Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
ba7458fa
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ba7458fa
编写于
3月 18, 2019
作者:
R
Ray Liu
提交者:
GitHub
3月 18, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into backup
上级
60fd1c83
edd7f241
变更
21
展开全部
显示空白变更内容
内联
并排
Showing
21 changed file
with
1358 addition
and
142 deletion
+1358
-142
CMakeLists.txt
CMakeLists.txt
+1
-1
src/framework/cl/cl_engine.cpp
src/framework/cl/cl_engine.cpp
+14
-9
src/framework/cl/cl_engine.h
src/framework/cl/cl_engine.h
+21
-1
src/framework/cl/cl_scope.h
src/framework/cl/cl_scope.h
+8
-8
src/io/opencl_interface.cpp
src/io/opencl_interface.cpp
+35
-0
src/io/opencl_interface.h
src/io/opencl_interface.h
+27
-0
src/io/paddle_mobile.cpp
src/io/paddle_mobile.cpp
+22
-23
src/operators/activation_op.cpp
src/operators/activation_op.cpp
+3
-0
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
+851
-0
src/operators/kernel/cl/cl_kernel/sigmoid.cl
src/operators/kernel/cl/cl_kernel/sigmoid.cl
+30
-0
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
+165
-55
src/operators/kernel/cl/conv_add_kernel.cpp
src/operators/kernel/cl/conv_add_kernel.cpp
+101
-38
src/operators/kernel/cl/reshape_kernel.cpp
src/operators/kernel/cl/reshape_kernel.cpp
+2
-0
src/operators/kernel/cl/sigmoid_kernel.cpp
src/operators/kernel/cl/sigmoid_kernel.cpp
+46
-0
src/operators/kernel/conv_add_bn_relu_kernel.h
src/operators/kernel/conv_add_bn_relu_kernel.h
+3
-0
src/operators/kernel/conv_add_kernel.h
src/operators/kernel/conv_add_kernel.h
+3
-0
src/operators/op_param.cpp
src/operators/op_param.cpp
+5
-0
test/CMakeLists.txt
test/CMakeLists.txt
+9
-0
test/net/test_mobilenet_GPU.cpp
test/net/test_mobilenet_GPU.cpp
+5
-6
tools/build.sh
tools/build.sh
+1
-1
tools/op.cmake
tools/op.cmake
+6
-0
未找到文件。
CMakeLists.txt
浏览文件 @
ba7458fa
...
...
@@ -187,7 +187,7 @@ else()
set
(
NET
"default"
CACHE STRING
"select net type"
)
endif
()
set_property
(
CACHE NET PROPERTY STRINGS
"default"
"googlenet"
"mobilenet"
"yolo"
"squeezenet"
"FPGA_NET_V1"
"FPGA_NET_V2"
"NLP"
)
set_property
(
CACHE NET PROPERTY STRINGS
"default"
"googlenet"
"mobilenet"
"yolo"
"squeezenet"
"FPGA_NET_V1"
"FPGA_NET_V2"
"NLP"
"op"
)
include
(
"
${
CMAKE_CURRENT_LIST_DIR
}
/tools/op.cmake"
)
# build library
...
...
src/framework/cl/cl_engine.cpp
浏览文件 @
ba7458fa
...
...
@@ -27,9 +27,9 @@ bool CLEngine::Init() {
return
true
;
}
cl_int
status
;
SetPlatform
();
SetClDeviceId
();
bool
is_setplatform_success
=
SetPlatform
();
bool
is_setcldeviceid_success
=
SetClDeviceId
();
is_init_success_
=
is_setplatform_success
&&
is_setcldeviceid_success
;
initialized_
=
true
;
return
initialized_
;
// setClCommandQueue();
...
...
@@ -44,11 +44,14 @@ CLEngine *CLEngine::Instance() {
return
&
cl_engine_
;
}
bool
CLEngine
::
isInitSuccess
()
{
return
is_init_success_
;
}
bool
CLEngine
::
SetPlatform
()
{
platform_
=
NULL
;
// the chosen platform
cl_uint
numPlatforms
;
// the NO. of platforms
cl_int
status
=
clGetPlatformIDs
(
0
,
NULL
,
&
numPlatforms
);
if
(
status
!=
CL_SUCCESS
)
{
return
false
;
}
/**For clarity, choose the first available platform. */
if
(
numPlatforms
>
0
)
{
cl_platform_id
*
platforms
=
reinterpret_cast
<
cl_platform_id
*>
(
...
...
@@ -56,10 +59,10 @@ bool CLEngine::SetPlatform() {
status
=
clGetPlatformIDs
(
numPlatforms
,
platforms
,
NULL
);
platform_
=
platforms
[
0
];
free
(
platforms
);
return
true
;
}
else
{
return
false
;
return
status
==
CL_SUCCESS
;
}
return
false
;
}
bool
CLEngine
::
SetClDeviceId
()
{
...
...
