提交 d0f62431 编写于 作者: Y yangfei

repair bug of dropout op

上级 412ee03a
...@@ -27,7 +27,11 @@ bool DropoutKernel<CPU, float>::Init(DropoutParam<CPU> *para) { ...@@ -27,7 +27,11 @@ bool DropoutKernel<CPU, float>::Init(DropoutParam<CPU> *para) {
template <typename T> template <typename T>
struct DropoutFunctor { struct DropoutFunctor {
inline T operator()(T in) const { return in; } DropoutFunctor(T drop_pro) : dropout_pro_(drop_pro) {}
inline T operator()(T in) const { return (1 - dropout_pro_) * in; }
private:
T dropout_pro_;
}; };
template <> template <>
...@@ -36,8 +40,8 @@ void DropoutKernel<CPU, float>::Compute(const DropoutParam<CPU> &param) const { ...@@ -36,8 +40,8 @@ void DropoutKernel<CPU, float>::Compute(const DropoutParam<CPU> &param) const {
auto *input_x_ptr = input_x->data<float>(); auto *input_x_ptr = input_x->data<float>();
auto *out = param.Out(); auto *out = param.Out();
auto *out_ptr = out->mutable_data<float>(); auto *out_ptr = out->mutable_data<float>();
const float dropoutProb = param.DropoutProb();
DropoutFunctor<float> func_; DropoutFunctor<float> func_(dropoutProb);
math::Transform trans; math::Transform trans;
trans(input_x_ptr, input_x_ptr + input_x->numel(), out_ptr, func_); trans(input_x_ptr, input_x_ptr + input_x->numel(), out_ptr, func_);
} }
......
...@@ -2136,15 +2136,20 @@ class DropoutParam : public OpParam { ...@@ -2136,15 +2136,20 @@ class DropoutParam : public OpParam {
const AttributeMap &attrs, const Scope &scope) { const AttributeMap &attrs, const Scope &scope) {
input_x_ = InputXFrom<GType>(inputs, scope); input_x_ = InputXFrom<GType>(inputs, scope);
out_ = OutFrom<GType>(outputs, scope); out_ = OutFrom<GType>(outputs, scope);
dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
} }
const RType *InputX() const { return input_x_; } const RType *InputX() const { return input_x_; }
RType *Out() const { return out_; } RType *Out() const { return out_; }
float DropoutProb() const { return dropout_prob_; }
private: private:
RType *input_x_; RType *input_x_;
RType *out_; RType *out_;
float dropout_prob_;
}; };
#endif #endif
......
...@@ -207,10 +207,20 @@ else () ...@@ -207,10 +207,20 @@ else ()
ADD_EXECUTABLE(test-gru-op operators/test_gru_op.cpp test_helper.h test_include.h) ADD_EXECUTABLE(test-gru-op operators/test_gru_op.cpp test_helper.h test_include.h)
target_link_libraries(test-gru-op paddle-mobile) target_link_libraries(test-gru-op paddle-mobile)
# gen test
ADD_EXECUTABLE(test-inceptionv4 net/test_inceptionv4.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-inceptionv4 paddle-mobile)
# gen test
ADD_EXECUTABLE(test-alexnet net/test_alexnet.cpp test_helper.h test_include.h executor_for_test.h)
target_link_libraries(test-alexnet paddle-mobile)
#add_library(test-lib-size SHARED common/test_lib_size.h common/test_lib_size.cpp) #add_library(test-lib-size SHARED common/test_lib_size.h common/test_lib_size.cpp)
endif() endif()
# if(FPGA) # if(FPGA)
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <iostream>
#include "../test_helper.h"
#include "../test_include.h"
int main() {
paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
paddle_mobile.SetThreadNum(4);
auto time1 = time();
// auto isok = paddle_mobile.Load(std::string(g_mobilenet_detect) + "/model",
// std::string(g_mobilenet_detect) + "/params", true);
auto isok = paddle_mobile.Load(g_alexnet, true);
if (isok) {
auto time2 = time();
std::cout << "load cost :" << time_diff(time1, time1) << "ms" << std::endl;
std::vector<float> input;
std::vector<int64_t> dims{1, 3, 224, 224};
GetInput<float>(g_test_image_1x3x224x224_banana, &input, dims);
auto vec_result = paddle_mobile.Predict(input, dims);
std::vector<float>::iterator biggest =
std::max_element(std::begin(vec_result), std::end(vec_result));
std::cout << " Max element is " << *biggest << " at position "
<< std::distance(std::begin(vec_result), biggest) << std::endl;
// 预热十次
for (int i = 0; i < 10; ++i) {
auto vec_result = paddle_mobile.Predict(input, dims);
}
auto time3 = time();
for (int i = 0; i < 10; ++i) {
auto vec_result = paddle_mobile.Predict(input, dims);
}
DLOG << vec_result;
auto time4 = time();
std::cout << "predict cost :" << time_diff(time3, time4) / 10 << "ms"
<< std::endl;
}
std::cout << "如果结果Nan请查看: test/images/g_test_image_1x3x224x224_banana "
"是否存在?"
<< std::endl;
return 0;
}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <iostream>
#include "../test_helper.h"
#include "../test_include.h"
int main() {
paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
paddle_mobile.SetThreadNum(4);
auto time1 = time();
// auto isok = paddle_mobile.Load(std::string(g_mobilenet_detect) + "/model",
// std::string(g_mobilenet_detect) + "/params", true);
auto isok = paddle_mobile.Load(g_inceptionv4, true);
if (isok) {
auto time2 = time();
std::cout << "load cost :" << time_diff(time1, time1) << "ms" << std::endl;
std::vector<float> input;
std::vector<int64_t> dims{1, 3, 224, 224};
GetInput<float>(g_test_image_1x3x224x224_banana, &input, dims);
auto vec_result = paddle_mobile.Predict(input, dims);
std::vector<float>::iterator biggest =
std::max_element(std::begin(vec_result), std::end(vec_result));
std::cout << " Max element is " << *biggest << " at position "
<< std::distance(std::begin(vec_result), biggest) << std::endl;
// 预热十次
for (int i = 0; i < 10; ++i) {
auto vec_result = paddle_mobile.Predict(input, dims);
}
auto time3 = time();
for (int i = 0; i < 10; ++i) {
auto vec_result = paddle_mobile.Predict(input, dims);
}
// DLOG << vec_result;
auto time4 = time();
std::cout << "predict cost :" << time_diff(time3, time4) / 10 << "ms"
<< std::endl;
}
std::cout << "如果结果Nan请查看: test/images/g_test_image_1x3x224x224_banana "
"是否存在?"
<< std::endl;
return 0;
}
...@@ -33,6 +33,8 @@ static const char *g_mobilenet_detect = "../models/mobilenet-detect"; ...@@ -33,6 +33,8 @@ static const char *g_mobilenet_detect = "../models/mobilenet-detect";
static const char *g_squeezenet = "../models/squeezenet"; static const char *g_squeezenet = "../models/squeezenet";
static const char *g_googlenet = "../models/googlenet"; static const char *g_googlenet = "../models/googlenet";
static const char *g_mobilenet = "../models/mobilenet"; static const char *g_mobilenet = "../models/mobilenet";
static const char *g_alexnet = "../models/alexnet";
static const char *g_inceptionv4 = "../models/inceptionv4";
static const char *g_nlp = "../models/nlp"; static const char *g_nlp = "../models/nlp";
static const char *g_resnet_50 = "../models/resnet_50"; static const char *g_resnet_50 = "../models/resnet_50";
static const char *g_resnet = "../models/resnet"; static const char *g_resnet = "../models/resnet";
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册