Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
cab2d143
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cab2d143
编写于
7月 11, 2018
作者:
W
WangLiu
提交者:
GitHub
7月 11, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #552 from smilejames/develop
Revert: accelerate with openmp
上级
89bb5717
d1da472a
变更
12
显示空白变更内容
内联
并排
Showing
12 changed file
with
298 addition
and
378 deletion
+298
-378
CMakeLists.txt
CMakeLists.txt
+1
-1
src/io/executor.cpp
src/io/executor.cpp
+0
-15
src/io/executor.h
src/io/executor.h
+0
-2
src/operators/kernel/central-arm-func/conv_add_arm_func.h
src/operators/kernel/central-arm-func/conv_add_arm_func.h
+3
-31
src/operators/kernel/lrn_kernel.h
src/operators/kernel/lrn_kernel.h
+1
-4
src/operators/math/gemm.cpp
src/operators/math/gemm.cpp
+52
-55
src/operators/math/gemm.h
src/operators/math/gemm.h
+81
-105
src/operators/math/math_function.cpp
src/operators/math/math_function.cpp
+25
-7
src/operators/math/pool_3x3.cpp
src/operators/math/pool_3x3.cpp
+128
-146
src/operators/math/pool_3x3.h
src/operators/math/pool_3x3.h
+0
-3
src/operators/math/pooling.cpp
src/operators/math/pooling.cpp
+4
-5
test/net/test_googlenet.cpp
test/net/test_googlenet.cpp
+3
-4
未找到文件。
CMakeLists.txt
浏览文件 @
cab2d143
...
...
@@ -2,7 +2,7 @@ cmake_minimum_required(VERSION 3.0)
project
(
paddle-mobile
)
option
(
DEBUGING
"enable debug mode"
ON
)
option
(
USE_OPENMP
"openmp support"
O
N
)
option
(
USE_OPENMP
"openmp support"
O
FF
)
option
(
USE_EXCEPTION
"use std exception"
ON
)
option
(
LOG_PROFILE
"log profile"
ON
)
# select the platform to build
...
...
src/io/executor.cpp
浏览文件 @
cab2d143
...
...
@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "io/executor.h"
#include <operators/math/gemm.h>
#include <algorithm>
#include <vector>
#include "common/enforce.h"
...
...
@@ -26,9 +25,6 @@ limitations under the License. */
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#ifdef _OPENMP
#include <omp.h>
#endif // _OPENMP
#ifdef PADDLE_EXECUTOR_MULTITHREAD
#include <queue>
#include <utility>
...
...
@@ -407,17 +403,6 @@ std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
return
result_vector
;
}
template
<
typename
Dtype
,
Precision
P
>
void
Executor
<
Dtype
,
P
>::
SetThreadNum
(
int
num
)
{
for
(
int
k
=
0
;
k
<
std
::
max
(
num
,
3
);
++
k
)
{
operators
::
math
::
Gemmer
::
gemmers
.
push_back
(
new
operators
::
math
::
Gemmer
());
}
#ifdef _OPENMP
// omp_set_dynamic(0);
omp_set_num_threads
(
num
);
#endif
}
template
class
Executor
<
CPU
,
Precision
::
FP32
>;
template
class
Executor
<
FPGA
,
Precision
::
FP32
>;
template
class
Executor
<
GPU_MALI
,
Precision
::
FP32
>;
...
...
src/io/executor.h
浏览文件 @
cab2d143
...
...
@@ -58,8 +58,6 @@ class Executor {
std
::
vector
<
Ptype
>
Predict
(
const
std
::
vector
<
Ptype
>
&
input
,
const
std
::
vector
<
int64_t
>
&
dims
);
void
SetThreadNum
(
int
num
);
protected:
Executor
()
=
default
;
void
InitMemory
();
...
...
src/operators/kernel/central-arm-func/conv_add_arm_func.h
浏览文件 @
cab2d143
...
...
@@ -14,14 +14,10 @@ limitations under the License. */
#ifdef FUSION_CONVADD_OP
#pragma once
#if _OPENMP
#include <omp.h>
#endif
#include <vector>
#include "operators/math/conv_func.h"
#include "operators/math/depthwise_conv_3x3.h"
#include "operators/math/gemm.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/vol2col.h"
...
...
@@ -110,33 +106,9 @@ void ConvAddBasic(const FusionConvAddParam ¶m) {
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
auto
dim_a
=
filter_slice
.
dims
();
auto
dim_b
=
col_matrix
.
dims
();
auto
dim_out
=
out_slice
.
dims
();
int
m
=
dim_out
[
0
];
int
n
=
dim_out
[
1
];
int
k
=
dim_a
[
1
];
float
*
output_data
=
out_slice
.
data
<
float
>
();
int
thread_num
=
4
;
int
m1
=
m
/
thread_num
;
int
m2
=
m
%
thread_num
;
#pragma omp parallel for
for
(
int
j
=
0
;
j
<
thread_num
;
++
j
)
{
int
row_count
=
m1
;
if
(
j
==
thread_num
-
1
)
{
row_count
=
m1
+
m2
;
}
math
::
Gemmer
::
gemmers
[
j
]
->
Sgemm
(
row_count
,
n
,
k
,
1
,
filter_slice
.
data
<
float
>
()
+
j
*
m1
*
k
,
k
,
col_matrix
.
data
<
float
>
(),
n
,
1
,
output_data
+
j
*
m1
*
n
,
n
,
false
);
}
// math::matmul<float>(filter_slice, false, col_matrix, false,
// static_cast<float>(1), &out_slice,
// static_cast<float>(1));
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
));
}
}
}
...
...
src/operators/kernel/lrn_kernel.h
浏览文件 @
cab2d143
...
...
@@ -13,9 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#ifdef LRN_OP
#ifdef _OPENMP
#include <omp.h>
#endif
#include "framework/operator.h"
#include "operators/op_param.h"
...
...
@@ -49,7 +47,6 @@ struct LRNFunctor {
std
::
fill
(
sqr_buffer_ptr
,
sqr_buffer_ptr
+
sqr_buffer
.
numel
(),
0.0
);
for
(
int
a
=
0
;
a
<
N
;
a
++
)
{
#pragma parallel for
for
(
int
b
=
0
;
b
<
C
;
b
++
)
{
for
(
int
index
=
start
;
index
<
end
;
index
++
)
{
int
channel
=
b
+
index
;
...
...
src/operators/math/gemm.cpp
浏览文件 @
cab2d143
...
...
@@ -22,10 +22,16 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
std
::
vector
<
Gemmer
*>
Gemmer
::
gemmers
;
int
MC
=
0
;
int
KC
=
0
;
int
NC
=
0
;
float
*
packedA
;
float
*
packedB
;
float
*
packedC
;
float
*
zero
;
// 将A矩阵分块复制到连续内存(ColMajor)
void
Gemmer
::
PackMatrixA
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
void
PackMatrixA
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
float
*
buffer
)
{
int
i
,
j
;
const
float
*
Aij
;
...
...
@@ -52,7 +58,7 @@ void Gemmer::PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
}
// 将A矩阵分块复制到连续内存(RowMajor)
void
Gemmer
::
PackMatrixA_
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
void
PackMatrixA_
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
float
*
buffer
)
{
const
float
*
a0
,
*
a1
,
*
a2
,
*
a3
;
for
(
int
i
=
0
;
i
<
m
-
m_tail
;
i
+=
MR
)
{
...
