Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
cbf28148
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cbf28148
编写于
7月 27, 2018
作者:
R
Ruilong Liu
提交者:
GitHub
7月 27, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #644 from smilejames/develop
optimize gemm
上级
b62c0d94
90d08d2d
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
302 addition
and
29 deletion
+302
-29
src/operators/math/gemm.cpp
src/operators/math/gemm.cpp
+294
-24
src/operators/math/gemm.h
src/operators/math/gemm.h
+8
-5
未找到文件。
src/operators/math/gemm.cpp
浏览文件 @
cbf28148
...
...
@@ -92,7 +92,7 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
*/
// 将A矩阵分块复制到连续内存(RowMajor)
void
PackMatrixA_
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
void
PackMatrixA_
4r
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
float
*
buffer
)
{
const
float
*
a0
,
*
a1
,
*
a2
,
*
a3
;
for
(
int
i
=
0
;
i
<
m
-
m_tail
;
i
+=
MR
)
{
...
...
@@ -131,8 +131,61 @@ void PackMatrixA_(int m, int k, int m_tail, const float *A, int lda,
}
}
void
PackMatrixA_6r
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
float
*
buffer
)
{
const
float
*
a0
,
*
a1
,
*
a2
,
*
a3
,
*
a4
,
*
a5
;
for
(
int
i
=
0
;
i
<
m
-
m_tail
;
i
+=
MR
)
{
a0
=
A
+
i
*
lda
;
a1
=
A
+
(
i
+
1
)
*
lda
;
a2
=
A
+
(
i
+
2
)
*
lda
;
a3
=
A
+
(
i
+
3
)
*
lda
;
a4
=
A
+
(
i
+
4
)
*
lda
;
a5
=
A
+
(
i
+
5
)
*
lda
;
for
(
int
j
=
0
;
j
<
k
;
++
j
)
{
*
buffer
++
=
*
a0
++
;
*
buffer
++
=
*
a1
++
;
*
buffer
++
=
*
a2
++
;
*
buffer
++
=
*
a3
++
;
*
buffer
++
=
*
a4
++
;
*
buffer
++
=
*
a5
++
;
}
}
int
i
=
m
-
m_tail
;
a0
=
&
A
(
i
,
0
);
a1
=
a0
+
lda
;
a2
=
a0
+
2
*
lda
;
a3
=
a0
+
3
*
lda
;
a4
=
a0
+
4
*
lda
;
a5
=
a0
+
5
*
lda
;
if
(
m_tail
!=
0
)
{
if
(
m_tail
<=
5
)
{
a5
=
zero
;
}
if
(
m_tail
<=
4
)
{
a4
=
zero
;
}
if
(
m_tail
<=
3
)
{
a3
=
zero
;
}
if
(
m_tail
<=
2
)
{
a2
=
zero
;
}
if
(
m_tail
<=
1
)
{
a1
=
zero
;
}
for
(
int
j
=
0
;
j
<
k
;
++
j
)
{
*
buffer
++
=
*
a0
++
;
*
buffer
++
=
*
a1
++
;
*
buffer
++
=
*
a2
++
;
*
buffer
++
=
*
a3
++
;
*
buffer
++
=
*
a4
++
;
*
buffer
++
=
*
a5
++
;
}
}
}
// 将B矩阵分块复制到连续内存(RowMajor)
void
PackMatrixB_
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
void
PackMatrixB_
8c
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
float
*
buffer
)
{
const
float
*
b0
;
for
(
int
j
=
0
;
j
<
n
-
n_tail
;
j
+=
NR
)
{
...
...
@@ -188,7 +241,8 @@ void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b,
for
(
int
j
=
0
;
j
<
nc
;
j
+=
NR
)
{
for
(
int
i
=
0
;
i
<
mc
;
i
+=
MR
)
{
// AddDot4x4(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
AddDot4x8
(
KC
,
a
+
i
*
KC
,
b
+
j
*
KC
,
c
+
i
*
NC
+
j
,
NC
);
// AddDot4x8(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
AddDot6x8
(
KC
,
a
+
i
*
KC
,
b
+
j
*
KC
,
c
+
i
*
NC
+
j
,
NC
);
}
}
...
...
