Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
c061e83f
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c061e83f
编写于
7月 18, 2018
作者:
R
Ruilong Liu
提交者:
GitHub
7月 18, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #599 from smilejames/develop
add macro definition:__ARM_NEON, __aarch64__
上级
d0e2b4a3
55df04fb
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
193 addition
and
179 deletion
+193
-179
CMakeLists.txt
CMakeLists.txt
+1
-1
src/operators/math/depthwise_conv_3x3.cpp
src/operators/math/depthwise_conv_3x3.cpp
+29
-27
src/operators/math/gemm.cpp
src/operators/math/gemm.cpp
+162
-150
tools/ios-cmake/ios.toolchain.cmake
tools/ios-cmake/ios.toolchain.cmake
+1
-1
未找到文件。
CMakeLists.txt
浏览文件 @
c061e83f
...
...
@@ -15,7 +15,7 @@ file(GLOB_RECURSE PADDLE_MOBILE_H src/*.h)
include_directories
(
src/
)
if
(
IS_IOS
)
set
(
CMAKE_CXX_FLAGS
"-fobjc-abi-version=2 -fobjc-arc -std=gnu++11 -stdlib=libc++ -O3 -s -isysroot
${
CMAKE_OSX_SYSROOT
}
${
CMAKE_CXX_FLAGS
}
"
)
set
(
CMAKE_CXX_FLAGS
"-
mfpu=neon -
fobjc-abi-version=2 -fobjc-arc -std=gnu++11 -stdlib=libc++ -O3 -s -isysroot
${
CMAKE_OSX_SYSROOT
}
${
CMAKE_CXX_FLAGS
}
"
)
else
()
set
(
CMAKE_CXX_FLAGS
"-std=c++14 -O3 -s
${
CMAKE_CXX_FLAGS
}
"
)
endif
()
...
...
src/operators/math/depthwise_conv_3x3.cpp
浏览文件 @
c061e83f
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/math/depthwise_conv_3x3.h"
#if
def
__ARM_NEON
#if __ARM_NEON
#include <arm_neon.h>
#endif
#include <vector>
...
...
@@ -23,7 +23,6 @@ namespace math {
void
DepthwiseConv3x3
(
const
Tensor
*
input
,
vector
<
int
>
strides
,
vector
<
int
>
paddings
,
const
Tensor
*
filter
,
Tensor
*
bias
,
Tensor
*
output
,
bool
if_bias
)
{
#ifdef __ARM_NEON
const
int
batch_size
=
input
->
dims
()[
0
];
const
int
input_height
=
input
->
dims
()[
2
];
...
...
@@ -181,7 +180,27 @@ void DepthwiseConv3x3(const Tensor *input, vector<int> strides,
}
}
else
{
#if defined(ARMV17)
#if __ARM_NEON
#if __aarch64__
const
float32x4_t
data1
=
vld1q_f32
(
pos1
);
const
float32x4_t
data2
=
vld1q_f32
(
pos2
);
const
float32x4_t
data3
=
vld1q_f32
(
pos3
);
const
float32x4_t
v_filter1
=
vld1q_f32
(
filter1
);
const
float32x4_t
v_filter2
=
vld1q_f32
(
filter2
);
const
float32x4_t
v_filter3
=
vld1q_f32
(
filter3
);
float32x4_t
mula
=
vmulq_f32
(
data1
,
v_filter1
);
mula
=
vmlaq_f32
(
mula
,
data2
,
v_filter2
);
mula
=
vmlaq_f32
(
mula
,
data3
,
v_filter3
);
float32x2_t
res
=
vpadd_f32
(
vget_high_f32
(
vsetq_lane_f32
(
0
,
mula
,
3
)),
vget_low_f32
(
mula
));
res
=
vpadd_f32
(
res
,
res
);
if
(
if_bias
)
{
output_data
[
ph
*
output_width
+
pw
]
+=
vget_lane_f32
(
res
,
0
);
}
else
{
output_data
[
ph
*
output_width
+
pw
]
=
vget_lane_f32
(
res
,
0
);
}
#else
asm
volatile
(
"vld1.32 {q1}, [%[pos1]]
\n\t
"
...
...