...
@@ -92,7 +98,7 @@ void Gemmer::PackMatrixA_(int m, int k, int m_tail, const float *A, int lda,
}
// 将B矩阵分块复制到连续内存(ColMajor)
void
Gemmer
::
PackMatrixB
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
void
PackMatrixB
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
float
*
buffer
)
{
int
i
,
j
;
const
float
*
Bj
,
*
Bj1
,
*
Bj2
,
*
Bj3
;
...
...
@@ -121,7 +127,7 @@ void Gemmer::PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
}
// 将B矩阵分块复制到连续内存(RowMajor)
void
Gemmer
::
PackMatrixB_
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
void
PackMatrixB_
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
float
*
buffer
)
{
const
float
*
b0
;
for
(
int
j
=
0
;
j
<
n
-
n_tail
;
j
+=
NR
)
{
...
...
@@ -150,9 +156,8 @@ void Gemmer::PackMatrixB_(int k, int n, int n_tail, const float *B, int ldb,
}
// 分块矩阵乘法
void
Gemmer
::
InnerKernel
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
)
{
void
InnerKernel
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
)
{
for
(
int
j
=
0
;
j
<
nc
;
j
+=
NR
)
{
for
(
int
i
=
0
;
i
<
mc
;
i
+=
MR
)
{
// AddDot4x4(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
...
...
@@ -179,10 +184,9 @@ void Gemmer::InnerKernel(int mc, int nc, float alpha, const float *a,
}
// 分块矩阵乘法
void
Gemmer
::
InnerKernelWithBn
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
)
{
void
InnerKernelWithBn
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
)
{
for
(
int
j
=
0
;
j
<
nc
;
j
+=
NR
)
{
for
(
int
i
=
0
;
i
<
mc
;
i
+=
MR
)
{
// AddDot4x4(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
...
...
@@ -198,8 +202,7 @@ void Gemmer::InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
}
#if defined(IOS)
void
Gemmer
::
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
C
,
int
ldc
)
{
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
C
,
int
ldc
)
{
// init C
float32x4_t
cv0
=
vdupq_n_f32
(
0.0
);
float32x4_t
cv1
=
vdupq_n_f32
(
0.0
);
...
...
@@ -250,8 +253,7 @@ void Gemmer::AddDot4x4(int k, const float *a, const float *b, float *C,
}
// namespace math
#elif defined(ARMV7)
void
Gemmer
::
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
const
float
*
a_ptr
,
*
b_ptr
;
a_ptr
=
a
;
b_ptr
=
b
;
...
...
@@ -322,8 +324,7 @@ void Gemmer::AddDot4x4(int k, const float *a, const float *b, float *c,
}
#else
void
Gemmer
::
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
float
*
c0
,
*
c1
,
*
c2
,
*
c3
;
c0
=
c
;
c1
=
c
+
ldc
;
...
...
@@ -362,9 +363,8 @@ void Gemmer::AddDot4x4(int k, const float *a, const float *b, float *c,
#endif
// 32位 float 矩阵乘法
void
Gemmer
::
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
)
{
void
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int
L1
=
30
*
1024
;
...
...
@@ -415,10 +415,9 @@ void Gemmer::Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
paddle_mobile
::
memory
::
Free
(
zero
);
}
void
Gemmer
::
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
)
{
void
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int
L1
=
30
*
1024
;
...
...
@@ -469,9 +468,9 @@ void Gemmer::SgemmWithBn(int m, int n, int k, float alpha, const float *A,
paddle_mobile
::
memory
::
Free
(
zero
);
}
void
Gemmer
::
VectorKernel
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
)
{
void
VectorKernel
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
)
{
float
*
bufferC
=
static_cast
<
float
*>
(
memory
::
Alloc
(
sizeof
(
float
)
*
n
));
const
float
*
a0
,
*
b0
,
*
b1
,
*
b2
,
*
b3
;
...
...
@@ -691,10 +690,9 @@ void Gemmer::VectorKernel(int m, int n, int k, float alpha, const float *A,
}
}
void
Gemmer
::
VectorKernelWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
)
{
void
VectorKernelWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
)
{
float
*
bufferC
=
static_cast
<
float
*>
(
memory
::
Alloc
(
sizeof
(
float
)
*
n
));
const
float
*
a0
,
*
b0
,
*
b1
,
*
b2
,
*
b3
;
...
...
@@ -903,8 +901,7 @@ void Gemmer::VectorKernelWithBn(int m, int n, int k, float alpha,
}
}
void
Gemmer
::
AddDot4x8
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
void
AddDot4x8
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
const
float
*
a_ptr
,
*
b_ptr
;
a_ptr
=
a
;
b_ptr
=
b
;
...
...
@@ -1012,7 +1009,7 @@ void Gemmer::AddDot4x8(int k, const float *a, const float *b, float *c,
}
// C = A * B
void
Gemmer
::
WriteBasic
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
void
WriteBasic
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
nc
/
16
;
int
_nc1
=
nc
%
16
;
int
step
=
4
*
ldc
;
...
...
@@ -1069,10 +1066,10 @@ void Gemmer::WriteBasic(int mc, int nc, float *c, float *C, int ldc) {
}
// C = alpha * A * B + beta * C
void
Gemmer
::
WriteWithAlphaBeta
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{}
void
WriteWithAlphaBeta
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{}
// C = A * B + C
void
Gemmer
::
WriteWithAdd
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
void
WriteWithAdd
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
nc
/
16
;
int
_nc1
=
nc
%
16
;
int
step
=
4
*
ldc
;
...
...
@@ -1136,7 +1133,7 @@ void Gemmer::WriteWithAdd(int mc, int nc, float *c, float *C, int ldc) {
}
// C = A * B + C, relu(C)
void
Gemmer
::
WriteWithAddRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
void
WriteWithAddRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
nc
/
16
;
int
_nc1
=
nc
%
16
;
int
step
=
4
*
ldc
;
...
...
@@ -1210,8 +1207,8 @@ void Gemmer::WriteWithAddRelu(int mc, int nc, float *c, float *C, int ldc) {
}
// C = A * B, batchnorm(C)
void
Gemmer
::
WriteWithBn
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
scale
,
float
*
bias
)
{
void
WriteWithBn
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
scale
,
float
*
bias
)
{
int
nc1
=
nc
/
16
;
int
_nc1
=
nc
%
16
;
int
nc2
=
_nc1
/
4
;
...
...
@@ -1296,8 +1293,8 @@ void Gemmer::WriteWithBn(int mc, int nc, float *c, float *C, int ldc,
}
// C = A * B, batchnorm(C), relu(C)
void
Gemmer
::
WriteWithBnRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
scale
,
float
*
bias
)
{
void
WriteWithBnRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
scale
,
float
*
bias
)
{
int
nc1
=
nc
/
16
;
int
_nc1
=
nc
%
16
;
int
nc2
=
_nc1
/
4
;
...
...
@@ -1389,7 +1386,7 @@ void Gemmer::WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc,
}
// C = A * B
void
Gemmer
::
VecWriteBasic
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
)
{
void
VecWriteBasic
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
n
/
16
;
int
_nc1
=
n
%
16
;
int
nc2
=
_nc1
/
4
;
...
...