@@ -218,7 +272,8 @@ void InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
for
(
int
j
=
0
;
j
<
nc
;
j
+=
NR
)
{
for
(
int
i
=
0
;
i
<
mc
;
i
+=
MR
)
{
// AddDot4x4(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
AddDot4x8
(
KC
,
a
+
i
*
KC
,
b
+
j
*
KC
,
c
+
i
*
NC
+
j
,
NC
);
// AddDot4x8(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
AddDot6x8
(
KC
,
a
+
i
*
KC
,
b
+
j
*
KC
,
c
+
i
*
NC
+
j
,
NC
);
}
}
...
...
@@ -1868,22 +1923,22 @@ void Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int
L1
=
3
0
*
1024
;
int
L2
=
1
*
1024
*
1024
;
int
L1
=
3
2
*
1024
;
int
L2
=
0.5
*
1024
*
1024
;
KC
=
k
;
MC
=
L
2
/
(
2
*
KC
*
sizeof
(
float
));
NC
=
MC
;
MC
=
L
1
/
(
KC
*
sizeof
(
float
));
NC
=
L2
/
(
KC
*
sizeof
(
float
))
;
// make sure MC is multiple of
4, and NC is multiple of 8
// make sure MC is multiple of
MR, and NC is multiple of NR
int
mblock_num
=
(
m
+
MC
-
1
)
/
MC
;
MC
=
(
m
+
mblock_num
-
1
)
/
mblock_num
;
MC
=
(
MC
+
4
-
1
)
/
4
*
4
;
MC
=
(
MC
+
MR
-
1
)
/
MR
*
MR
;
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
int
nblock_num
=
(
n
+
NC
-
1
)
/
NC
;
NC
=
(
n
+
nblock_num
-
1
)
/
nblock_num
;
NC
=
(
NC
+
8
-
1
)
/
8
*
8
;
NC
=
(
NC
+
NR
-
1
)
/
NR
*
NR
;
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA
=
static_cast
<
float
*>
(
...
...
@@ -1901,10 +1956,10 @@ void Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
int
mc
,
nc
;
for
(
int
j
=
0
;
j
<
n
;
j
+=
NC
)
{
nc
=
s_min
(
n
-
j
,
NC
);
PackMatrixB_
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
packedB
);
PackMatrixB_
8c
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
packedB
);
for
(
int
i
=
0
;
i
<
m
;
i
+=
MC
)
{
mc
=
s_min
(
m
-
i
,
MC
);
PackMatrixA_
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA
);
PackMatrixA_
6r
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA
);
InnerKernel
(
mc
,
nc
,
alpha
,
packedA
,
packedB
,
beta
,
packedC
,
&
C
(
i
,
j
),
ldc
,
relu
);
}
...
...
@@ -1921,22 +1976,22 @@ void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int
L1
=
3
0
*
1024
;
int
L2
=
1
*
1024
*
1024
;
int
L1
=
3
2
*
1024
;
int
L2
=
0.5
*
1024
*
1024
;
KC
=
k
;
MC
=
L
2
/
(
2
*
KC
*
sizeof
(
float
));
NC
=
MC
;
MC
=
L
1
/
(
KC
*
sizeof
(
float
));
NC
=
L2
/
(
KC
*
sizeof
(
float
))
;
// make sure MC is multiple of
4, and NC is multiple of 8
// make sure MC is multiple of
MR, and NC is multiple of NR
int
mblock_num
=
(
m
+
MC
-
1
)
/
MC
;
MC
=
(
m
+
mblock_num
-
1
)
/
mblock_num
;
MC
=
(
MC
+
4
-
1
)
/
4
*
4
;
MC
=
(
MC
+
MR
-
1
)
/
MR
*
MR
;
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
int
nblock_num
=
(
n
+
NC
-
1
)
/
NC
;
NC
=
(
n
+
nblock_num
-
1
)
/
nblock_num
;
NC
=
(
NC
+
8
-
1
)
/
8
*
8
;
NC
=
(
NC
+
NR
-
1
)
/
NR
*
NR
;
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA
=
static_cast
<
float
*>
(
...
...
