Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
c0f7ecb4
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c0f7ecb4
编写于
3月 16, 2019
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Optimize general col2im to speed up transpose conv
上级
33de575e
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
198 addition
and
162 deletion
+198
-162
src/operators/math/im2col.cpp
src/operators/math/im2col.cpp
+186
-162
src/operators/math/im2col.h
src/operators/math/im2col.h
+12
-0
未找到文件。
src/operators/math/im2col.cpp
浏览文件 @
c0f7ecb4
...
...
@@ -22,10 +22,13 @@ namespace paddle_mobile {
namespace
operators
{
namespace
math
{
void
ExtractToImg
(
const
float
*
im_data
,
float
*
col_data
,
const
int
im_height
,
const
int
im_width
,
const
int
col_height
,
const
int
col_width
,
const
int
padding_h
,
const
int
padding_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
kh
,
const
int
kw
)
{
template
<
>
void
ExtractToImg
<
float
>
(
const
float
*
im_data
,
float
*
col_data
,
const
int
im_height
,
const
int
im_width
,
const
int
col_height
,
const
int
col_width
,
const
int
padding_h
,
const
int
padding_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
kh
,
const
int
kw
)
{
int
h
=
padding_h
-
kh
;
int
w
=
padding_w
-
kw
;
int
col_start_height
=
h
>
0
?
(
h
+
stride_h
-
1
)
/
stride_h
:
0
;
...
...
@@ -41,48 +44,43 @@ void ExtractToImg(const float *im_data, float *col_data, const int im_height,
im_data
+=
start_height
*
im_width
+
start_width
;
col_data
+=
col_start_height
*
col_width
+
col_start_width
;
for
(
int
i
=
start_height
;
i
<
end_height
;
i
+=
stride_h
)
{
if
(
stride_w
==
1
)
{
// memcpy(col_data, im_data, extract * sizeof(float));
int
s
=
0
;
if
(
stride_w
==
1
)
{
#if __ARM_NEON
for
(;
s
<
extract
-
3
;
s
+=
4
)
{
float32x4_t
img
=
vld1q_f32
(
im_data
+
s
);
vst1q_f32
(
col_data
+
s
,
img
);
float32x4_t
_
img
=
vld1q_f32
(
im_data
+
s
);
vst1q_f32
(
col_data
+
s
,
_
img
);
}
#endif
for
(;
s
<
extract
;
++
s
)
{
col_data
[
s
]
=
im_data
[
s
];
}
}
else
if
(
stride_w
==
2
)
{
int
s
=
0
;
#if __ARM_NEON
for
(;
s
<
extract
-
3
;
s
+=
4
)
{
float32x4x2_t
img
=
vld2q_f32
(
im_data
+
s
*
2
);
vst1q_f32
(
col_data
+
s
,
img
.
val
[
0
]);
float32x4x2_t
_
img
=
vld2q_f32
(
im_data
+
s
*
2
);
vst1q_f32
(
col_data
+
s
,
_
img
.
val
[
0
]);
}
#endif
for
(;
s
<
extract
;
++
s
)
{
col_data
[
s
]
=
im_data
[
s
*
2
];
}
}
else
if
(
stride_w
==
3
)
{
int
s
=
0
;
#if __ARM_NEON
for
(;
s
<
extract
-
3
;
s
+=
4
)
{
float32x4x3_t
img
=
vld3q_f32
(
im_data
+
s
*
3
);
vst1q_f32
(
col_data
+
s
,
img
.
val
[
0
]);
float32x4x3_t
_
img
=
vld3q_f32
(
im_data
+
s
*
3
);
vst1q_f32
(
col_data
+
s
,
_
img
.
val
[
0
]);
}
#endif
for
(;
s
<
extract
;
++
s
)
{
col_data
[
s
]
=
im_data
[
s
*
3
];
}
}
else
if
(
stride_w
==
4
)
{
int
s
=
0
;
#if __ARM_NEON
for
(;
s
<
extract
-
3
;
s
+=
4
)
{
float32x4x4_t
img
=
vld4q_f32
(
im_data
+
s
*
4
);
vst1q_f32
(
col_data
+
s
,
img
.
val
[
0
]);
float32x4x4_t
_
img
=
vld4q_f32
(
im_data
+
s
*
4
);
vst1q_f32
(
col_data
+
s
,
_
img
.
val
[
0
]);
}
#endif
for
(;
s
<
extract
;
++
s
)
{
...