@@ -1435,10 +1432,10 @@ void Gemmer::VecWriteBasic(int n, float *c, float *C, int ldc) {
}
// C = alpha * A * B + beta * C
void
Gemmer
::
VecWriteWithAlphaBeta
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
)
{}
void
VecWriteWithAlphaBeta
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
)
{}
// C = A * B + C
void
Gemmer
::
VecWriteWithAdd
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
)
{
void
VecWriteWithAdd
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
n
/
16
;
int
_nc1
=
n
%
16
;
...
...
@@ -1476,7 +1473,7 @@ void Gemmer::VecWriteWithAdd(int n, float *c, float *C, int ldc) {
}
// C = A * B + C, relu(C)
void
Gemmer
::
VecWriteWithAddRelu
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
)
{
void
VecWriteWithAddRelu
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
)
{
int
nc1
=
n
/
16
;
int
_nc1
=
n
%
16
;
...
...
@@ -1524,7 +1521,7 @@ void Gemmer::VecWriteWithAddRelu(int n, float *c, float *C, int ldc) {
}
// C = A * B, batchnorm(C)
void
Gemmer
::
VecWriteWithBn
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
scale
,
void
VecWriteWithBn
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
scale
,
float
*
bias
)
{
int
nc1
=
n
/
16
;
int
_nc1
=
n
%
16
;
...
...
@@ -1591,8 +1588,8 @@ void Gemmer::VecWriteWithBn(int n, float *c, float *C, int ldc, float *scale,
}
// C = A * B, batchnorm(C), relu(C)
void
Gemmer
::
VecWriteWithBnRelu
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
scale
,
float
*
bias
)
{
void
VecWriteWithBnRelu
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
scale
,
float
*
bias
)
{
int
nc1
=
n
/
16
;
int
_nc1
=
n
%
16
;
int
nc2
=
_nc1
/
4
;
...
...
src/operators/math/gemm.h
浏览文件 @
cab2d143
...
...
@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
// 矩阵取值运算宏,假设矩阵按行存储
#define A(i, j) A[(i)*lda + (j)]
...
...
@@ -28,111 +27,88 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
struct
Gemmer
{
int
MC
=
0
;
int
KC
=
0
;
int
NC
=
0
;
float
*
packedA
;
float
*
packedB
;
float
*
packedC
;
float
*
zero
;
static
std
::
vector
<
Gemmer
*>
gemmers
;
// 将 A 矩阵分块复制到连续内存(ColMajor)
void
PackMatrixA
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
// 将 A 矩阵分块复制到连续内存(ColMajor)
void
PackMatrixA
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
float
*
buffer
);
// 将 B 矩阵分块复制到连续内存(ColMajor)
void
PackMatrixB
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
// 将 B 矩阵分块复制到连续内存(ColMajor)
void
PackMatrixB
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
float
*
buffer
);
// 将 A 矩阵分块复制到连续内存(RowMajor)
void
PackMatrixA_
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
// 将 A 矩阵分块复制到连续内存(RowMajor)
void
PackMatrixA_
(
int
m
,
int
k
,
int
m_tail
,
const
float
*
A
,
int
lda
,
float
*
buffer
);
// 将 B 矩阵分块复制到连续内存(RowMajor)
void
PackMatrixB_
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
// 将 B 矩阵分块复制到连续内存(RowMajor)
void
PackMatrixB_
(
int
k
,
int
n
,
int
n_tail
,
const
float
*
B
,
int
ldb
,
float
*
buffer
);
// 分块矩阵乘法
void
InnerKernel
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
// 分块矩阵乘法
void
InnerKernel
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
);
void
InnerKernelWithBn
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
);
void
InnerKernelWithBn
(
int
mc
,
int
nc
,
float
alpha
,
const
float
*
a
,
const
float
*
b
,
float
beta
,
float
*
c
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
);
// 向量矩阵乘法 (M = 1)
void
VectorKernel
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
// 向量矩阵乘法 (M = 1)
void
VectorKernel
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
);
void
VectorKernelWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
);
// 计算一个更小的 C 矩阵分块
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
);
void
AddDot4x8
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
);
// 分块矩阵乘法结果回写
// C = A * B
void
WriteBasic
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = alpha * A * B + beta * C
void
WriteWithAlphaBeta
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + C
void
WriteWithAdd
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + C, relu(C)
void
WriteWithAddRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B, batchnorm(C)
void
WriteWithBn
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
);
void
VectorKernelWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
);
// C = A * B, batchnorm(C), relu(C)
void
WriteWithBnRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
// 计算一个更小的 C 矩阵分块
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
);
void
AddDot4x8
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
);
// 分块矩阵乘法结果回写
// C = A * B
void
WriteBasic
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = alpha * A * B + beta * C
void
WriteWithAlphaBeta
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + C
void
WriteWithAdd
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + C, relu(C)
void
WriteWithAddRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B, batchnorm(C)
void
WriteWithBn
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
);
// C = A * B, batchnorm(C), relu(C)
void
WriteWithBnRelu
(
int
mc
,
int
nc
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
);
// 向量矩阵乘法结果回写
// C = A * B
void
VecWriteBasic
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = alpha * A * B + beta * C
void
VecWriteWithAlphaBeta
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + C
void
VecWriteWithAdd
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + C, relu(C)
void
VecWriteWithAddRelu
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B, batchnorm(C)
void
VecWriteWithBn
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
// 向量矩阵乘法结果回写
// C = A * B
void
VecWriteBasic
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = alpha * A * B + beta * C
void
VecWriteWithAlphaBeta
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + C
void
VecWriteWithAdd
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B + C, relu(C)
void
VecWriteWithAddRelu
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
);
// C = A * B, batchnorm(C)
void
VecWriteWithBn
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
);
// C = A * B, batchnorm(C), relu(C)
void
VecWriteWithBnRelu
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
// C = A * B, batchnorm(C), relu(C)
void
VecWriteWithBnRelu
(
int
n
,
float
*
c
,
float
*
C
,
int
ldc
,
float
*
new_scale
,
float
*
new_bias
);
// 32位 float 矩阵乘法
void
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
// 32位 float 矩阵乘法
void
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
);
// 32位 float 矩阵乘法, 并对结果进行 batchnrom
void
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
// 32位 float 矩阵乘法, 并对结果进行 batchnrom
void
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
);
// 64位 double 矩阵乘法
void
dgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
double
*
A
,
int
lda
,
// 64位 double 矩阵乘法
void
dgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
double
*
A
,
int
lda
,
const
double
*
B
,
int
ldb
,
float
beta
,
double
*
C
,
int
ldc
);
};
}
// namespace math
}
// namespace operators
...
...
src/operators/math/math_function.cpp
浏览文件 @
cab2d143
...
...
@@ -26,14 +26,23 @@ void matmul<float>(const framework::Tensor &matrix_a, bool trans_a,
auto
dim_a
=
matrix_a
.
dims
();
auto
dim_b
=
matrix_b
.
dims
();
auto
dim_out
=
matrix_out
->
dims
();
// PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
// dim_out.size() ==
// 2,
// "The input and output of matmul be matrix");
//
// PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
// platform::is_cpu_place(matrix_b.place())
// &&
// platform::is_cpu_place(matrix_out->place()),
// "Matrix must all be in CPUPlace");
int
M
=
dim_out
[
0
];
int
N
=
dim_out
[
1
];
int
K
=
(
!
trans_a
)
?
dim_a
[
1
]
:
dim_a
[
0
];
Gemmer
::
gemmers
[
0
]
->
Sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
);
Sgemm
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
);
}
template
<
>
...