@@ -1954,10 +2009,10 @@ void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
int
mc
,
nc
;
for
(
int
j
=
0
;
j
<
n
;
j
+=
NC
)
{
nc
=
s_min
(
n
-
j
,
NC
);
PackMatrixB_
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
packedB
);
PackMatrixB_
8c
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
packedB
);
for
(
int
i
=
0
;
i
<
m
;
i
+=
MC
)
{
mc
=
s_min
(
m
-
i
,
MC
);
PackMatrixA_
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA
);
PackMatrixA_
6r
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA
);
InnerKernelWithBn
(
mc
,
nc
,
alpha
,
packedA
,
packedB
,
beta
,
packedC
,
&
C
(
i
,
j
),
ldc
,
relu
,
new_scale
+
i
,
new_bias
+
i
);
}
...
...
@@ -1969,6 +2024,221 @@ void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
paddle_mobile
::
memory
::
Free
(
zero
);
}
void
AddDot6x8
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
#if __ARM_NEON
#if __aarch64__
// init C
float32x4_t
cv0
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv1
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv2
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv3
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv4
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv5
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv6
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv7
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv8
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv9
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv10
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv11
=
vdupq_n_f32
(
0.0
);
float32x4_t
av
;
float32x4_t
bv0
;
float32x4_t
bv1
;
float32x2_t
av01
;
float32x2_t
av23
;
float32x2_t
av45
;
for
(
int
p
=
0
;
p
<
k
;
p
+=
1
)
{
av
=
vld1q_f32
(
a
);
av01
=
vget_low_f32
(
av
);
av23
=
vget_high_f32
(
av
);
av45
=
vld1_f32
(
a
+
4
);
bv0
=
vld1q_f32
(
b
);
bv1
=
vld1q_f32
(
b
+
4
);
cv0
=
vmlaq_lane_f32
(
cv0
,
bv0
,
av01
,
0
);
cv1
=
vmlaq_lane_f32
(
cv1
,
bv1
,
av01
,
0
);
cv2
=
vmlaq_lane_f32
(
cv2
,
bv0
,
av01
,
1
);
cv3
=
vmlaq_lane_f32
(
cv3
,
bv1
,
av01
,
1
);
cv4
=
vmlaq_lane_f32
(
cv4
,
bv0
,
av23
,
0
);
cv5
=
vmlaq_lane_f32
(
cv5
,
bv1
,
av23
,
0
);
cv6
=
vmlaq_lane_f32
(
cv6
,
bv0
,
av23
,
1
);
cv7
=
vmlaq_lane_f32
(
cv7
,
bv1
,
av23
,
1
);
cv8
=
vmlaq_lane_f32
(
cv8
,
bv0
,
av45
,
0
);
cv9
=
vmlaq_lane_f32
(
cv9
,
bv1
,
av45
,
0
);
cv10
=
vmlaq_lane_f32
(
cv10
,
bv0
,
av45
,
1
);
cv11
=
vmlaq_lane_f32
(
cv11
,
bv1
,
av45
,
1
);
a
+=
MR
;
b
+=
NR
;
}
vst1q_f32
(
c
,
cv0
);
vst1q_f32
(
c
+
4
,
cv1
);
vst1q_f32
(
c
+
ldc
,
cv2
);
vst1q_f32
(
c
+
ldc
+
4
,
cv3
);
vst1q_f32
(
c
+
2
*
ldc
,
cv4
);
vst1q_f32
(
c
+
2
*
ldc
+
4
,
cv5
);
vst1q_f32
(
c
+
3
*
ldc
,
cv6
);
vst1q_f32
(
c
+
3
*
ldc
+
4
,
cv7
);
vst1q_f32
(
c
+
4
*
ldc
,
cv8
);
vst1q_f32
(
c
+
4
*
ldc
+
4
,
cv9
);
vst1q_f32
(
c
+
5
*
ldc
,
cv10
);
vst1q_f32
(
c
+
5
*
ldc
+
4
,
cv11
);
#else
const
float
*
a_ptr
,
*
b_ptr
;
a_ptr
=
a
;
b_ptr
=
b
;
int
kc1
=
k
/
4
;
int
kc2
=
k
%
4
;
int
step
=
4
*
ldc
;
asm
volatile
(
"pld [%[a_ptr]]
\n\t
"
"pld [%[b_ptr]]
\n\t
"
"pld [%[a_ptr], #64]
\n\t
"
"pld [%[b_ptr], #64]
\n\t
"
"vmov.f32 q4, #0.0
\n\t
"
"vmov.f32 q5, #0.0
\n\t
"
"vmov.f32 q6, #0.0
\n\t
"
"vmov.f32 q7, #0.0
\n\t
"
"vmov.f32 q8, #0.0
\n\t
"
"vmov.f32 q9, #0.0
\n\t
"
"vmov.f32 q10, #0.0
\n\t
"
"vmov.f32 q11, #0.0
\n\t
"
"vmov.f32 q12, #0.0
\n\t
"
"vmov.f32 q13, #0.0
\n\t
"
"vmov.f32 q14, #0.0
\n\t
"
"vmov.f32 q15, #0.0
\n\t
"
"subs %[kc1], %[kc1], #1
\n\t
"
"blt end_kc1_%=
\n\t
"
"loop_kc1_%=:
\n\t
"
// "pld [%[a_ptr], #128] \n\t"
// "pld [%[b_ptr], #128] \n\t"
// "pld [%[a_ptr], #192] \n\t"
// "pld [%[b_ptr], #192] \n\t"
"vld1.32 {d0-d2}, [%[a_ptr]]!
