraph_compute.h
浏览文件 @
d397458f
...
@@ -314,6 +314,18 @@ class SubgraphEngine : public subgraph::Engine {
...
@@ -314,6 +314,18 @@ class SubgraphEngine : public subgraph::Engine {
}
}
}
}
inline
void
*
GetOutputDataPtr
(
Tensor
*
tensor
,
bool
use_mlu_cast
)
{
if
(
use_mlu_cast
)
{
// output is float, since cast fused in subgraph
return
static_cast
<
void
*>
(
tensor
->
mutable_data
<
float
>
(
TARGET
(
kMLU
)));
}
else
{
return
static_cast
<
void
*>
(
tensor
->
template
mutable_data
<
typename
subgraph
::
mlu
::
MLUTypeTraits
<
Precision
>
::
type
>
(
TARGET
(
kMLU
)));
}
}
int
LaunchDeviceProgram
()
override
{
int
LaunchDeviceProgram
()
override
{
// prepare input and output memory
// prepare input and output memory
auto
&
mlu_context
=
this
->
ctx_
->
template
As
<
MLUContext
>();
auto
&
mlu_context
=
this
->
ctx_
->
template
As
<
MLUContext
>();
...
@@ -331,6 +343,8 @@ class SubgraphEngine : public subgraph::Engine {
...
@@ -331,6 +343,8 @@ class SubgraphEngine : public subgraph::Engine {
CHECK_EQ
(
graph_input
->
size
(),
origin_itensors_
.
size
());
CHECK_EQ
(
graph_input
->
size
(),
origin_itensors_
.
size
());
CHECK_EQ
(
graph_output
->
size
(),
origin_otensors_
.
size
());
CHECK_EQ
(
graph_output
->
size
(),
origin_otensors_
.
size
());
bool
use_mlu_cast
=
GetBoolFromEnv
(
"LITE_MLU_CAST"
);
if
(
!
disable_batch_size_changeable_
)
{
if
(
!
disable_batch_size_changeable_
)
{
std
::
vector
<
std
::
shared_ptr
<
paddle
::
lite
::
subgraph
::
mlu
::
MLUTensor
>>
std
::
vector
<
std
::
shared_ptr
<
paddle
::
lite
::
subgraph
::
mlu
::
MLUTensor
>>
graph_in
;
graph_in
;
...
@@ -371,26 +385,17 @@ class SubgraphEngine : public subgraph::Engine {
...
@@ -371,26 +385,17 @@ class SubgraphEngine : public subgraph::Engine {
graph_out
=
shape_tensor_map_out_
[
all_inputs_shape_
];
graph_out
=
shape_tensor_map_out_
[
all_inputs_shape_
];
for
(
size_t
i
=
0
;
i
<
origin_otensors_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
origin_otensors_
.
size
();
++
i
)
{
// origin_otensors_[i]->Resize(new_output_size.at(i));
// origin_otensors_[i]->Resize(new_output_size.at(i));
void
*
p_data
=
static_cast
<
void
*>
(
graph_out
[
i
]
->
set_mlu_ptr
(
origin_otensors_
[
i
]
GetOutputDataPtr
(
origin_otensors_
[
i
],
use_mlu_cast
));
->
template
mutable_data
<
typename
subgraph
::
mlu
::
MLUTypeTraits
<
Precision
>
::
type
>
(
TARGET
(
kMLU
)));
graph_out
[
i
]
->
set_mlu_ptr
(
p_data
);
}
}
}
else
{
}
else
{
graph_out
.
reserve
(
origin_otensors_
.
size
());
graph_out
.
reserve
(
origin_otensors_
.
size
());
for
(
size_t
i
=
0
;
i
<
origin_otensors_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
origin_otensors_
.
size
();
++
i
)
{
// origin_otensors_[i]->Resize(new_output_size.at(i));
// origin_otensors_[i]->Resize(new_output_size.at(i));
void
*
p_data
=
static_cast
<
void
*>
(
origin_otensors_
[
i
]
->
template
mutable_data
<
typename
subgraph
::
mlu
::
MLUTypeTraits
<
Precision
>
::
type
>
(
TARGET
(
kMLU
)));
paddle
::
lite
::
subgraph
::
mlu
::
MLUTensor
tmp
(
paddle
::
lite
::
subgraph
::
mlu
::
MLUTensor
tmp
(
origin_otensors_
[
i
]
->
dims
().
Vectorize
());
origin_otensors_
[
i
]
->
dims
().
Vectorize
());
tmp
.
set_mlu_dtype
(
graph_output
->
at
(
i
)
->
dtype
());
tmp
.
set_mlu_dtype
(
graph_output
->
at
(
i
)
->
dtype
());
tmp
.
set_mlu_ptr
(
p_data
);
tmp
.
set_mlu_ptr
(
GetOutputDataPtr
(
origin_otensors_
[
i
],
use_mlu_cast
)
);
graph_out
.
push_back
(
graph_out
.
push_back
(
std
::
make_shared
<
paddle
::
lite
::
subgraph
::
mlu
::
MLUTensor
>
(
tmp
));
std
::
make_shared
<
paddle
::
lite
::
subgraph
::
mlu
::
MLUTensor
>
(
tmp
));
}
}
...
@@ -404,12 +409,8 @@ class SubgraphEngine : public subgraph::Engine {
...
@@ -404,12 +409,8 @@ class SubgraphEngine : public subgraph::Engine {
}
}
for
(
size_t
i
=
0
;
i
<
origin_otensors_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
origin_otensors_
.
size
();
++
i
)
{
origin_otensors_
[
i
]
->
Resize
(
graph_output
->
at
(
i
)
->
get_origin_shape
());
origin_otensors_
[
i
]
->
Resize
(
graph_output
->
at
(
i
)
->
get_origin_shape
());
void
*
p_data
=
static_cast
<
void
*>
(
graph_output
->
at
(
i
)
->
set_mlu_ptr
(
origin_otensors_
[
i
]
GetOutputDataPtr
(
origin_otensors_
[
i
],
use_mlu_cast
));
->
template
mutable_data
<
typename
subgraph
::
mlu
::
MLUTypeTraits
<
Precision
>
::
type
>
(
TARGET
(
kMLU
)));
graph_output
->
at
(
i
)
->
set_mlu_ptr
(
p_data
);
}
}
graph
->
Compute
(
forward_param
,
exec_queue
);
graph
->
Compute
(
forward_param
,
exec_queue
);
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录