...
@@ -45,15 +54,24 @@ void matmulWithBn<float>(const framework::Tensor &matrix_a, bool trans_a,
auto
dim_a
=
matrix_a
.
dims
();
auto
dim_b
=
matrix_b
.
dims
();
auto
dim_out
=
matrix_out
->
dims
();
// PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
// dim_out.size() ==
// 2,
// "The input and output of matmul be matrix");
//
// PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
// platform::is_cpu_place(matrix_b.place())
// &&
// platform::is_cpu_place(matrix_out->place()),
// "Matrix must all be in CPUPlace");
int
M
=
dim_out
[
0
];
int
N
=
dim_out
[
1
];
int
K
=
(
!
trans_a
)
?
dim_a
[
1
]
:
dim_a
[
0
];
Gemmer
::
gemmers
[
0
]
->
SgemmWithBn
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
,
new_scale
->
data
<
float
>
(),
new_bias
->
data
<
float
>
());
SgemmWithBn
(
M
,
N
,
K
,
alpha
,
matrix_a
.
data
<
float
>
(),
K
,
matrix_b
.
data
<
float
>
(),
N
,
beta
,
matrix_out
->
data
<
float
>
(),
N
,
relu
,
new_scale
->
data
<
float
>
(),
new_bias
->
data
<
float
>
());
}
}
// namespace math
...
...
src/operators/math/pool_3x3.cpp
浏览文件 @
cab2d143
...
...
@@ -13,12 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */
#ifdef POOL_OP
#ifdef _OPENMP
#include <omp.h>
#endif
#include "operators/math/pool_3x3.h"
#include "framework/tensor.h"
#include "pool_3x3.h"
#ifdef __ARM_NEON
#if __ARM_NEON
#include <arm_neon.h>
#endif // __ARM_NEON
#include <climits>
...
...
@@ -30,7 +27,7 @@ using std::max;
using
std
::
min
;
using
std
::
vector
;
void
Pool3x3Avgs1p1
(
const
Tensor
*
input
,
Tensor
*
output
)
{
#if
def
__ARM_NEON
#if __ARM_NEON
const
int
batch_size
=
input
->
dims
()[
0
];
const
int
h_in
=
input
->
dims
()[
2
];
...
...
@@ -43,52 +40,46 @@ void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
const
int
w_out
=
output
->
dims
()[
3
];
const
int
outputdata_channel_stride
=
h_out
*
w_out
;
const
int
inputdata_channel_stride
=
h_in
*
w_in
;
const
int
input_batch_stride
=
output_channels
*
inputdata_channel_stride
;
const
int
output_batch_stride
=
output_channels
*
outputdata_channel_stride
;
float
*
out_data
=
output
->
data
<
float
>
();
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
coef
=
1.0
/
9.0
;
for
(
int
k
=
0
;
k
<
batch_size
;
++
k
)
{
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
const
float
*
input_seg
=
input_data
+
c
*
inputdata_channel_stride
;
float
*
output_seg
=
out_data
+
c
*
outputdata_channel_stride
;
// four corner point
out
put_seg
[
0
]
=
(
input_seg
[
0
]
+
input_seg
[
1
]
+
input_seg
[
w_in
]
+
input_seg
[
w_in
+
1
])
*
out
_data
[
0
]
=
(
input_data
[
0
]
+
input_data
[
1
]
+
input_data
[
w_in
]
+
input_data
[
w_in
+
1
])
*
coef
;
out
put_seg
[
w_out
-
1
]
=
(
input_
seg
[
w_in
-
2
]
+
input_seg
[
w_in
-
1
]
+
input_seg
[
w_in
*
2
-
2
]
+
input_
seg
[
2
*
w_in
-
1
])
*
out
_data
[
w_out
-
1
]
=
(
input_
data
[
w_in
-
2
]
+
input_data
[
w_in
-
1
]
+
input_
data
[
w_in
*
2
-
2
]
+
input_data
[
2
*
w_in
-
1
])
*
coef
;
out
put_seg
[(
h_out
-
1
)
*
w_out
]
=
(
input_
seg
[(
h_in
-
2
)
*
w_in
]
+
input_seg
[(
h_in
-
2
)
*
w_in
+
1
]
+
input_
seg
[(
h_in
-
1
)
*
w_in
]
+
input_seg
[(
h_in
-
1
)
*
w_in
+
1
])
*
out
_data
[(
h_out
-
1
)
*
w_out
]
=
(
input_
data
[(
h_in
-
2
)
*
w_in
]
+
input_data
[(
h_in
-
2
)
*
w_in
+
1
]
+
input_
data
[(
h_in
-
1
)
*
w_in
]
+
input_data
[(
h_in
-
1
)
*
w_in
+
1
])
*
coef
;
out
put_seg
[
h_out
*
w_out
-
1
]
=
(
input_
seg
[
h_in
*
w_in
-
1
]
+
input_seg
[
h_in
*
w_in
-
2
]
+
input_
seg
[(
h_in
-
1
)
*
w_in
-
1
]
+
input_
seg
[(
h_in
-
1
)
*
w_in
-
2
])
*
out
_data
[
h_out
*
w_out
-
1
]
=
(
input_
data
[
h_in
*
w_in
-
1
]
+
input_data
[
h_in
*
w_in
-
2
]
+
input_
data
[(
h_in
-
1
)
*
w_in
-
1
]
+
input_
data
[(
h_in
-
1
)
*
w_in
-
2
])
*
coef
;
// left side & right side
for
(
int
i
=
1
;
i
<
h_in
-
1
;
++
i
)
{
out
put_seg
[
i
*
w_out
]
=
(
input_
seg
[
i
*
w_in
-
w_in
]
+
input_seg
[
i
*
w_in
-
w_in
+
1
]
+
input_
seg
[
i
*
w_in
]
+
input_seg
[
i
*
w_in
+
1
]
+
input_
seg
[
i
*
w_in
+
w_in
]
+
input_seg
[
i
*
w_in
+
w_in
+
1
])
*
out
_data
[
i
*
w_out
]
=
(
input_
data
[
i
*
w_in
-
w_in
]
+
input_data
[
i
*
w_in
-
w_in
+
1
]
+
input_
data
[
i
*
w_in
]
+
input_data
[
i
*
w_in
+
1
]
+
input_
data
[
i
*
w_in
+
w_in
]
+
input_data
[
i
*
w_in
+
w_in
+
1
])
*
coef
;
out
put_seg
[
i
*
w_out
+
w_out
-
1
]
=
(
input_
seg
[
i
*
w_in
-
w_in
+
w_in
-
2
]
+
input_
seg
[
i
*
w_in
-
w_in
+
1
+
w_in
-
2
]
+
input_
seg
[
i
*
w_in
+
w_in
-
2
]
+
input_
seg
[
i
*
w_in
+
1
+
w_in
-
2
]
+
input_
seg
[
i
*
w_in
+
w_in
+
w_in
-
2
]
+
input_
seg
[
i
*
w_in
+
w_in
+
1
+
w_in
-
2
])
*
out
_data
[
i
*
w_out
+
w_out
-
1
]
=
(
input_
data
[
i
*
w_in
-
w_in
+
w_in
-
2
]
+
input_
data
[
i
*
w_in
-
w_in
+
1
+
w_in
-
2
]
+
input_
data
[
i
*
w_in
+
w_in
-
2
]
+
input_
data
[
i
*
w_in
+
1
+
w_in
-
2
]
+
input_
data
[
i
*
w_in
+
w_in
+
w_in
-
2
]
+
input_
data
[
i
*
w_in
+
w_in
+
1
+
w_in
-
2
])
*
coef
;
}
// top 1 row & bottom 1 row
const
float
*
input_tmp
=
input_
seg
;
const
float
*
input_tmp
=
input_
data
;
float32x4_t
in0
,
in1
,
in2
,
in3
,
in4
,
in5
,
in6
,
in7
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
sum
,
out0
;
...
