Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
c803658d
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c803658d
编写于
2月 27, 2020
作者:
S
Santa An
提交者:
GitHub
2月 27, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[lite][bm] support ssd test=develop (#2994)
上级
84c4fcdb
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
384 addition
and
127 deletion
+384
-127
lite/api/test_resnet50_lite_bm.cc
lite/api/test_resnet50_lite_bm.cc
+1
-0
lite/kernels/bm/bridges/CMakeLists.txt
lite/kernels/bm/bridges/CMakeLists.txt
+5
-0
lite/kernels/bm/bridges/box_coder_op.cc
lite/kernels/bm/bridges/box_coder_op.cc
+126
-0
lite/kernels/bm/bridges/concat_op.cc
lite/kernels/bm/bridges/concat_op.cc
+2
-0
lite/kernels/bm/bridges/multiclass_nms_op.cc
lite/kernels/bm/bridges/multiclass_nms_op.cc
+119
-0
lite/kernels/bm/bridges/paddle_use_bridges.h
lite/kernels/bm/bridges/paddle_use_bridges.h
+2
-0
lite/kernels/bm/bridges/prior_box_op.cc
lite/kernels/bm/bridges/prior_box_op.cc
+129
-127
未找到文件。
lite/api/test_resnet50_lite_bm.cc
浏览文件 @
c803658d
...
...
@@ -32,6 +32,7 @@ namespace lite {
void
TestModel
(
const
std
::
vector
<
Place
>&
valid_places
)
{
lite
::
Predictor
predictor
;
std
::
vector
<
std
::
string
>
passes
;
predictor
.
Build
(
FLAGS_model_dir
,
""
,
""
,
valid_places
,
passes
);
auto
*
input_tensor
=
predictor
.
GetInput
(
0
);
...
...
lite/kernels/bm/bridges/CMakeLists.txt
浏览文件 @
c803658d
...
...
@@ -21,6 +21,9 @@ lite_cc_library(subgraph_bridge_transpose_op_bm SRCS transpose_op.cc DEPS ${bm_s
lite_cc_library
(
subgraph_bridge_reshape_op_bm SRCS reshape_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_norm_op_bm SRCS norm_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_prior_box_op_bm SRCS prior_box_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_box_coder_op_bm SRCS box_coder_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_multiclass_nms_op_bm SRCS multiclass_nms_op.cc DEPS
${
bm_subgraph_bridge_deps
}
)
set
(
bm_subgraph_bridges
subgraph_bridge_registry
subgraph_bridge_engine
...
...
@@ -39,4 +42,6 @@ set(bm_subgraph_bridges
subgraph_bridge_reshape_op_bm
subgraph_bridge_norm_op_bm
subgraph_bridge_prior_box_op_bm
subgraph_bridge_box_coder_op_bm
subgraph_bridge_multiclass_nms_op_bm
CACHE INTERNAL
"bm_subgraph_bridges"
)
lite/kernels/bm/bridges/box_coder_op.cc
0 → 100644
浏览文件 @
c803658d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_if.h>
#include <user_bmcpu_common.h>
#include <iostream>
#include <string>
#include <vector>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
bm
{
int
BoxCoderConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
scope
=
op
->
scope
();
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
auto
box_var_name
=
op_info
->
Input
(
"PriorBox"
).
front
();
auto
box
=
scope
->
FindVar
(
box_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
box_dims
=
box
->
dims
();
auto
box_var_var_name
=
op_info
->
Input
(
"PriorBoxVar"
).
front
();
auto
box_var
=
scope
->
FindVar
(
box_var_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
box_var_dims
=
box_var
->
dims
();
auto
target_box_var_name
=
op_info
->
Input
(
"TargetBox"
).
front
();
auto
target_box
=
scope
->
FindVar
(
target_box_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
target_box_dims
=
target_box
->
dims
();
auto
output_var_name
=
op_info
->
Output
(
"OutputBox"
).