@@ -209,26 +228,10 @@ void DepthwiseConv3x3(const Tensor *input, vector<int> strides,
[
filter2
]
"r"
(
filter2
),
[
filter3
]
"r"
(
filter3
),
[
output_ptr
]
"r"
(
output_ptr
),
[
zero
]
"r"
(
zero
)
:
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
);
#endif // __aarch64__
#else
const
float32x4_t
data1
=
vld1q_f32
(
pos1
);
const
float32x4_t
data2
=
vld1q_f32
(
pos2
);
const
float32x4_t
data3
=
vld1q_f32
(
pos3
);
const
float32x4_t
v_filter1
=
vld1q_f32
(
filter1
);
const
float32x4_t
v_filter2
=
vld1q_f32
(
filter2
);
const
float32x4_t
v_filter3
=
vld1q_f32
(
filter3
);
float32x4_t
mula
=
vmulq_f32
(
data1
,
v_filter1
);
mula
=
vmlaq_f32
(
mula
,
data2
,
v_filter2
);
mula
=
vmlaq_f32
(
mula
,
data3
,
v_filter3
);
float32x2_t
res
=
vpadd_f32
(
vget_high_f32
(
vsetq_lane_f32
(
0
,
mula
,
3
)),
vget_low_f32
(
mula
));
res
=
vpadd_f32
(
res
,
res
);
if
(
if_bias
)
{
output_data
[
ph
*
output_width
+
pw
]
+=
vget_lane_f32
(
res
,
0
);
}
else
{
output_data
[
ph
*
output_width
+
pw
]
=
vget_lane_f32
(
res
,
0
);
}
#endif
#endif // __ARM_NEON
}
}
}
...
...
@@ -239,12 +242,11 @@ void DepthwiseConv3x3(const Tensor *input, vector<int> strides,
input_data
+=
input_batch_stride
;
output_data
+=
output_batch_stride
;
}
#endif
}
void
DepthwiseConv3x3s1p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
Tensor
*
bias
,
bool
if_bias
)
{
#if
def
__ARM_NEON
#if __ARM_NEON
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
...
...
@@ -520,7 +522,7 @@ void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
void
DepthwiseConvAddBNRelu3x3s1p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_relu
)
{
#if
def
__ARM_NEON
#if __ARM_NEON
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
...
...
@@ -824,7 +826,7 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
void
DepthwiseConvAddBNRelu3x3s2p1
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_relu
)
{
#if
def
__ARM_NEON
#if __ARM_NEON
const
int
batch_size
=
input
->
dims
()[
0
];
...
...
@@ -1022,7 +1024,7 @@ void DepthwiseConvAddBNRelu3x3s2p1(const Tensor *input, const Tensor *filter,
void
DepthwiseConv3x3s2p1v2
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
Tensor
bias
,
bool
if_bias
)
{
#if
def
__ARM_NEON
#if __ARM_NEON
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
...
...
@@ -1225,7 +1227,7 @@ void DepthwiseConv3x3s2p1v2(const Tensor *input, const Tensor *filter,
void
DepthwiseConvAddBNRelu3x3s2p1v2
(
const
Tensor
*
input
,
const
Tensor
*
filter
,
Tensor
*
output
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_relu
)
{
#if
def
__ARM_NEON
#if __ARM_NEON
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
...
...
src/operators/math/gemm.cpp
浏览文件 @
c061e83f
...
...
@@ -15,7 +15,7 @@ limitations under the License. */
#include "operators/math/gemm.h"
#include "common/log.h"
#include "memory/t_malloc.h"
#if
ndef X86
#if
__ARM_NEON
#include <arm_neon.h>
#endif
#ifdef _OPENMP
...
...
@@ -136,6 +136,10 @@ void PackMatrixB_(int k, int n, int n_tail, const float *B, int ldb,
for
(
int
j
=
0
;
j
<
n
-
n_tail
;
j
+=
NR
)
{
for
(
int
i
=
0
;
i
<
k
;
++
i
)
{
b0
=
&
B
(
i
,
j
);
#if __ARM_NEON
#if __aarch64__
#else
asm
volatile
(
"pld [%[b0]]
\n\t
"
"vld1.32 {q0, q1}, [%[b0]]
\n\t
"
...
...
@@ -143,6 +147,10 @@ void PackMatrixB_(int k, int n, int n_tail, const float *B, int ldb,
:
[
buffer
]
"+r"
(
buffer
)
:
[
b0
]
"r"
(
b0
)
:
"memory"
,
"q0"
,
"q0"
);
#endif // __aarch64__
#else
#endif // __ARM_NEON
}
}
if
(
n_tail
!=
0
)
{
...
...
@@ -206,7 +214,9 @@ void InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
}
}
#if defined(IOS)
#if __ARM_NEON
#if __aarch64__
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
C
,
int
ldc
)
{
// init C
float32x4_t
cv0
=
vdupq_n_f32
(
0.0
);
...