...
@@ -99,7 +90,7 @@ void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
in4
=
vld1q_f32
(
input_tmp_end
);
in6
=
vld1q_f32
(
input_tmp_end
+
w_in
);
int
c_mid
=
w_out
-
2
;
auto
output_ptr
=
out
put_seg
+
1
;
auto
output_ptr
=
out
_data
+
1
;
for
(;
c_mid
>
3
;
c_mid
-=
4
)
{
in1
=
vld1q_f32
(
input_tmp
+
4
);
in3
=
vld1q_f32
(
input_tmp
+
w_in
+
4
);
...
...
@@ -144,8 +135,8 @@ void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
in6
=
in7
;
}
// top right remain
float32x4_t
pad0
=
vdupq_n_f32
(
input_
seg
[
w_in
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_
seg
[
2
*
w_in
-
1
]);
float32x4_t
pad0
=
vdupq_n_f32
(
input_
data
[
w_in
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_
data
[
2
*
w_in
-
1
]);
tmp0
=
vextq_f32
(
in0
,
pad0
,
1
);
tmp1
=
vextq_f32
(
in0
,
pad0
,
2
);
...
...
@@ -172,8 +163,8 @@ void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
}
// bottom_right remain
float32x4_t
pad2
=
vdupq_n_f32
(
input_
seg
[(
h_in
-
1
)
*
w_in
-
1
]);
float32x4_t
pad3
=
vdupq_n_f32
(
input_
seg
[
h_in
*
w_in
-
1
]);
float32x4_t
pad2
=
vdupq_n_f32
(
input_
data
[(
h_in
-
1
)
*
w_in
-
1
]);
float32x4_t
pad3
=
vdupq_n_f32
(
input_
data
[
h_in
*
w_in
-
1
]);
tmp0
=
vextq_f32
(
in4
,
pad2
,
1
);
tmp1
=
vextq_f32
(
in4
,
pad2
,
2
);
...
...
@@ -200,8 +191,8 @@ void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
}
// mid
for
(
int
j
=
0
;
j
<
h_out
-
2
;
++
j
)
{
output_ptr
=
out
put_seg
+
w_out
*
(
j
+
1
)
+
1
;
input_tmp
=
input_
seg
+
j
*
w_in
;
output_ptr
=
out
_data
+
w_out
*
(
j
+
1
)
+
1
;
input_tmp
=
input_
data
+
j
*
w_in
;
in0
=
vld1q_f32
(
input_tmp
);
in2
=
vld1q_f32
(
input_tmp
+
w_in
);
...
...
@@ -237,9 +228,9 @@ void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
in4
=
in5
;
}
// mid remain
float32x4_t
pad0
=
vdupq_n_f32
(
input_
seg
[(
j
+
1
)
*
w_in
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_
seg
[(
j
+
2
)
*
w_in
-
1
]);
float32x4_t
pad2
=
vdupq_n_f32
(
input_
seg
[(
j
+
2
)
*
w_in
-
1
]);
float32x4_t
pad0
=
vdupq_n_f32
(
input_
data
[(
j
+
1
)
*
w_in
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_
data
[(
j
+
2
)
*
w_in
-
1
]);
float32x4_t
pad2
=
vdupq_n_f32
(
input_
data
[(
j
+
2
)
*
w_in
-
1
]);
tmp0
=
vextq_f32
(
in0
,
pad0
,
1
);
tmp1
=
vextq_f32
(
in0
,
pad0
,
2
);
...
...
@@ -270,17 +261,15 @@ void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
}
}
}
//
input_data += inputdata_channel_stride;
//
out_data += outputdata_channel_stride;
input_data
+=
inputdata_channel_stride
;
out_data
+=
outputdata_channel_stride
;
}
input_data
+=
input_batch_stride
;
out_data
+=
output_batch_stride
;
}
#endif
}
void
Pool3x3Maxs1p1
(
const
Tensor
*
input
,
Tensor
*
output
)
{
#if
def
__ARM_NEON
#if __ARM_NEON
const
int
batch_size
=
input
->
dims
()[
0
];
const
int
h_in
=
input
->
dims
()[
2
];
...
...
@@ -293,50 +282,44 @@ void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) {
const
int
w_out
=
output
->
dims
()[
3
];
const
int
outputdata_channel_stride
=
h_out
*
w_out
;
const
int
inputdata_channel_stride
=
h_in
*
w_in
;
const
int
input_batch_stride
=
output_channels
*
inputdata_channel_stride
;
const
int
output_batch_stride
=
output_channels
*
outputdata_channel_stride
;
float
*
out_data
=
output
->
data
<
float
>
();
const
float
*
input_data
=
input
->
data
<
float
>
();
for
(
int
k
=
0
;
k
<
batch_size
;
++
k
)
{
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
const
float
*
input_seg
=
input_data
+
c
*
inputdata_channel_stride
;
float
*
output_seg
=
out_data
+
c
*
outputdata_channel_stride
;
// four corner point
out
put_seg
[
0
]
=
std
::
max
(
std
::
max
(
input_seg
[
0
],
input_seg
[
1
]),
std
::
max
(
input_seg
[
w_in
],
input_seg
[
w_in
+
1
]));
out
put_seg
[
w_out
-
1
]
=
std
::
max
(
std
::
max
(
input_seg
[
w_in
-
2
],
input_seg
[
w_in
-
1
]),
std
::
max
(
input_seg
[
w_in
*
2
-
2
],
input_seg
[
2
*
w_in
-
1
]));
out
put_seg
[(
h_out
-
1
)
*
w_out
]
=
std
::
max
(
std
::
max
(
input_
seg
[(
h_in
-
2
)
*
w_in
],
input_
seg
[(
h_in
-
2
)
*
w_in
+
1
]),
std
::
max
(
input_
seg
[(
h_in
-
1
)
*
w_in
],
input_
seg
[(
h_in
-
1
)
*
w_in
+
1
]));
out
put_seg
[
h_out
*
w_out
-
1
]
=
std
::
max
(
std
::
max
(
input_
seg
[(
h_in
-
1
)
*
w_in
-
1
],
input_
seg
[(
h_in
-
1
)
*
w_in
-
2
]),
std
::
max
(
input_
seg
[
h_in
*
w_in
-
1
],
input_seg
[
h_in
*
w_in
-
2
]));
out
_data
[
0
]
=
std
::
max
(
std
::
max
(
input_data
[
0
],
input_data
[
1
]),
std
::
max
(
input_data
[
w_in
],
input_data
[
w_in
+
1
]));
out
_data
[
w_out
-
1
]
=
std
::
max
(
std
::
max
(
input_data
[
w_in
-
2
],
input_data
[
w_in
-
1
]),
std
::
max
(
input_data
[
w_in