front
();
auto
output
=
scope
->
FindVar
(
output_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
output_dims
=
output
->
dims
();
std
::
vector
<
int32_t
>
i_box_shape_data
(
box_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
box_dims
.
size
();
i
++
)
{
i_box_shape_data
[
i
]
=
static_cast
<
int32_t
>
(
box_dims
[
i
]);
}
std
::
vector
<
int32_t
>
i_box_var_shape_data
(
box_var_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
box_var_dims
.
size
();
i
++
)
{
i_box_var_shape_data
[
i
]
=
static_cast
<
int32_t
>
(
box_var_dims
[
i
]);
}
std
::
vector
<
int32_t
>
i_target_box_shape_data
(
target_box_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
target_box_dims
.
size
();
i
++
)
{
i_target_box_shape_data
[
i
]
=
static_cast
<
int32_t
>
(
target_box_dims
[
i
]);
}
std
::
vector
<
int32_t
>
i_output_shape_data
(
output_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
output_dims
.
size
();
i
++
)
{
i_output_shape_data
[
i
]
=
static_cast
<
int32_t
>
(
output_dims
[
i
]);
}
auto
code_type
=
op_info
->
GetAttr
<
std
::
string
>
(
"code_type"
);
auto
box_normalized
=
op_info
->
GetAttr
<
bool
>
(
"box_normalized"
);
int32_t
axis
=
0
;
if
(
op_info
->
HasAttr
(
"axis"
))
{
axis
=
op_info
->
GetAttr
<
int32_t
>
(
"axis"
);
}
std
::
vector
<
float
>
variance
;
if
(
op_info
->
HasAttr
(
"variance"
))
{
variance
=
op_info
->
GetAttr
<
std
::
vector
<
float
>>
(
"variance"
);
}
user_cpu_param_t
bm_param
;
bm_param
.
op_type
=
USER_PADDLE_BOX_CODER
;
bm_param
.
u
.
box_coder_param
.
axis
=
axis
;
bm_param
.
u
.
box_coder_param
.
variance
=
&
variance
[
0
];
bm_param
.
u
.
box_coder_param
.
code_type
=
(
code_type
==
"encode_center_size"
)
?
0
:
1
;
bm_param
.
u
.
box_coder_param
.
normalized
=
box_normalized
;
int32_t
input_num
=
3
;
int32_t
output_num
=
1
;
int32_t
*
in_shape
[
3
];
int32_t
in_dim
[
3
];
const
char
*
in_name
[
3
];
in_shape
[
0
]
=
&
i_box_shape_data
[
0
];
in_shape
[
1
]
=
&
i_target_box_shape_data
[
0
];
in_shape
[
2
]
=
&
i_box_var_shape_data
[
0
];
in_dim
[
0
]
=
box_dims
.
size
();
in_dim
[
1
]
=
target_box_dims
.
size
();
in_dim
[
2
]
=
box_var_dims
.
size
();
in_name
[
0
]
=
static_cast
<
const
char
*>
(
box_var_name
.
c_str
());
in_name
[
1
]
=
static_cast
<
const
char
*>
(
target_box_var_name
.
c_str
());
in_name
[
2
]
=
static_cast
<
const
char
*>
(
box_var_var_name
.
c_str
());
int32_t
*
out_shape
[
1
];
int32_t
out_dim
[
1
];
const
char
*
out_name
[
1
];
out_shape
[
0
]
=
&
i_output_shape_data
[
0
];
out_dim
[
0
]
=
output_dims
.
size
();
out_name
[
0
]
=
static_cast
<
const
char
*>
(
output_var_name
.
c_str
());
add_user_cpu_layer
(
graph
->
GetCompilerHandle
(),
input_num
,
in_shape
,
in_dim
,
in_name
,
output_num
,
out_shape
,
out_dim
,
out_name
,
&
bm_param
,
static_cast
<
int
>
(
sizeof
(
bm_param
)));
graph
->
AddNode
(
output_var_name
);
return
SUCCESS
;
}
}
// namespace bm
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
box_coder
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
BoxCoderConverter
);
lite/kernels/bm/bridges/concat_op.cc
浏览文件 @
c803658d
...