...
@@ -96,77 +94,13 @@ void ExtractToImg(const float *im_data, float *col_data, const int im_height,
}
}
/*
* im = [input_channels, input_height, input_width]
* col =
* [input_channels, filter_height, filter_width, output_height,
* output_width]
*/
template
<
>
void
Im2ColFunctor
<
ColFormat
::
kCFO
,
CPU
,
float
>::
operator
()(
const
framework
::
Tensor
&
im
,
const
std
::
vector
<
int
>
&
dilation
,
const
std
::
vector
<
int
>
&
stride
,
const
std
::
vector
<
int
>
&
padding
,
framework
::
Tensor
*
col
)
{
int
im_channels
=
im
.
dims
()[
0
];
int
im_height
=
im
.
dims
()[
1
];
int
im_width
=
im
.
dims
()[
2
];
int
filter_height
=
col
->
dims
()[
1
];
int
filter_width
=
col
->
dims
()[
2
];
int
col_height
=
col
->
dims
()[
3
];
int
col_width
=
col
->
dims
()[
4
];
int
channels_col
=
im_channels
*
filter_height
*
filter_width
;
const
float
*
im_data
=
im
.
data
<
float
>
();
float
*
col_data
=
col
->
data
<
float
>
();
#if __ARM_NEON
if
(
stride
[
0
]
<=
4
&&
dilation
[
0
]
==
1
&&
dilation
[
0
]
==
dilation
[
1
])
{
int
im_spatial_size
=
im_height
*
im_width
;
int
col_spatial_size
=
col_height
*
col_width
;
// pad 0
memset
(
col_data
,
0
,
col
->
numel
()
*
sizeof
(
float
));
#pragma omp parallel for
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
const
float
*
local_im_data
=
im_data
+
ic
*
im_spatial_size
;
float
*
local_col_data
=
col_data
+
ic
*
filter_height
*
filter_width
*
col_spatial_size
;
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filter_width
;
++
kw
)
{
ExtractToImg
(
local_im_data
,
local_col_data
,
im_height
,
im_width
,
col_height
,
col_width
,
padding
[
0
],
padding
[
1
],
stride
[
0
],
stride
[
1
],
kh
,
kw
);
local_col_data
+=
col_spatial_size
;
}
}
}
}
else
{
#endif
for
(
int
c
=
0
;
c
<
channels_col
;
++
c
)
{
int
w_offset
=
c
%
filter_width
;
int
h_offset
=
(
c
/
filter_width
)
%
filter_height
;
int
c_im
=
c
/
(
filter_width
*
filter_height
);
for
(
int
h
=
0
;
h
<
col_height
;
++
h
)
{
int
im_row_idx
=
h
*
stride
[
0
]
-
padding
[
0
]
+
h_offset
*
dilation
[
0
];
for
(
int
w
=
0
;
w
<
col_width
;
++
w
)
{
int
im_col_idx
=
w
*
stride
[
1
]
-
padding
[
1
]
+
w_offset
*
dilation
[
1
];
int
col_idx
=
(
c
*
col_height
+
h
)
*
col_width
+
w
;
int
im_idx
=
(
im_row_idx
+
c_im
*
im_height
)
*
im_width
+
im_col_idx
;
col_data
[
col_idx
]
=
(
im_row_idx
<
0
||
im_row_idx
>=
im_height
||
im_col_idx
<
0
||
im_col_idx
>=
im_width
)
?