*
2
-
2
],
input_data
[
2
*
w_in
-
1
]));
out
_data
[(
h_out
-
1
)
*
w_out
]
=
std
::
max
(
std
::
max
(
input_
data
[(
h_in
-
2
)
*
w_in
],
input_
data
[(
h_in
-
2
)
*
w_in
+
1
]),
std
::
max
(
input_
data
[(
h_in
-
1
)
*
w_in
],
input_
data
[(
h_in
-
1
)
*
w_in
+
1
]));
out
_data
[
h_out
*
w_out
-
1
]
=
std
::
max
(
std
::
max
(
input_
data
[(
h_in
-
1
)
*
w_in
-
1
],
input_
data
[(
h_in
-
1
)
*
w_in
-
2
]),
std
::
max
(
input_
data
[
h_in
*
w_in
-
1
],
input_data
[
h_in
*
w_in
-
2
]));
// left side & right side
for
(
int
i
=
1
;
i
<
h_in
-
1
;
++
i
)
{
float
max1
=
std
::
max
(
input_seg
[
i
*
w_in
-
w_in
],
input_seg
[
i
*
w_in
-
w_in
+
1
]);
float
max2
=
std
::
max
(
input_seg
[
i
*
w_in
],
input_seg
[
i
*
w_in
+
1
]);
float
max3
=
std
::
max
(
input_seg
[
i
*
w_in
+
w_in
],
input_seg
[
i
*
w_in
+
w_in
+
1
]);
output_seg
[
i
*
w_out
]
=
std
::
max
(
std
::
max
(
max1
,
max2
),
max3
);
max1
=
std
::
max
(
input_seg
[
i
*
w_in
-
w_in
+
w_in
-
2
],
input_seg
[
i
*
w_in
-
w_in
+
1
+
w_in
-
2
]);
max2
=
std
::
max
(
input_seg
[
i
*
w_in
+
w_in
-
2
],
input_seg
[
i
*
w_in
+
1
+
w_in
-
2
]);
max3
=
std
::
max
(
input_seg
[
i
*
w_in
+
w_in
+
w_in
-
2
],
input_seg
[
i
*
w_in
+
w_in
+
1
+
w_in
-
2
]);
output_seg
[
i
*
w_out
+
w_out
-
1
]
=
std
::
max
(
std
::
max
(
max1
,
max2
),
max3
);
float
max1
=
std
::
max
(
input_data
[
i
*
w_in
-
w_in
],
input_data
[
i
*
w_in
-
w_in
+
1
]);
float
max2
=
std
::
max
(
input_data
[
i
*
w_in
],
input_data
[
i
*
w_in
+
1
]);
float
max3
=
std
::
max
(
input_data
[
i
*
w_in
+
w_in
],
input_data
[
i
*
w_in
+
w_in
+
1
]);
out_data
[
i
*
w_out
]
=
std
::
max
(
std
::
max
(
max1
,
max2
),
max3
);
max1
=
std
::
max
(
input_data
[
i
*
w_in
-
w_in
+
w_in
-
2
],
input_data
[
i
*
w_in
-
w_in
+
1
+
w_in
-
2
]);
max2
=
std
::
max
(
input_data
[
i
*
w_in
+
w_in
-
2
],
input_data
[
i
*
w_in
+
1
+
w_in
-
2
]);
max3
=
std
::
max
(
input_data
[
i
*
w_in
+
w_in
+
w_in
-
2
],
input_data
[
i
*
w_in
+
w_in
+
1
+
w_in
-
2
]);
out_data
[
i
*
w_out
+
w_out
-
1
]
=
std
::
max
(
std
::
max
(
max1
,
max2
),
max3
);
}
// top 1 row & bottom 1 row
const
float
*
input_tmp
=
input_
seg
;
const
float
*
input_tmp
=
input_
data
;
float32x4_t
in0
,
in1
,
in2
,
in3
,
in4
,
in5
,
in6
,
in7
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
max
;
...
...
@@ -346,7 +329,7 @@ void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) {
in4
=
vld1q_f32
(
input_tmp_end
);
in6
=
vld1q_f32
(
input_tmp_end
+
w_in
);
int
c_mid
=
w_out
-
2
;
auto
output_ptr
=
out
put_seg
+
1
;
auto
output_ptr
=
out
_data
+
1
;
for
(;
c_mid
>
3
;
c_mid
-=
4
)
{
in1
=
vld1q_f32
(
input_tmp
+
4
);
in3
=
vld1q_f32
(
input_tmp
+
w_in
+
4
);
...
...
@@ -390,8 +373,8 @@ void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) {
in6
=
in7
;
}
// top right remain
float32x4_t
pad0
=
vdupq_n_f32
(
input_
seg
[
w_in
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_
seg
[
2
*
w_in
-
1
]);
float32x4_t
pad0
=
vdupq_n_f32
(
input_
data
[
w_in
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_
data
[
2
*
w_in
-
1
]);
tmp0
=
vextq_f32
(
in0
,
pad0
,
1
);
tmp1
=
vextq_f32
(
in0
,
pad0
,
2
);
...
...
@@ -417,8 +400,8 @@ void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) {
}
// bottom_right remain
float32x4_t
pad2
=
vdupq_n_f32
(
input_
seg
[(
h_in
-
1
)
*
w_in
-
1
]);
float32x4_t
pad3
=
vdupq_n_f32
(
input_
seg
[
h_in
*
w_in
-
1
]);
float32x4_t
pad2
=
vdupq_n_f32
(
input_
data
[(
h_in
-
1
)
*
w_in
-
1
]);
float32x4_t
pad3
=
vdupq_n_f32
(
input_
data
[
h_in
*
w_in
-
1
]);
tmp0
=
vextq_f32
(
in4
,
pad2
,
1
);
tmp1
=
vextq_f32
(
in4
,
pad2
,
2
);
...
...
@@ -444,8 +427,8 @@ void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) {
}
// mid
for
(
int
j
=
0
;
j
<
h_out
-
2
;
++
j
)
{
output_ptr
=
out
put_seg
+
(
j
+
1
)
*
w_out
+
1
;
input_tmp
=
input_
seg
+
j
*
w_in
;
output_ptr
=
out
_data
+
(
j
+
1
)
*
w_out
+
1
;
input_tmp
=
input_
data
+
j
*
w_in
;
in0
=
vld1q_f32
(
input_tmp
);
in2
=
vld1q_f32
(
input_tmp
+
w_in
);
...
...
@@ -480,9 +463,9 @@ void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) {
in4
=
in5
;
}
// mid remain
float32x4_t
pad0
=
vdupq_n_f32
(
input_
seg
[(
j
+
1
)
*
w_in
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_
seg
[(
j
+
2
)
*
w_in
-
1
]);
float32x4_t
pad2
=
vdupq_n_f32
(
input_
seg
[(
j
+
3
)
*
w_in
-
1
]);
float32x4_t
pad0
=
vdupq_n_f32
(
input_
data
[(
j
+
1
)
*
w_in
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_
data
[(
j
+
2
)
*
w_in
-
1
]);
float32x4_t
pad2
=
vdupq_n_f32
(
input_
data
[(
j
+
3
)
*
w_in
-
1
]);
tmp0
=
vextq_f32
(
in0
,
pad0
,
1
);
tmp1
=
vextq_f32
(
in0
,
pad0
,
2
);
...
...