...
@@ -30,6 +30,8 @@ int ConcatConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
op_type
=
op_info
->
Type
();
// input
auto
x_names
=
op_info
->
Input
(
"X"
);
auto
x_type
=
kernel
->
GetInputDeclType
(
"X"
);
CHECK
(
x_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
// output
auto
output_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
output
=
scope
->
FindVar
(
output_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
...
...
lite/kernels/bm/bridges/multiclass_nms_op.cc
0 → 100644
浏览文件 @
c803658d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_if.h>
#include <user_bmcpu_common.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
bm
{
int
MultiClassNMSConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
scope
=
op
->
scope
();
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
auto
boxes_var_name
=
op_info
->
Input
(
"BBoxes"
).
front
();
auto
boxes
=
scope
->
FindVar
(
boxes_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
boxes_dims
=
boxes
->
dims
();
std
::
vector
<
int32_t
>
i_boxes_shape_data
(
boxes_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
boxes_dims
.
size
();
i
++
)
{
i_boxes_shape_data
[
i
]
=
static_cast
<
int32_t
>
(
boxes_dims
[
i
]);
}
auto
score_var_name
=
op_info
->
Input
(
"Scores"
).
front
();
auto
score
=
scope
->
FindVar
(
score_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
score_dims
=
score
->
dims
();
std
::
vector
<
int32_t
>
i_score_shape_data
(
score_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
score_dims
.
size
();
i
++
)
{
i_score_shape_data
[
i
]
=
static_cast
<
int32_t
>
(
score_dims
[
i
]);
}
auto
out_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
out
=
scope
->
FindVar
(
out_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
out_dims
=
out
->
dims
();
std
::
vector
<
int32_t
>
i_out_shape_data
(
out_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
out_dims
.
size
();
i
++
)
{
i_out_shape_data
[
i
]
=
static_cast
<
int32_t
>
(
out_dims
[
i
]);
}
auto
background_label
=
op_info
->
GetAttr
<
int
>
(
"background_label"
);
auto
keep_top_k
=
op_info
->
GetAttr
<
int
>
(
"keep_top_k"
);
auto
nms_top_k
=
op_info
->
GetAttr
<
int
>
(
"nms_top_k"
);
auto
score_threshold
=
op_info
->
GetAttr
<
float
>
(
"score_threshold"
);
auto
nms_threshold
=
op_info
->
GetAttr
<
float
>
(
"nms_threshold"
);
auto
nms_eta
=
op_info
->
GetAttr
<
float
>
(
"nms_eta"
);
bool
normalized
;
if
(
op_info
->
HasAttr
(
"normalized"
))
{
normalized
=
op_info
->
GetAttr
<
bool
>
(
"normalized"
);
}
user_cpu_param_t
bm_param
;
bm_param
.
op_type
=
USER_PADDLE_MULTICLASS_NMS
;
bm_param
.
u
.
multiclass_nms_param
.
background_label
=
background_label
;
bm_param
.
u
.
multiclass_nms_param
.
score_threshold
=
score_threshold
;
bm_param
.
u
.
multiclass_nms_param
.
keep_top_k
=
keep_top_k
;
bm_param
.
u
.
multiclass_nms_param
.
nms_top_k
=
nms_top_k
;
bm_param
.
u
.
multiclass_nms_param
.
nms_threshold
=
nms_threshold
;
bm_param
.
u
.
multiclass_nms_param
.
nms_eta
=
nms_eta
;
bm_param
.
u
.
multiclass_nms_param
.