...
@@ -255,9 +265,9 @@ void AddDot4x4(int k, const float *a, const float *b, float *C, int ldc) {
}
}
}
}
// namespace math
#elif defined(ARMV7)
#else
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
const
float
*
a_ptr
,
*
b_ptr
;
a_ptr
=
a
;
...
...
@@ -328,151 +338,6 @@ void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc) {
"q10"
,
"q11"
,
"q12"
,
"q13"
);
}
#else
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
float
*
c0
,
*
c1
,
*
c2
,
*
c3
;
c0
=
c
;
c1
=
c
+
ldc
;
c2
=
c
+
2
*
ldc
;
c3
=
c
+
3
*
ldc
;
for
(
int
p
=
0
;
p
<
k
;
p
+=
1
)
{
// first row
c0
[
0
]
+=
a
[
0
]
*
b
[
0
];
c0
[
1
]
+=
a
[
0
]
*
b
[
1
];
c0
[
2
]
+=
a
[
0
]
*
b
[
2
];
c0
[
3
]
+=
a
[
0
]
*
b
[
3
];
// second row
c1
[
0
]
+=
a
[
1
]
*
b
[
0
];
c1
[
1
]
+=
a
[
1
]
*
b
[
1
];
c1
[
2
]
+=
a
[
1
]
*
b
[
2
];
c1
[
3
]
+=
a
[
1
]
*
b
[
3
];
// third row
c2
[
0
]
+=
a
[
2
]
*
b
[
0
];
c2
[
1
]
+=
a
[
2
]
*
b
[
1
];
c2
[
2
]
+=
a
[
2
]
*
b
[
2
];
c2
[
3
]
+=
a
[
2
]
*
b
[
3
];
// fourth row
c3
[
0
]
+=
a
[
3
]
*
b
[
0
];
c3
[
1
]
+=
a
[
3
]
*
b
[
1
];
c3
[
2
]
+=
a
[
3
]
*
b
[
2
];
c3
[
3
]
+=
a
[
3
]
*
b
[
3
];
a
+=
4
;
b
+=
4
;
}
}
#endif
// 32位 float 矩阵乘法
void
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int
L1
=
30
*
1024
;
int
L2
=
1
*
1024
*
1024
;
KC
=
k
;
MC
=
L2
/
(
2
*
KC
*
sizeof
(
float
));
NC
=
MC
;
// make sure MC is multiple of 4, and NC is multiple of 8
int
mblock_num
=
(
m
+
MC
-
1
)
/
MC
;
MC
=
(
m
+
mblock_num
-
1
)
/
mblock_num
;
MC
=
(
MC
+
4
-
1
)
/
4
*
4
;
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
int
nblock_num
=
(
n
+
NC
-
1
)
/
NC
;
NC
=
(
n
+
nblock_num
-
1
)
/
nblock_num
;
NC
=
(
NC
+
8
-
1
)
/
8
*
8
;
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
MC
*
KC
));
packedB
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
KC
*
NC
));
packedC
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
MC
*
NC
));
zero
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
KC
));
for
(
int
l
=
0
;
l
<
KC
;
++
l
)
{
zero
[
l
]
=
0
;
}
int
mc
,
nc
;
for
(
int
j
=
0
;
j
<
n
;
j
+=
NC
)
{
nc
=
s_min
(
n
-
j
,
NC
);
PackMatrixB_
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
packedB
);
for
(
int
i
=
0
;
i
<
m
;
i
+=
MC
)
{
mc
=
s_min
(
m
-
i
,
MC
);
PackMatrixA_
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA
);
InnerKernel
(
mc
,
nc
,
alpha
,
packedA
,
packedB
,
beta
,
packedC
,
&
C
(
i
,
j
),
ldc
,
relu
);
}
}
paddle_mobile
::
memory
::
Free
(
packedA
);
paddle_mobile
::
memory
::
Free
(
packedB
);
paddle_mobile
::
memory
::
Free
(
packedC
);
paddle_mobile
::
memory
::
Free
(
zero
);
}
void
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int
L1
=
30
*
1024
;
int
L2
=
1
*
1024
*
1024
;
KC
=
k
;
MC
=
L2
/
(
2
*
KC
*
sizeof
(
float
));
NC
=
MC
;
// make sure MC is multiple of 4, and NC is multiple of 8
int
mblock_num
=
(
m
+
MC
-
1
)
/
MC
;
MC
=
(
m
+
mblock_num
-
1
)
/
mblock_num
;
MC
=
(
MC
+