static_cast
<
float
>
(
0
)
:
im_data
[
im_idx
];
}
}
}
#if __ARM_NEON
}
#endif
}
void
ExtractToImg
(
const
int8_t
*
im_data
,
int8_t
*
col_data
,
const
int
im_height
,
const
int
im_width
,
const
int
col_height
,
const
int
col_width
,
const
int
padding_h
,
const
int
padding_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
kh
,
const
int
kw
)
{
void
ExtractToImg
<
int8_t
>
(
const
int8_t
*
im_data
,
int8_t
*
col_data
,
const
int
im_height
,
const
int
im_width
,
const
int
col_height
,
const
int
col_width
,
const
int
padding_h
,
const
int
padding_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
kh
,
const
int
kw
)
{
int
h
=
padding_h
-
kh
;
int
w
=
padding_w
-
kw
;
int
col_start_height
=
h
>
0
?
(
h
+
stride_h
-
1
)
/
stride_h
:
0
;
...
...
@@ -183,21 +117,26 @@ void ExtractToImg(const int8_t *im_data, int8_t *col_data, const int im_height,
im_data
+=
start_height
*
im_width
+
start_width
;
col_data
+=
col_start_height
*
col_width
+
col_start_width
;
for
(
int
i
=
start_height
;
i
<
end_height
;
i
+=
stride_h
)
{
int
s
=
0
;
if
(
stride_w
==
1
)
{
memcpy
(
col_data
,
im_data
,
extract
*
sizeof
(
int8_t
));
for
(;
s
<
extract
-
15
;
s
+=
16
)
{
int8x16_t
_img
=
vld1q_s8
(
im_data
+
s
);
vst1q_s8
(
col_data
+
s
,
_img
);
}
for
(;
s
<
extract
;
++
s
)
{
col_data
[
s
]
=
im_data
[
s
];
}
}
else
if
(
stride_w
==
2
)
{
int
s
=
0
;
#if __ARM_NEON
for
(;
s
<
extract
-
15
;
s
+=
16
)
{
int8x16x2_t
img
=
vld2q_s8
(
im_data
+
s
*
2
);
vst1q_s8
(
col_data
+
s
,
img
.
val
[
0
]);
int8x16x2_t
_
img
=
vld2q_s8
(
im_data
+
s
*
2
);
vst1q_s8
(
col_data
+
s
,
_
img
.
val
[
0
]);
}
#endif
for
(;
s
<
extract
;
++
s
)
{
col_data
[
s
]
=
im_data
[
s
*
2
];
}
}
else
if
(
stride_w
==
3
)
{
int
s
=
0
;
#if __ARM_NEON
for
(;
s
<
extract
-
15
;
s
+=
16
)
{
int8x16x3_t
img
=
vld3q_s8
(
im_data
+
s
*
3
);
...
...
@@ -208,7 +147,6 @@ void ExtractToImg(const int8_t *im_data, int8_t *col_data, const int im_height,
col_data
[
s
]
=
im_data
[
s
*
3
];
}
}
else
if
(
stride_w
==
4
)
{
int
s
=
0
;
#if __ARM_NEON
for
(;
s
<
extract
-
15
;
s
+=
16
)
{
int8x16x4_t
img
=
vld4q_s8
(
im_data
+
s
*
4
);
...
...
@@ -232,11 +170,12 @@ void ExtractToImg(const int8_t *im_data, int8_t *col_data, const int im_height,
* [input_channels, filter_height, filter_width, output_height,
* output_width]
*/
template
<
>
void
Im2ColFunctor
<
ColFormat
::
kCFO
,
CPU
,
int8_t
>::
operator
()(
const
framework
::
Tensor
&
im
,
const
std
::
vector
<
int
>
&
dilation
,
const
std
::
vector
<
int
>
&
stride
,
const
std
::
vector
<
int
>
&
padding
,
framework
::
Tensor
*
col
)
{
template
<
class
T
>
class
Im2ColFunctor
<
ColFormat
::
kCFO
,
CPU
,
T
>
{
public:
void
operator
()(
const
framework
::
Tensor
&
im
,
const
std
::
vector
<
int
>
&
dilation
,
const
std
::
vector
<
int
>
&
stride
,
const
std
::
vector
<
int
>
&
padding
,
framework
::
Tensor
*
col
)
{
int
im_channels
=
im
.
dims
()[
0
];
int
im_height
=
im
.
dims
()[
1
];
int
im_width
=
im
.
dims
()[
2
];
...