normalized
=
normalized
;
int32_t
input_num
=
2
;
int32_t
output_num
=
1
;
int32_t
*
in_shape
[
2
];
int32_t
in_dim
[
2
];
const
char
*
in_name
[
2
];
in_shape
[
0
]
=
&
i_boxes_shape_data
[
0
];
in_shape
[
1
]
=
&
i_score_shape_data
[
0
];
in_dim
[
0
]
=
boxes_dims
.
size
();
in_dim
[
1
]
=
score_dims
.
size
();
in_name
[
0
]
=
static_cast
<
const
char
*>
(
boxes_var_name
.
c_str
());
in_name
[
1
]
=
static_cast
<
const
char
*>
(
score_var_name
.
c_str
());
int32_t
*
out_shape
[
1
];
int32_t
out_dim
[
1
];
const
char
*
out_name
[
1
];
i_out_shape_data
[
0
]
=
keep_top_k
;
i_out_shape_data
[
1
]
=
6
;
out_shape
[
0
]
=
&
i_out_shape_data
[
0
];
out_dim
[
0
]
=
2
;
out_name
[
0
]
=
static_cast
<
const
char
*>
(
out_var_name
.
c_str
());
add_user_cpu_layer
(
graph
->
GetCompilerHandle
(),
input_num
,
in_shape
,
in_dim
,
in_name
,
output_num
,
out_shape
,
out_dim
,
out_name
,
&
bm_param
,
static_cast
<
int
>
(
sizeof
(
bm_param
)));
graph
->
AddNode
(
out_var_name
);
return
SUCCESS
;
}
}
// namespace bm
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
multiclass_nms
,
kBM
,
paddle
::
lite
::
subgraph
::
bm
::
MultiClassNMSConverter
);
lite/kernels/bm/bridges/paddle_use_bridges.h
浏览文件 @
c803658d
...
...
@@ -36,3 +36,5 @@ USE_SUBGRAPH_BRIDGE(flatten, kBM);
USE_SUBGRAPH_BRIDGE
(
flatten2
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
norm
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
prior_box
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
box_coder
,
kBM
);
USE_SUBGRAPH_BRIDGE
(
multiclass_nms
,
kBM
);
lite/kernels/bm/bridges/prior_box_op.cc
浏览文件 @
c803658d
...
...
@@ -83,127 +83,106 @@ float* compute_priorbox_kernel(OpLite* op, st_priorbox_param* param) {
for
(
size_t
i
=
0
;
i
<
expand_aspect_ratios
.
size
();
i
++
)
{
param
->
aspect_ratios
.
push_back
(
expand_aspect_ratios
[
i
]);
}
param
->
prior_num
=
param
->
aspect_ratios
.
size
()
*
param
->
min_sizes
.
size
();
auto
img_width
=
img_dims
[
3
];
auto
img_height
=
img_dims
[
2
];
auto
feature_width
=
in_dims
[
3
];
auto
feature_height
=
in_dims
[
2
];
float
step_width
,
step_height
;
if
(
param
->
step_w
==
0.
f
||
param
->
step_h
==
0.
f
)
{
step_width
=
static_cast
<
float
>
(
img_width
)
/
feature_width
;
step_height
=
static_cast
<
float
>
(
img_height
)
/
feature_height
;
}
else
{
step_width
=
param
->
step_w
;
step_height
=
param
->
step_h
;
}
int
num_priors
=
param
->
aspect_ratios
.
size
()
*
param
->
min_sizes
.
size
();
if
(
param
->
max_sizes
.
size
()
>
0
)
{
param
->
prior_num
+=
param
->
max_sizes
.
size
();
num_priors
+=
param
->
max_sizes
.