4
-
1
)
/
4
*
4
;
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
int
nblock_num
=
(
n
+
NC
-
1
)
/
NC
;
NC
=
(
n
+
nblock_num
-
1
)
/
nblock_num
;
NC
=
(
NC
+
8
-
1
)
/
8
*
8
;
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
MC
*
KC
));
packedB
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
KC
*
NC
));
packedC
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
MC
*
NC
));
zero
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
KC
));
for
(
int
l
=
0
;
l
<
KC
;
++
l
)
{
zero
[
l
]
=
0
;
}
int
mc
,
nc
;
for
(
int
j
=
0
;
j
<
n
;
j
+=
NC
)
{
nc
=
s_min
(
n
-
j
,
NC
);
PackMatrixB_
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
packedB
);
for
(
int
i
=
0
;
i
<
m
;
i
+=
MC
)
{
mc
=
s_min
(
m
-
i
,
MC
);
PackMatrixA_
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA
);
InnerKernelWithBn
(
mc
,
nc
,
alpha
,
packedA
,
packedB
,
beta
,
packedC
,
&
C
(
i
,
j
),
ldc
,
relu
,
new_scale
+
i
,
new_bias
+
i
);
}
}
paddle_mobile
::
memory
::
Free
(
packedA
);
paddle_mobile
::
memory
::
Free
(
packedB
);
paddle_mobile
::
memory
::
Free
(
packedC
);
paddle_mobile
::
memory
::
Free
(
zero
);
}
void
VectorKernel
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
)
{
...
...
@@ -1699,6 +1564,153 @@ void VecWriteWithBnRelu(int n, float *c, float *C, int ldc, float *scale,
"q12"
,
"q13"
,
"q14"
);
}
#endif // __aarch64__
#else
void
AddDot4x4
(
int
k
,
const
float
*
a
,
const
float
*
b
,
float
*
c
,
int
ldc
)
{
float
*
c0
,
*
c1
,
*
c2
,
*
c3
;
c0
=
c
;
c1
=
c
+
ldc
;
c2
=
c
+
2
*
ldc
;
c3
=
c
+
3
*
ldc
;
for
(
int
p
=
0
;
p
<
k
;
p
+=
1
)
{
// first row
c0
[
0
]
+=
a
[
0
]
*
b
[
0
];
c0
[
1
]
+=
a
[
0
]
*
b
[
1
];
c0
[
2
]
+=
a
[
0
]
*
b
[
2
];
c0
[
3
]
+=
a
[
0
]
*
b
[
3
];
// second row
c1
[
0
]
+=
a
[
1
]
*
b
[
0
];
c1
[
1
]
+=
a
[
1
]
*
b
[
1
];
c1
[
2
]
+=
a
[
1
]
*
b
[
2
];
c1
[
3
]
+=
a
[
1
]
*
b
[
3
];
// third row
c2
[
0
]
+=
a
[
2
]
*
b
[
0
];
c2
[
1
]
+=
a
[
2
]
*
b
[
1
];
c2
[
2
]
+=
a
[
2
]
*
b
[
2
];
c2
[
3
]
+=
a
[
2
]
*
b
[
3
];
// fourth row
c3
[
0
]
+=
a
[
3
]
*
b
[
0
];
c3
[
1
]
+=
a
[
3
]
*
b
[
1
];
c3
[
2
]
+=
a
[
3
]
*
b
[
2
];
c3
[
3
]
+=
a
[
3
]
*
b
[
3
];
a
+=
4
;
b
+=
4
;
}
}
#endif // __ARM_NEON
// 32位 float 矩阵乘法
void
Sgemm
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int
L1
=
30
*
1024
;
int
L2
=
1
*
1024
*
1024
;
KC
=
k
;
MC
=
L2
/
(
2
*
KC
*
sizeof
(
float
));
NC
=
MC
;
// make sure MC is multiple of 4, and NC is multiple of 8
int
mblock_num
=
(
m
+
MC
-
1
)
/
MC
;
MC
=
(
m
+
mblock_num
-
1
)
/
mblock_num
;
MC
=
(
MC
+
4
-
1
)
/
4
*
4
;
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
int
nblock_num
=
(
n
+
NC
-
1
)
/
NC
;
NC
=
(
n
+
nblock_num
-
1
)
/
nblock_num
;
NC
=
(
NC
+
8
-
1
)
/
8
*
8
;
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
MC
*
KC
));
packedB
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
KC
*
NC
));
packedC
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