...
@@ -246,24 +185,25 @@ void Im2ColFunctor<ColFormat::kCFO, CPU, int8_t>::operator()(
int
col_width
=
col
->
dims
()[
4
];
int
channels_col
=
im_channels
*
filter_height
*
filter_width
;
const
int8_t
*
im_data
=
im
.
data
<
int8_t
>
();
int8_t
*
col_data
=
col
->
mutable_data
<
int8_t
>
();
#if
defined(__ARM_NEON__) || defined(__ARM_NEON)
const
T
*
im_data
=
im
.
data
<
T
>
();
T
*
col_data
=
col
->
data
<
T
>
();
#if
__ARM_NEON
if
(
stride
[
0
]
<=
4
&&
dilation
[
0
]
==
1
&&
dilation
[
0
]
==
dilation
[
1
])
{
int
im_spatial_size
=
im_height
*
im_width
;
int
col_spatial_size
=
col_height
*
col_width
;
// pad 0
memset
(
col_data
,
0
,
col
->
numel
()
*
sizeof
(
int8_t
));
memset
(
col_data
,
0
,
col
->
numel
()
*
sizeof
(
T
));
#pragma omp parallel for
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
const
int8_t
*
local_im_data
=
im_data
+
ic
*
im_spatial_size
;
int8_t
*
local_col_data
=
const
T
*
local_im_data
=
im_data
+
ic
*
im_spatial_size
;
T
*
local_col_data
=
col_data
+
ic
*
filter_height
*
filter_width
*
col_spatial_size
;
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filter_width
;
++
kw
)
{
ExtractToImg
(
local_im_data
,
local_col_data
,
im_height
,
im_width
,
col_height
,
col_width
,
padding
[
0
],
padding
[
1
],
stride
[
0
],
stride
[
1
],
kh
,
kw
);
ExtractToImg
<
T
>
(
local_im_data
,
local_col_data
,
im_height
,
im_width
,
col_height
,
col_width
,
padding
[
0
],
padding
[
1
],
stride
[
0
],
stride
[
1
],
kh
,
kw
);
local_col_data
+=
col_spatial_size
;
}
}
...
...
@@ -277,20 +217,81 @@ void Im2ColFunctor<ColFormat::kCFO, CPU, int8_t>::operator()(
for
(
int
h
=
0
;
h
<
col_height
;
++
h
)
{
int
im_row_idx
=
h
*
stride
[
0
]
-
padding
[
0
]
+
h_offset
*
dilation
[
0
];
for
(
int
w
=
0
;
w
<
col_width
;
++
w
)
{
int
im_col_idx
=
w
*
stride
[
1
]
-
padding
[
1
]
+
w_offset
*
dilation
[
1
];
int
im_col_idx
=
w
*
stride
[
1
]
-
padding
[
1
]
+
w_offset
*
dilation
[
1
];
int
col_idx
=
(
c
*
col_height
+
h
)
*
col_width
+
w
;
int
im_idx
=
(
im_row_idx
+
c_im
*
im_height
)
*
im_width
+
im_col_idx
;
int
im_idx
=
(
im_row_idx
+
c_im
*
im_height
)
*
im_width
+
im_col_idx
;
col_data
[
col_idx
]
=
(
im_row_idx
<
0
||
im_row_idx
>=
im_height
||
im_col_idx
<
0
||
im_col_idx
>=
im_width
)
?
static_cast
<
int8_t
>
(
0
)
?
static_cast
<
T
>
(
0
)
:
im_data
[
im_idx
];
}
}
}
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#if __ARM_NEON
}
#endif
}
};
template
<
>
void
ExtendToImg
<
float
>
(
const
float
*
col_data
,
float
*
im_data
,
const
int
im_height
,
const
int
im_width
,
const
int
col_height
,
const
int
col_width
,
const
int
padding_h
,
const
int
padding_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
kh
,
const
int
kw
)
{
int
h
=
padding_h
-
kh
;
int
w
=
padding_w
-
kw
;
int
col_start_height
=
h
>
0
?