size
();
}
int32_t
win1
=
in_dims
[
3
]
;
int32_t
hin1
=
in_dims
[
2
]
;
DDim
shape_out
({
hin1
,
win1
,
param
->
prior_num
,
4
})
;
param
->
prior_num
=
num_priors
;
DDim
shape_out
({
feature_height
,
feature_width
,
num_priors
,
4
})
;
int32_t
channel_size
=
feature_height
*
feature_width
*
num_priors
*
4
;
boxes
->
Resize
(
shape_out
);
var
->
Resize
(
shape_out
);
// boxes->mutable_data<float>();
// var->mutable_data<float>();
float
*
cpu_data
=
static_cast
<
float
*>
(
malloc
(
sizeof
(
float
)
*
boxes
->
data_size
()
*
2
));
CHECK
(
cpu_data
!=
nullptr
);
const
int32_t
width
=
in_dims
[
3
];
const
int32_t
height
=
in_dims
[
2
];
int32_t
img_width
=
param
->
img_w
;
int32_t
img_height
=
param
->
img_h
;
if
(
img_width
==
0
||
img_height
==
0
)
{
img_width
=
img_dims
[
3
];
img_height
=
img_dims
[
2
];
}
float
step_w
=
param
->
step_w
;
float
step_h
=
param
->
step_h
;
if
(
step_w
==
0.
f
||
step_h
==
0.
f
)
{
step_w
=
static_cast
<
float
>
(
img_width
)
/
width
;
step_h
=
static_cast
<
float
>
(
img_height
)
/
height
;
}
float
offset
=
param
->
offset
;
int32_t
channel_size
=
height
*
width
*
param
->
prior_num
*
4
;
int32_t
idx
=
0
;
///////////////////////////////////////////////////////////////////////
for
(
int32_t
h
=
0
;
h
<
height
;
++
h
)
{
for
(
int32_t
w
=
0
;
w
<
width
;
++
w
)
{
float
center_x
=
(
w
+
offset
)
*
step_w
;
float
center_y
=
(
h
+
offset
)
*
step_h
;
float
box_width
=
0.
f
;
float
box_height
=
0.
f
;
float
*
min_buf
=
reinterpret_cast
<
float
*>
(
malloc
(
sizeof
(
float
)
*
4
));
float
*
max_buf
=
reinterpret_cast
<
float
*>
(
malloc
(
sizeof
(
float
)
*
4
));
float
*
com_buf
=
reinterpret_cast
<
float
*>
(
malloc
(
sizeof
(
float
)
*
expand_aspect_ratios
.
size
()
*
4
));
CHECK
(
min_buf
!=
nullptr
);
CHECK
(
max_buf
!=
nullptr
);
CHECK
(
com_buf
!=
nullptr
);
// LOG(INFO) << "the number of min_size is " << min_sizes_.size();
float
*
b_t
=
cpu_data
;
for
(
int
h
=
0
;
h
<
feature_height
;
++
h
)
{
for
(
int
w
=
0
;
w
<
feature_width
;
++
w
)
{
float
center_x
=
(
w
+
param
->
offset
)
*
step_width
;
float
center_y
=
(
h
+
param
->
offset
)
*
step_height
;
float
box_width
,
box_height
;
for
(
size_t
s
=
0
;
s
<
param
->
min_sizes
.
size
();
++
s
)
{
int32_t
min_idx
=
0
;
int32_t
max_idx
=
0
;
int32_t
com_idx
=
0
;
int32_t
min_size
=
param
->
min_sizes
[
s
];
//! first prior: aspect_ratio = 1, size = min_size
box_width
=
box_height
=
min_size
;
//! xmin
min_buf
[
min_idx
++
]
=
(
center_x
-
box_width
/
2.
f
)
/
img_width
;
//! ymin
min_buf
[
min_idx
++
]
=
(
center_y
-
box_height
/
2.
f
)
/
img_height
;
//! xmax
min_buf
[
min_idx
++
]
=
(
center_x
+
box_width
/
2.
f
)
/
img_width
;
//! ymax
min_buf
[
min_idx
++
]
=
(
center_y
+
box_height
/
2.
f
)
/
img_height
;
auto
min_size
=
param
->
min_sizes
[
s
];
if
(
param
->
min_max_aspect_ratios_order
)
{
box_width
=
box_height
=
min_size
/
2.