@@ -512,18 +495,16 @@ void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) {
}
}
}
//
input_data += inputdata_channel_stride;
//
out_data += outputdata_channel_stride;
input_data
+=
inputdata_channel_stride
;
out_data
+=
outputdata_channel_stride
;
}
input_data
+=
input_batch_stride
;
out_data
+=
output_batch_stride
;
}
#endif
}
void
Pool3x3Max
(
vector
<
int
>
strides
,
vector
<
int
>
paddings
,
const
Tensor
*
input
,
Tensor
*
output
)
{
#if
def
__ARM_NEON
#if __ARM_NEON
const
int
batch_size
=
input
->
dims
()[
0
];
const
int
input_height
=
input
->
dims
()[
2
];
...
...
@@ -534,11 +515,11 @@ void Pool3x3Max(vector<int> strides, vector<int> paddings, const Tensor *input,
const
int
output_height
=
output
->
dims
()[
2
];
const
int
output_width
=
output
->
dims
()[
3
];
//
const int _kernel_size = 3;
const
int
stride
=
strides
[
0
];
//
const int stride_width = strides[1];
const
int
padding
=
paddings
[
0
];
//
const int padding_width = paddings[1];
const
int
_kernel_size
=
3
;
const
int
stride
_height
=
strides
[
0
];
const
int
stride_width
=
strides
[
1
];
const
int
padding
_height
=
paddings
[
0
];
const
int
padding_width
=
paddings
[
1
];
const
float
negative_max
=
-
INT_MAX
;
const
int
input_channel_stride
=
input_height
*
input_width
;
const
int
output_channel_stride
=
output_height
*
output_width
;
...
...
@@ -548,41 +529,38 @@ void Pool3x3Max(vector<int> strides, vector<int> paddings, const Tensor *input,
const
int
input_batch_stride
=
output_channels
*
input_channel_stride
;
const
int
output_batch_stride
=
output_channels
*
output_channel_stride
;
const
float
*
pos1
,
*
output_ptr
;
const
float
*
pos1
,
*
pos2
,
*
pos3
,
*
output_ptr
;
int
hstart
,
wstart
,
hend
,
wend
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
const
float
*
input_seg
=
input_data
+
c
*
input_channel_stride
;
float
*
output_seg
=
output_data
+
c
*
output_channel_stride
;
for
(
int
ph
=
0
;
ph
<
output_height
;
ph
++
)
{
for
(
int
pw
=
0
;
pw
<
output_width
;
pw
++
)
{
int
hstart
=
ph
*
stride
-
padding
;
int
wstart
=
pw
*
stride
-
padding
;
int
hend
=
min
(
hstart
+
3
,
input_height
+
padding
);
int
wend
=
min
(
wstart
+
3
,
input_width
+
padding
);
hstart
=
ph
*
stride_height
-
padding_height
;
wstart
=
pw
*
stride_width
-
padding_width
;
hend
=
min
(
hstart
+
_kernel_size
,
input_height
+
padding_height
);
wend
=
min
(
wstart
+
_kernel_size
,
input_width
+
padding_width
);
hstart
=
max
(
hstart
,
0
);
wstart
=
max
(
wstart
,
0
);
hend
=
min
(
hend
,
input_height
);
wend
=
min
(
wend
,
input_width
);
const
float
*
pos1
=
input_seg
+
hstart
*
input_width
+
wstart
;
const
float
*
pos2
=
input_seg
+
(
hstart
+
1
)
*
input_width
+
wstart
;
const
float
*
pos3
=
input_seg
+
(
hstart
+
2
)
*
input_width
+
wstart
;
output_ptr
=
output_
seg
+
ph
*
output_width
+
pw
;
pos1
=
input_data
+
hstart
*
input_width
+
wstart
;
pos2
=
input_data
+
(
hstart
+
1
)
*
input_width
+
wstart
;
pos3
=
input_data
+
(
hstart
+
2
)
*
input_width
+
wstart
;
output_ptr
=
output_
data
+
ph
*
output_width
+
pw
;
if
(
hend
-
hstart
!=
3
||
wend
-
wstart
!=
3
)
{
float
max_value
=
-
INT_MAX
;
for
(
int
h
=
hstart
;
h
<
hend
;
h
++
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
w
++
)
{
float
value
=
input_
seg
[
h
*
input_width
+
w
];
float
value
=
input_
data
[
h
*
input_width
+
w
];
if
(
value
>
max_value
)
{
max_value
=
value
;
}
}
}
output_
seg
[
ph
*
output_width
+
pw
]
=
max_value
;
output_
data
[
ph
*
output_width
+
pw
]
=
max_value
;
}
else
{
#if
def ARMV7
#if
defined(ARMV7)
asm
volatile
(
"vld1.32 {q1}, [%[pos1]]
\n\t
"
"vld1.32 {q2}, [%[pos2]]
\n\t
"
...
...
@@ -594,25 +572,27 @@ void Pool3x3Max(vector<int> strides, vector<int> paddings, const Tensor *input,
"vpmax.f32 d7, d6, d6
\n\t
"
"vst1.32 {d7[0]},[%[output_ptr]]
\n\t
"
:
:
[
input_
seg
]
"r"
(
input_seg
),
[
pos1
]
"r"
(
pos1
),
:
[
input_
data
]
"r"
(
input_data
),
[
pos1
]
"r"
(
pos1
),
[
pos2
]
"r"
(
pos2
),
[
pos3
]
"r"
(
pos3
),
[
output_ptr
]
"r"
(
output_ptr
),
[
negative_max
]
"r"
(
negative_max
)
:
"memory"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
);
#else
const
float32x4_t
data1
=
vld1q_f32
(
pos1
);
const
float32x4_t
data2
=
vld1q_f32
(
pos
1
+
input_width
);
const
float32x4_t
data3
=
vld1q_f32
(
pos
1
+
2
*
input_width
);
const
float32x4_t
data2
=
vld1q_f32
(
pos
2
);
const
float32x4_t
data3
=
vld1q_f32
(
pos
3
);
const
float32x4_t
max_data
=
vmaxq_f32
(
vmaxq_f32
(
data1
,
data
2
),
data3
);
vmaxq_f32
(
vmaxq_f32
(
data1
,
data
3
),
data2
);
float32x2_t
res
=
vpmax_f32
(
vget_high_f32
(
vsetq_lane_f32
(
-
INT_MAX
,
max_data
,
3
)),
vget_low_f32
(
max_data
));
res
=
vpmax_f32
(
res
,
res
);
output_
seg
[
ph
*
output_width
+
pw
]
=
vget_lane_f32
(
res
,
0
);
output_
data
[
ph
*
output_width
+
pw
]
=
vget_lane_f32
(
res
,
0
);
#endif
}
}
}
input_data
+=
input_channel_stride
;
output_data
+=
output_channel_stride
;
}
input_data
+=
input_batch_stride
;
output_data
+=
output_batch_stride
;
...
...
@@ -622,7 +602,7 @@ void Pool3x3Max(vector<int> strides, vector<int> paddings, const Tensor *input,
void
Pool3x3Avg
(
vector
<
int
>
strides
,
vector
<
int
>
paddings
,
const
Tensor
*
input
,
Tensor
*
output
)
{
#if
def
__ARM_NEON
#if __ARM_NEON
const
int
batch_size
=
input
->
dims
()[
0
];
const
int
input_height
=
input
->
dims
()[
2
];
...
...