(
h
+
stride_h
-
1
)
/
stride_h
:
0
;
int
col_start_width
=
w
>
0
?
(
w
+
stride_w
-
1
)
/
stride_w
:
0
;
int
start_height
=
kh
+
col_start_height
*
stride_h
-
padding_h
;
int
start_width
=
kw
+
col_start_width
*
stride_w
-
padding_w
;
int
end_height
=
(
col_height
-
col_start_height
)
*
stride_h
+
start_height
;
end_height
=
end_height
>
im_height
?
im_height
:
end_height
;
int
end_width
=
(
col_width
-
col_start_width
)
*
stride_w
+
start_width
;
end_width
=
end_width
>
im_width
?
im_width
:
end_width
;
// int extract = (end_width - start_width + stride_w - 1) / stride_w;
int
extend
=
end_width
-
start_width
;
im_data
+=
start_height
*
im_width
+
start_width
;
col_data
+=
col_start_height
*
col_width
+
col_start_width
;
for
(
int
i
=
start_height
;
i
<
end_height
;
i
+=
stride_h
)
{
int
s
=
0
;
if
(
stride_w
==
1
)
{
#if __ARM_NEON
for
(;
s
<
extend
-
3
;
s
+=
4
)
{
float32x4_t
_col
=
vld1q_f32
(
col_data
+
s
);
float32x4_t
_img
=
vld1q_f32
(
im_data
+
s
);
_img
=
vaddq_f32
(
_img
,
_col
);
vst1q_f32
(
im_data
+
s
,
_img
);
}
#endif
for
(;
s
<
extend
;
++
s
)
{
im_data
[
s
]
+=
col_data
[
s
];
}
}
else
if
(
stride_w
==
2
)
{
#if __ARM_NEON
for
(;
s
<
extend
-
7
;
s
+=
8
)
{
float32x4_t
_col
=
vld1q_f32
(
col_data
+
s
/
2
);
float32x4x2_t
_img
=
vld2q_f32
(
im_data
+
s
);
_img
.
val
[
0
]
=
vaddq_f32
(
_img
.
val
[
0
],
_col
);
vst2q_f32
(
im_data
+
s
,
_img
);
}
#endif
for
(;
s
<
extend
;
s
+=
2
)
{
im_data
[
s
]
+=
col_data
[
s
/
2
];
}
}
else
{
PADDLE_MOBILE_THROW_EXCEPTION
(
"stride_w must be one of 1 and 2."
);
}
im_data
+=
im_width
*
stride_h
;
col_data
+=
col_width
;
}
}
/*
...
...
@@ -306,8 +307,6 @@ class Col2ImFunctor<ColFormat::kCFO, CPU, T> {
const
std
::
vector
<
int
>
&
dilation
,
const
std
::
vector
<
int
>
&
stride
,
const
std
::
vector
<
int
>
&
padding
,
framework
::
Tensor
*
im
)
{
// PADDLE_ENFORCE(im->dims().size() == 3);
// PADDLE_ENFORCE(col.dims().size() == 5);
int
im_channels
=
im
->
dims
()[
0
];
int
im_height
=
im
->
dims
()[
1
];
int
im_width
=
im
->
dims
()[
2
];
...
...