\n\t
"
"vld1.32 {q2, q3}, [%[b_ptr]]!
\n\t
"
"vmla.f32 q4, q2, d0[0]
\n\t
"
"vmla.f32 q5, q3, d0[0]
\n\t
"
"vmla.f32 q6, q2, d0[1]
\n\t
"
"vmla.f32 q7, q3, d0[1]
\n\t
"
"vmla.f32 q8, q2, d1[0]
\n\t
"
"vmla.f32 q9, q3, d1[0]
\n\t
"
"vmla.f32 q10, q2, d1[1]
\n\t
"
"vmla.f32 q11, q3, d1[1]
\n\t
"
"vmla.f32 q12, q2, d2[0]
\n\t
"
"vmla.f32 q13, q3, d2[0]
\n\t
"
"vmla.f32 q14, q2, d2[1]
\n\t
"
"vmla.f32 q15, q3, d2[1]
\n\t
"
"vld1.32 {d0-d2}, [%[a_ptr]]!
\n\t
"
"vld1.32 {q2, q3}, [%[b_ptr]]!
\n\t
"
"vmla.f32 q4, q2, d0[0]
\n\t
"
"vmla.f32 q5, q3, d0[0]
\n\t
"
"vmla.f32 q6, q2, d0[1]
\n\t
"
"vmla.f32 q7, q3, d0[1]
\n\t
"
"vmla.f32 q8, q2, d1[0]
\n\t
"
"vmla.f32 q9, q3, d1[0]
\n\t
"
"vmla.f32 q10, q2, d1[1]
\n\t
"
"vmla.f32 q11, q3, d1[1]
\n\t
"
"vmla.f32 q12, q2, d2[0]
\n\t
"
"vmla.f32 q13, q3, d2[0]
\n\t
"
"vmla.f32 q14, q2, d2[1]
\n\t
"
"vmla.f32 q15, q3, d2[1]
\n\t
"
"vld1.32 {d0-d2}, [%[a_ptr]]!
\n\t
"
"vld1.32 {q2, q3}, [%[b_ptr]]!
\n\t
"
"vmla.f32 q4, q2, d0[0]
\n\t
"
"vmla.f32 q5, q3, d0[0]
\n\t
"
"vmla.f32 q6, q2, d0[1]
\n\t
"
"vmla.f32 q7, q3, d0[1]
\n\t
"
"vmla.f32 q8, q2, d1[0]
\n\t
"
"vmla.f32 q9, q3, d1[0]
\n\t
"
"vmla.f32 q10, q2, d1[1]
\n\t
"
"vmla.f32 q11, q3, d1[1]
\n\t
"
"vmla.f32 q12, q2, d2[0]
\n\t
"
"vmla.f32 q13, q3, d2[0]
\n\t
"
"vmla.f32 q14, q2, d2[1]
\n\t
"
"vmla.f32 q15, q3, d2[1]
\n\t
"
"vld1.32 {d0-d2}, [%[a_ptr]]!
\n\t
"
"vld1.32 {q2, q3}, [%[b_ptr]]!