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
b_t
+=
4
;
if
(
param
->
max_sizes
.
size
()
>
0
)
{
int
max_size
=
param
->
max_sizes
[
s
];
//! second prior: aspect_ratio = 1, size = sqrt(min_size * max_size)
box_width
=
box_height
=
sqrtf
(
min_size
*
max_size
);
//! xmin
max_buf
[
max_idx
++
]
=
(
center_x
-
box_width
/
2.
f
)
/
img_width
;
//! ymin
max_buf
[
max_idx
++
]
=
(
center_y
-
box_height
/
2.
f
)
/
img_height
;
//! xmax
max_buf
[
max_idx
++
]
=
(
center_x
+
box_width
/
2.
f
)
/
img_width
;
//! ymax
max_buf
[
max_idx
++
]
=
(
center_y
+
box_height
/
2.
f
)
/
img_height
;
}
//! rest of priors
for
(
size_t
r
=
0
;
r
<
expand_aspect_ratios
.
size
();
++
r
)
{
float
ar
=
expand_aspect_ratios
[
r
];
auto
max_size
=
param
->
max_sizes
[
s
];
// square prior with size sqrt(minSize * maxSize)
box_width
=
box_height
=
sqrt
(
min_size
*
max_size
)
/
2.
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
b_t
+=
4
;
}
// priors with different aspect ratios
for
(
size_t
r
=
0
;
r
<
param
->
aspect_ratios
.
size
();
++
r
)
{
float
ar
=
param
->
aspect_ratios
[
r
];
if
(
fabs
(
ar
-
1.
)
<
1e-6
)
{
continue
;
}
box_width
=
min_size
*
sqrt
(
ar
);
box_height
=
min_size
/
sqrt
(
ar
);
//! xmin
com_buf
[
com_idx
++
]
=
(
center_x
-
box_width
/
2.
f
)
/
img_width
;
//! ymin
com_buf
[
com_idx
++
]
=
(
center_y
-
box_height
/
2.
f
)
/
img_height
;
//! xmax
com_buf
[
com_idx
++
]
=
(
center_x
+
box_width
/
2.
f
)
/
img_width
;
//! ymax
com_buf
[
com_idx
++
]
=
(
center_y
+
box_height
/
2.
f
)
/
img_height
;
box_width
=
min_size
*
sqrt
(
ar
)
/
2.
;
box_height
=
min_size
/
sqrt
(
ar
)
/
2.
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
b_t
+=
4
;
}
if
(
param
->
min_max_aspect_ratios_order
)
{
memcpy
(
cpu_data
+
idx
,
min_buf
,
sizeof
(
float
)
*
min_idx
);
idx
+=
min_idx
;
memcpy
(
cpu_data
+
idx
,
max_buf
,
sizeof
(
float
)
*
max_idx
);
idx
+=
max_idx
;
memcpy
(
cpu_data
+
idx
,
com_buf
,
sizeof
(
float
)
*
com_idx
);
idx
+=
com_idx
;
}
else
{
memcpy
(
cpu_data
+
idx
,
com_buf
,
sizeof
(
float
)
*
com_idx
);
idx
+=
com_idx
;
memcpy
(
cpu_data
+
idx
,
max_buf
,
sizeof
(
float
)
*
max_idx
);
idx
+=
max_idx
;
// priors with different aspect ratios
for
(
size_t
r
=
0
;
r
<
param
->
aspect_ratios
.
size
();
++
r
)
{
float
ar
=
param
->
aspect_ratios
[
r
];
box_width
=
min_size
*
sqrt
(
ar
)
/
2.
;
box_height
=
min_size
/
sqrt
(
ar
)
/
2.
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
b_t
+=
4
;
}
if
(
param
->
max_sizes
.
size
()
>
0
)
{
auto
max_size
=
param
->
max_sizes
[
s
];
// square prior with size sqrt(minSize * maxSize)
box_width
=
box_height
=
sqrt
(
min_size
*
max_size
)
/
2.