MC
*
NC
));
zero
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
KC
));
for
(
int
l
=
0
;
l
<
KC
;
++
l
)
{
zero
[
l
]
=
0
;
}
int
mc
,
nc
;
for
(
int
j
=
0
;
j
<
n
;
j
+=
NC
)
{
nc
=
s_min
(
n
-
j
,
NC
);
PackMatrixB_
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
packedB
);
for
(
int
i
=
0
;
i
<
m
;
i
+=
MC
)
{
mc
=
s_min
(
m
-
i
,
MC
);
PackMatrixA_
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA
);
InnerKernel
(
mc
,
nc
,
alpha
,
packedA
,
packedB
,
beta
,
packedC
,
&
C
(
i
,
j
),
ldc
,
relu
);
}
}
paddle_mobile
::
memory
::
Free
(
packedA
);
paddle_mobile
::
memory
::
Free
(
packedB
);
paddle_mobile
::
memory
::
Free
(
packedC
);
paddle_mobile
::
memory
::
Free
(
zero
);
}
void
SgemmWithBn
(
int
m
,
int
n
,
int
k
,
float
alpha
,
const
float
*
A
,
int
lda
,
const
float
*
B
,
int
ldb
,
float
beta
,
float
*
C
,
int
ldc
,
bool
relu
,
float
*
new_scale
,
float
*
new_bias
)
{
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int
L1
=
30
*
1024
;
int
L2
=
1
*
1024
*
1024
;
KC
=
k
;
MC
=
L2
/
(
2
*
KC
*
sizeof
(
float
));
NC
=
MC
;
// make sure MC is multiple of 4, and NC is multiple of 8
int
mblock_num
=
(
m
+
MC
-
1
)
/
MC
;
MC
=
(
m
+
mblock_num
-
1
)
/
mblock_num
;
MC
=
(
MC
+
4
-
1
)
/
4
*
4
;
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
int
nblock_num
=
(
n
+
NC
-
1
)
/
NC
;
NC
=
(
n
+
nblock_num
-
1
)
/
nblock_num
;
NC
=
(
NC
+
8
-
1
)
/
8
*
8
;
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
MC
*
KC
));
packedB
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
KC
*
NC
));
packedC
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
MC
*
NC
));
zero
=
static_cast
<
float
*>
(
paddle_mobile
::
memory
::
Alloc
(
sizeof
(
float
)
*
KC
));
for
(
int
l
=
0
;
l
<
KC
;
++
l
)
{
zero
[
l
]
=
0
;
}
int
mc
,
nc
;
for
(
int
j
=
0
;
j
<
n
;
j
+=
NC
)
{
nc
=
s_min
(
n
-
j
,
NC
);
PackMatrixB_
(
KC
,
nc
,
nc
%
NR
,
&
B
(
0
,
j
),
ldb
,
packedB
);
for
(
int
i
=
0
;
i
<
m
;
i
+=
MC
)
{
mc
=
s_min
(
m
-
i
,
MC
);
PackMatrixA_
(
mc
,
KC
,
mc
%
MR
,
&
A
(
i
,
0
),
lda
,
packedA
);
InnerKernelWithBn
(
mc
,
nc
,
alpha
,
packedA
,
packedB
,
beta
,
packedC
,
&
C
(
i
,
j
),
ldc
,
relu
,
new_scale
+
i
,
new_bias
+
i
);
}
}
paddle_mobile
::
memory
::
Free
(
packedA
);
paddle_mobile
::
memory
::
Free
(
packedB
);
paddle_mobile
::
memory
::
Free
(
packedC
);
paddle_mobile
::
memory
::
Free
(
zero
);
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
tools/ios-cmake/ios.toolchain.cmake
浏览文件 @
c061e83f
...
...
@@ -159,7 +159,7 @@ set (CMAKE_OSX_SYSROOT ${CMAKE_IOS_SDK_ROOT} CACHE PATH "Sysroot used for iOS su
# set the architecture for iOS
if
(
${
IOS_PLATFORM
}
STREQUAL
"OS"
)
set
(
IOS_ARCH armv7 armv7s
arm64
)
set
(
IOS_ARCH armv7 armv7s
)
elseif
(
${
IOS_PLATFORM
}
STREQUAL
"SIMULATOR"
)
set
(
IOS_ARCH i386
)
elseif
(
${
IOS_PLATFORM
}
STREQUAL
"SIMULATOR64"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录