@@ -633,8 +613,11 @@ void Pool3x3Avg(vector<int> strides, vector<int> paddings, const Tensor *input,
const
int
output_height
=
output
->
dims
()[
2
];
const
int
output_width
=
output
->
dims
()[
3
];
const
int
stride
=
strides
[
0
];
const
int
padding
=
paddings
[
0
];
const
int
_kernel_size
=
3
;
const
int
stride_height
=
strides
[
0
];
const
int
stride_width
=
strides
[
1
];
const
int
padding_height
=
paddings
[
0
];
const
int
padding_width
=
paddings
[
1
];
const
int
input_channel_stride
=
input_height
*
input_width
;
const
int
output_channel_stride
=
output_height
*
output_width
;
...
...
@@ -648,35 +631,32 @@ void Pool3x3Avg(vector<int> strides, vector<int> paddings, const Tensor *input,
const
int
input_batch_stride
=
output_channels
*
input_channel_stride
;
const
int
output_batch_stride
=
output_channels
*
output_channel_stride
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
#pragma omp parallel for
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
const
float
*
input_seg
=
input_data
+
c
*
input_channel_stride
;
float
*
output_seg
=
output_data
+
c
*
output_channel_stride
;
for
(
int
ph
=
0
;
ph
<
output_height
;
ph
++
)
{
for
(
int
pw
=
0
;
pw
<
output_width
;
pw
++
)
{
int
hstart
=
ph
*
stride
-
padding
;
int
wstart
=
pw
*
stride
-
padding
;
int
hend
=
min
(
hstart
+
3
,
input_height
+
padding
);
int
wend
=
min
(
wstart
+
3
,
input_width
+
padding
);
int
hstart
=
ph
*
stride
_height
-
padding_height
;
int
wstart
=
pw
*
stride
_width
-
padding_width
;
int
hend
=
min
(
hstart
+
_kernel_size
,
input_height
+
padding_height
);
int
wend
=
min
(
wstart
+
_kernel_size
,
input_width
+
padding_width
);
hstart
=
max
(
hstart
,
0
);
wstart
=
max
(
wstart
,
0
);
hend
=
min
(
hend
,
input_height
);
wend
=
min
(
wend
,
input_width
);
const
float
*
pos1
=
input_
seg
+
hstart
*
input_width
+
wstart
;
const
float
*
pos2
=
input_
seg
+
(
hstart
+
1
)
*
input_width
+
wstart
;
const
float
*
pos3
=
input_
seg
+
(
hstart
+
2
)
*
input_width
+
wstart
;
float
*
output_ptr
=
output_seg
+
ph
*
output_width
+
pw
;
const
float
*
pos1
=
input_
data
+
hstart
*
input_width
+
wstart
;
const
float
*
pos2
=
input_
data
+
(
hstart
+
1
)
*
input_width
+
wstart
;
const
float
*
pos3
=
input_
data
+
(
hstart
+
2
)
*
input_width
+
wstart
;
const
float
*
output_ptr
=
output_data
+
ph
*
output_width
+
pw
;
if
(
hend
-
hstart
!=
3
||
wend
-
wstart
!=
3
)
{
float
sum
=
0
;
for
(
int
h
=
hstart
;
h
<
hend
;
h
++
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
w
++
)
{
sum
+=
input_
seg
[
h
*
input_width
+
w
];
sum
+=
input_
data
[
h
*
input_width
+
w
];
}
}
output_
seg
[
ph
*
output_width
+
pw
]
=
sum
/
9.0
;
output_
data
[
ph
*
output_width
+
pw
]
=
sum
/
9.0
;
}
else
{
#if
def ARMV7
#if
defined(ARMV7)
asm
volatile
(
"vld1.32 {q1}, [%[pos1]]
\n\t
"
...
...
@@ -691,7 +671,7 @@ void Pool3x3Avg(vector<int> strides, vector<int> paddings, const Tensor *input,
"vmul.f32 d6,d7
\n\t
"
"vst1.32 {d6[0]},[%[output_ptr]]
\n\t
"
:
:
[
input_
seg
]
"r"
(
input_seg
),
[
pos1
]
"r"
(
pos1
),
:
[
input_
data
]
"r"
(
input_data
),
[
pos1
]
"r"
(
pos1
),
[
pos2
]
"r"
(
pos2
),
[
pos3
]
"r"
(
pos3
),
[
output_ptr
]
"r"
(
output_ptr
),
[
zero
]
"r"
(
zero
),
[
nine_ptr
]
"r"
(
nine_ptr
)
...
...
@@ -706,11 +686,13 @@ void Pool3x3Avg(vector<int> strides, vector<int> paddings, const Tensor *input,
vpadd_f32
(
vget_high_f32
(
vsetq_lane_f32
(
0
,
sum_data
,
3
)),
vget_low_f32
(
sum_data
));
res
=
vpadd_f32
(
res
,
res
);
output_
seg
[
ph
*
output_width
+
pw
]
=
vget_lane_f32
(
res
,
0
)
/
9.0
;
output_
data
[
ph
*
output_width
+
pw
]
=
vget_lane_f32
(
res
,
0
)
/
9.0
;
#endif
}
}
}
input_data
+=
input_channel_stride
;
output_data
+=
output_channel_stride
;
}
input_data
+=
input_batch_stride
;
output_data
+=
output_batch_stride
;
...
...
src/operators/math/pool_3x3.h
浏览文件 @
cab2d143
...
...
@@ -15,9 +15,6 @@ limitations under the License. */
#ifdef POOL_OP
#pragma once
#ifdef _OPENMP
#include <omp.h>
#endif
#include <algorithm>
#include <vector>
#include "framework/tensor.h"
...
...
src/operators/math/pooling.cpp
浏览文件 @
cab2d143
...
...
@@ -14,11 +14,10 @@ limitations under the License. */
#ifdef POOL_OP
#include "pooling.h"
#include "operators/math/pooling.h"
#include <algorithm>
#include <vector>
#include "common/types.h"
#ifdef _OPENMP
#include <omp.h>
#endif
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -60,8 +59,8 @@ class PoolFunctor<CPU, PoolProcess, T> {
T
*
output_data
=
output
->
mutable_data
<
T
>
();
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
// #pragma omp parallel for
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
#pragma omp parallel for
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
int
hstart
=
ph
*
stride_height
-
padding_height
;
int
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
...
...
test/net/test_googlenet.cpp
浏览文件 @
cab2d143
...
...
@@ -26,17 +26,16 @@ int main() {
auto
time2
=
time
();
DLOG
<<
"load cost :"
<<
time_diff
(
time1
,
time2
)
<<
"ms
\n
"
;
paddle_mobile
::
Executor
<
paddle_mobile
::
CPU
>
executor
(
program
,
1
,
optimize
);
executor
.
SetThreadNum
(
4
);
std
::
vector
<
float
>
input
;
std
::
vector
<
int64_t
>
dims
{
1
,
3
,
224
,
224
};
GetInput
<
float
>
(
g_test_image_1x3x224x224
,
&
input
,
dims
);
auto
time3
=
time
();
int
count
=
1
;
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
executor
.
Predict
(
input
,
dims
);
}
auto
time4
=
time
();
DLOG
<<
"predict cost :"
<<
time_diff
(
time3
,
time4
)
/
count
<<
"ms
\n
"
;
DLOG
<<
"predict cost :"
<<
time_diff
(
time3
,
time4
)
<<
"ms
\n
"
;
return
0
;
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录