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
b_t
+=
4
;
}
}
}
free
(
min_buf
);
free
(
max_buf
);
free
(
com_buf
);
}
}
//! clip the prior's coordidate such that it is within [0, 1]
if
(
param
->
clip
)
{
for
(
int32_t
d
=
0
;
d
<
channel_size
;
++
d
)
{
cpu_data
[
d
]
=
std
::
min
(
std
::
max
(
cpu_data
[
d
],
0.
f
),
1.
f
);
}
}
//! set the variance.
float
*
ptr
=
cpu_data
+
channel_size
;
int
count
=
0
;
for
(
int32_t
h
=
0
;
h
<
height
;
++
h
)
{
for
(
int32_t
w
=
0
;
w
<
width
;
++
w
)
{
for
(
int32_t
h
=
0
;
h
<
feature_
height
;
++
h
)
{
for
(
int32_t
w
=
0
;
w
<
feature_
width
;
++
w
)
{
for
(
int32_t
i
=
0
;
i
<
param
->
prior_num
;
++
i
)
{
for
(
int
j
=
0
;
j
<
4
;
++
j
)
{
ptr
[
count
]
=
param
->
variances
[
j
];
...
...
@@ -237,7 +216,6 @@ int PriorBoxConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
boxes_var_name
=
op_info
->
Output
(
"Boxes"
).
front
();
auto
boxes
=
scope
->
FindVar
(
boxes_var_name
)
->
GetMutable
<
lite
::
Tensor
>
();
auto
var_var_name
=
op_info
->
Output
(
"Variances"
).
front
();
auto
unique_op_name
=
lite
::
subgraph
::
bm
::
UniqueName
(
op_type
);
// param
st_priorbox_param
param
;
param
.
clip
=
op_info
->
GetAttr
<
bool
>
(
"clip"
);
...
...
@@ -269,20 +247,19 @@ int PriorBoxConverter(void* ctx, OpLite* op, KernelBase* kernel) {
op_info
->
GetAttr
<
bool
>
(
"min_max_aspect_ratios_order"
);
}
float
*
cpu_data
=
compute_priorbox_kernel
(
op
,
&
param
);
compute_priorbox_kernel
(
op
,
param
);
auto
boxes_dims
=
boxes
->
dims
();
std
::
vector
<
int32_t
>
i_pri_out_shape_data
(
boxes_dims
.
size
()
);
for
(
size_t
i
=
0
;
i
<
boxes_dims
.
size
();
i
++
)
{
i_pri_out_shape_data
[
i
]
=
static_cast
<
int32_t
>
(
boxes_dims
[
i
])
;
}
i_pri_out_shape_data
[
0
]
*=
2
;
std
::
vector
<
int32_t
>
i_pri_out_shape_data
(
3
);
i_pri_out_shape_data
[
0
]
=
1
;
i_pri_out_shape_data
[
1
]
=
2
;
i_pri_out_shape_data
[
2
]
=
boxes
->
data_size
();
auto
bm_priorbox_name
=
lite
::
subgraph
::
bm
::
UniqueName
(
"bm_priorbox"
)
;
add_priorbox_layer
(
graph
->
GetCompilerHandle
(),
const_cast
<
const
int
*>
(
&
i_input_shape_data
[
0
]),
in_dims
.
size
(),
static_cast
<
const
char
*>
(
in_var_name
.
c_str
()),
const_cast
<
const
int
*>
(
&
i_pri_out_shape_data
[
0
]),
boxes_dims
.
size
()
,
static_cast
<
const
char
*>
(
unique_op
_name
.
c_str
()),
3
,
static_cast
<
const
char
*>
(
bm_priorbox
_name
.
c_str
()),
static_cast
<
const
float
*>
(
cpu_data
),
param
.
min_sizes
.
size
(),
const_cast
<
const
float
*>
(
&
param
.
min_sizes
[
0
]),
...