@@ -317,11 +316,31 @@ class Col2ImFunctor<ColFormat::kCFO, CPU, T> {
int
col_width
=
col
.
dims
()[
4
];
int
channels_col
=
im_channels
*
filter_height
*
filter_width
;
T
*
im_data
=
im
->
data
<
T
>
();
const
T
*
col_data
=
col
.
data
<
T
>
();
T
*
im_data
=
im
->
data
<
T
>
();
memset
(
static_cast
<
void
*>
(
im_data
),
0
,
sizeof
(
T
)
*
im
->
numel
());
#if __ARM_NEON
if
(
stride
[
0
]
<=
2
&&
dilation
[
0
]
==
1
&&
dilation
[
0
]
==
dilation
[
1
])
{
int
im_spatial_size
=
im_height
*
im_width
;
int
col_spatial_size
=
col_height
*
col_width
;
#pragma omp parallel for
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
T
*
local_im_data
=
im_data
+
ic
*
im_spatial_size
;
const
T
*
local_col_data
=
col_data
+
ic
*
filter_height
*
filter_width
*
col_spatial_size
;
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filter_width
;
++
kw
)
{
ExtendToImg
<
T
>
(
local_col_data
,
local_im_data
,
im_height
,
im_width
,
col_height
,
col_width
,
padding
[
0
],
padding
[
1
],
stride
[
0
],
stride
[
1
],
kh
,
kw
);
local_col_data
+=
col_spatial_size
;
}
}
}
}
else
{
#endif
for
(
int
c
=
0
;
c
<
channels_col
;
++
c
)
{
int
w_offset
=
c
%
filter_width
;
int
h_offset
=
(
c
/
filter_width
)
%
filter_height
;
...
...
@@ -329,22 +348,27 @@ class Col2ImFunctor<ColFormat::kCFO, CPU, T> {
for
(
int
h
=
0
;
h
<
col_height
;
++
h
)
{
int
im_row_idx
=
h
*
stride
[
0
]
-
padding
[
0
]
+
h_offset
*
dilation
[
0
];
for
(
int
w
=
0
;
w
<
col_width
;
++
w
)
{
int
im_col_idx
=
w
*
stride
[
1
]
-
padding
[
1
]
+
w_offset
*
dilation
[
1
];
int
im_col_idx
=
w
*
stride
[
1
]
-
padding
[
1
]
+
w_offset
*
dilation
[
1
];
if
((
im_row_idx
)
>=
0
&&
(
im_row_idx
)
<
im_height
&&
(
im_col_idx
)
>=
0
&&
(
im_col_idx
)
<
im_width
)
{
im_data
[(
im_row_idx
+
c_im
*
im_height
)
*
im_width
+
im_col_idx
]
+=
im_data
[(
im_row_idx
+
c_im
*
im_height
)
*
im_width
+
im_col_idx
]
+=
col_data
[(
c
*
col_height
+
h
)
*
col_width
+
w
];
}
}
}
}
#if __ARM_NEON
}
#endif
}
};
template
class
Im2ColFunctor
<
ColFormat
::
kCFO
,
CPU
,
float
>;
template
class
Im2ColFunctor
<
ColFormat
::
kCFO
,
CPU
,
int8_t
>;
template
class
Col2ImFunctor
<
ColFormat
::
kCFO
,
CPU
,
float
>;
template
class
Col2ImFunctor
<
ColFormat
::
kCFO
,
CPU
,
int8_t
>;
//
template class Col2ImFunctor<ColFormat::kCFO, CPU, int8_t>;
/*
* im = [input_channels, input_height, input_width]
...
...
src/operators/math/im2col.h
浏览文件 @
c0f7ecb4
...
...
@@ -25,6 +25,18 @@ namespace math {
* Col2ImFunctor. */
enum
class
ColFormat
{
kCFO
=
0
,
kOCF
=
1
};
template
<
class
T
>
void
ExtractToImg
(
const
T
*
im_data
,
T
*
col_data
,
const
int
im_height
,
const
int
im_width
,
const
int
col_height
,
const
int
col_width
,
const
int
padding_h
,
const
int
padding_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
kh
,
const
int
kw
);
template
<
class
T
>
void
ExtendToImg
(
const
T
*
col_data
,
T
*
im_data
,
const
int
im_height
,
const
int
im_width
,
const
int
col_height
,
const
int
col_width
,
const
int
padding_h
,
const
int
padding_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
kh
,
const
int
kw
);
/*
* \brief Converts the image data of three dimensions(CHW) into a
* colData of
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录