\n\t
"
"vmla.f32 q4, q2, d0[0]
\n\t
"
"vmla.f32 q5, q3, d0[0]
\n\t
"
"vmla.f32 q6, q2, d0[1]
\n\t
"
"vmla.f32 q7, q3, d0[1]
\n\t
"
"vmla.f32 q8, q2, d1[0]
\n\t
"
"vmla.f32 q9, q3, d1[0]
\n\t
"
"vmla.f32 q10, q2, d1[1]
\n\t
"
"vmla.f32 q11, q3, d1[1]
\n\t
"
"vmla.f32 q12, q2, d2[0]
\n\t
"
"vmla.f32 q13, q3, d2[0]
\n\t
"
"vmla.f32 q14, q2, d2[1]
\n\t
"
"vmla.f32 q15, q3, d2[1]
\n\t
"
"subs %[kc1], %[kc1], #1
\n\t
"
"bge loop_kc1_%=
\n\t
"
"end_kc1_%=:
\n\t
"
"subs %[kc2], %[kc2], #1
\n\t
"
"blt end_kc2_%=
\n\t
"
"loop_kc2_%=:
\n\t
"
"vld1.32 {d0-d2}, [%[a_ptr]]!
\n\t
"
"vld1.32 {q2, q3}, [%[b_ptr]]!
\n\t
"
"vmla.f32 q4, q2, d0[0]
\n\t
"
"vmla.f32 q5, q3, d0[0]
\n\t
"
"vmla.f32 q6, q2, d0[1]
\n\t
"
"vmla.f32 q7, q3, d0[1]
\n\t
"
"vmla.f32 q8, q2, d1[0]
\n\t
"
"vmla.f32 q9, q3, d1[0]
\n\t
"
"vmla.f32 q10, q2, d1[1]
\n\t
"
"vmla.f32 q11, q3, d1[1]
\n\t
"
"vmla.f32 q12, q2, d2[0]
\n\t
"
"vmla.f32 q13, q3, d2[0]
\n\t
"
"vmla.f32 q14, q2, d2[1]
\n\t
"
"vmla.f32 q15, q3, d2[1]
\n\t
"
"subs %[kc2], %[kc2], #1
\n\t
"
"bge loop_kc2_%=
\n\t
"
"end_kc2_%=:
\n\t
"
"mov r5, %[c]
\n\t
"
"mov r6, %[step]
\n\t
"
"vst1.32 {q4, q5}, [r5], r6
\n\t
"
"vst1.32 {q6, q7}, [r5], r6
\n\t
"
"vst1.32 {q8, q9}, [r5], r6
\n\t
"
"vst1.32 {q10, q11}, [r5], r6
\n\t
"
"vst1.32 {q12, q13}, [r5], r6
\n\t
"
"vst1.32 {q14, q15}, [r5]
\n\t
"
:
:
[
a_ptr
]
"r"
(
a_ptr
),
[
b_ptr
]
"r"
(
b_ptr
),
[
c
]
"r"
(
c
),
[
kc1
]
"r"
(
kc1
),
[
kc2
]
"r"
(
kc2
),
[
step
]
"r"
(
step
)
:
"memory"
,
"r5"
,
"r6"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
,
"q15"
);
#endif // __aarch64__
#else
#endif // __ARM_NEON
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
src/operators/math/gemm.h
浏览文件 @
cbf28148
...
...
@@ -19,7 +19,7 @@ limitations under the License. */
#define B(i, j) B[(i)*ldb + (j)]
#define C(i, j) C[(i)*ldc + (j)]
#define MR
4
#define MR
6
#define NR 8
#define s_min(i, j) ((i) < (j) ? (i) : (j))
...
...
@@ -39,11 +39,13 @@ void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
*/
// 将 A 矩阵分块复制到连续内存(RowMajor)
void
PackMatrixA_
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
void
PackMatrixA_4r
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
float
*
buffer
);
void
PackMatrixA_6r
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
float
*
buffer
);
// 将 B 矩阵分块复制到连续内存(RowMajor)
void
PackMatrixB_
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
void
PackMatrixB_
8c
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
float
*
buffer
);
// 分块矩阵乘法
...
...
@@ -67,6 +69,7 @@ void VectorKernelWithBn(int m, int n, int k, float alpha, const float *A,
// 计算一个更小的 C 矩阵分块
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
);
void
AddDot4x8
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
);
void
AddDot6x8
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
);
// 分块矩阵乘法结果回写
// C = A * B
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录