...
@@ -299,32 +276,57 @@ int PriorBoxConverter(void* ctx, OpLite* op, KernelBase* kernel) {
param
.
step_h
,
param
.
step_w
,
param
.
offset
);
std
::
vector
<
int32_t
>
i_output_shape_data
(
boxes_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
boxes_dims
.
size
();
i
++
)
{
i_output_shape_data
[
i
]
=
static_cast
<
int32_t
>
(
boxes_dims
[
i
]);
}
int32_t
*
shape
[
2
];
int
dim
[
2
];
int
32_t
dim
[
2
];
const
char
*
name
[
2
];
dim
[
0
]
=
boxes_dims
.
size
();
dim
[
1
]
=
boxes_dims
.
size
();
name
[
0
]
=
static_cast
<
const
char
*>
(
boxes_var_name
.
c_str
());
name
[
1
]
=
static_cast
<
const
char
*>
(
var_var_name
.
c_str
());
shape
[
0
]
=
&
i_output_shape_data
[
0
];
shape
[
1
]
=
&
i_output_shape_data
[
0
];
int
split_size
=
2
;
int32_t
dim_size
=
3
;
dim
[
0
]
=
dim_size
;
dim
[
1
]
=
dim_size
;
std
::
vector
<
int32_t
>
i_split_shape_data
(
dim_size
);
for
(
size_t
i
=
0
;
i
<
dim_size
;
i
++
)
{
i_split_shape_data
[
i
]
=
i_pri_out_shape_data
[
i
];
}
i_split_shape_data
[
1
]
/=
2
;
shape
[
0
]
=
&
i_split_shape_data
[
0
];
shape
[
1
]
=
&
i_split_shape_data
[
0
];
name
[
0
]
=
static_cast
<
const
char
*>
(
lite
::
subgraph
::
bm
::
UniqueName
(
"bm_boxes"
).
c_str
());
name
[
1
]
=
static_cast
<
const
char
*>
(
lite
::
subgraph
::
bm
::
UniqueName
(
"bm_boxes_var"
).
c_str
());
int
split_size
[
2
];
split_size
[
0
]
=
shape
[
0
][
1
];
split_size
[
1
]
=
shape
[
1
][
1
];
add_tf_split_layer
(
graph
->
GetCompilerHandle
(),
const_cast
<
const
int
*>
(
&
i_pri_out_shape_data
[
0
]),
boxes_dims
.
size
()
,
static_cast
<
const
char
*>
(
unique_op
_name
.
c_str
()),
3
,
static_cast
<
const
char
*>
(
bm_priorbox
_name
.
c_str
()),
2
,
shape
,
dim
,
name
,
boxes_dims
.
size
(),
0
,
&
split_size
,
0
);
3
,
1
,
split_size
,
2
);
// final output
std
::
vector
<
int32_t
>
i_output_shape_data
(
boxes_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
boxes_dims
.
size
();
i
++
)
{
i_output_shape_data
[
i
]
=
static_cast
<
int32_t
>
(
boxes_dims
[
i
]);
}
add_reshape_layer_v2
(
graph
->
GetCompilerHandle
(),
name
[
0
],
shape
[
0
],
3
,
static_cast
<
const
char
*>
(
boxes_var_name
.
c_str
()),
const_cast
<
const
int
*>
(
&
i_output_shape_data
[
0
]),
boxes_dims
.
size
());
add_reshape_layer_v2
(
graph
->
GetCompilerHandle
(),
name
[
1
],
shape
[
1
],
3
,
static_cast
<
const
char
*>
(
var_var_name
.
c_str
()),
const_cast
<
const
int
*>
(
&
i_output_shape_data
[
0
]),
boxes_dims
.
size
());
graph
->
AddNode
(
boxes_var_name
);
graph
->
AddNode
(
var_var_name
);
return
SUCCESS
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录