@@ -67,13 +70,15 @@ bool CLEngine::SetClDeviceId() {
devices_
=
NULL
;
cl_int
status
=
clGetDeviceIDs
(
platform_
,
CL_DEVICE_TYPE_GPU
,
0
,
NULL
,
&
numDevices
);
if
(
status
!=
CL_SUCCESS
)
{
return
false
;
}
if
(
numDevices
>
0
)
{
devices_
=
reinterpret_cast
<
cl_device_id
*>
(
malloc
(
numDevices
*
sizeof
(
cl_device_id
)));
status
=
clGetDeviceIDs
(
platform_
,
CL_DEVICE_TYPE_GPU
,
numDevices
,
devices_
,
NULL
);
return
true
;
return
status
==
CL_SUCCESS
;
}
return
false
;
}
...
...
src/framework/cl/cl_engine.h
浏览文件 @
ba7458fa
...
...
@@ -31,7 +31,7 @@ class CLEngine {
static
CLEngine
*
Instance
();
bool
Init
();
bool
isInitSuccess
();
std
::
unique_ptr
<
_cl_context
,
CLContextDeleter
>
CreateContext
()
{
cl_int
status
;
cl_context
c
=
clCreateContext
(
NULL
,
1
,
devices_
,
NULL
,
NULL
,
&
status
);
...
...
@@ -51,6 +51,20 @@ class CLEngine {
return
std
::
move
(
command_queue_ptr
);
}
cl_context
getContext
()
{
if
(
context_
==
nullptr
)
{
context_
=
CreateContext
();
}
return
context_
.
get
();
}
cl_command_queue
getClCommandQueue
()
{
if
(
command_queue_
==
nullptr
)
{
command_queue_
=
CreateClCommandQueue
(
getContext
());
}
return
command_queue_
.
get
();
}
std
::
unique_ptr
<
_cl_program
,
CLProgramDeleter
>
CreateProgramWith
(
cl_context
context
,
std
::
string
file_name
)
{
FILE
*
file
=
fopen
(
file_name
.
c_str
(),
"rb"
);
...
...
@@ -137,6 +151,11 @@ class CLEngine {
std
::
string
cl_path_
;
std
::
unique_ptr
<
_cl_program
,
CLProgramDeleter
>
program_
;
std
::
unique_ptr
<
_cl_context
,
CLContextDeleter
>
context_
=
nullptr
;
std
::
unique_ptr
<
_cl_command_queue
,
CLCommQueueDeleter
>
command_queue_
=
nullptr
;
// bool SetClContext();
// bool SetClCommandQueue();
...
...
@@ -144,6 +163,7 @@ class CLEngine {
// bool LoadKernelFromFile(const char *kernel_file);
// bool BuildProgram();
bool
is_init_success_
=
false
;
};
}
// namespace framework
...
...
src/framework/cl/cl_scope.h
浏览文件 @
ba7458fa
...
...
@@ -29,12 +29,12 @@ namespace framework {
class
CLScope
{
public:
CLScope
()
{
CLEngine
*
engin
=
CLEngine
::
Instance
();
context_
=
engin
->
Create
Context
();
command_queue_
=
engin
->
CreateClCommandQueue
(
context_
.
get
()
);
CLEngine
*
engin
e
=
CLEngine
::
Instance
();
context_
=
engin
e
->
get
Context
();
command_queue_
=
engin
e
->
getClCommandQueue
(
);
}
cl_command_queue
CommandQueue
()
{
return
command_queue_
.
get
()
;
}
cl_command_queue
CommandQueue
()
{
return
command_queue_
;
}
std
::
unique_ptr
<
_cl_kernel
,
CLKernelDeleter
>
GetKernel
(
const
std
::
string
&
kernel_name
,
const
std
::
string
&
file_name
)
{
...
...
@@ -49,7 +49,7 @@ class CLScope {
return
std
::
move
(
kernel
);
}
cl_context
Context
()
{
return
context_
.
get
()
;
}
cl_context
Context
()
{
return
context_
;
}
cl_program
Program
(
const
std
::
string
&
file_name
)
{
auto
it
=
programs_
.
find
(
file_name
);
...
...
@@ -58,7 +58,7 @@ class CLScope {
}
auto
program
=
CLEngine
::
Instance
()
->
CreateProgramWith
(
context_
.
get
()
,
context_
,
CLEngine
::
Instance
()
->
GetCLPath
()
+
"/cl_kernel/"
+
file_name
);
DLOG
<<
" --- begin build program -> "
<<
file_name
<<
" --- "
;
...
...
@@ -72,8 +72,8 @@ class CLScope {
private:
cl_int
status_
;
std
::
unique_ptr
<
_cl_context
,
CLContextDeleter
>
context_
;
std
::
unique_ptr
<
_cl_command_queue
,
CLCommQueueDeleter
>
command_queue_
;
cl_context
context_
;
cl_command_queue
command_queue_
;
std
::
unordered_map
<
std
::
string
,
std
::
unique_ptr
<
_cl_program
,
CLProgramDeleter
>>
programs_
;
...
...
src/io/opencl_interface.cpp
0 → 100644
浏览文件 @
ba7458fa
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_MOBILE_CL
#include "io/opencl_interface.h"
#include "framework/cl/cl_engine.h"
#include "framework/cl/cl_scope.h"
namespace
paddle_mobile
{
cl_context
getContext
()
{
return
framework
::
CLEngine
::
Instance
()
->
getContext
();
}
cl_command_queue
getClCommandQueue
()
{
return
framework
::
CLEngine
::
Instance
()
->
getClCommandQueue
();
}
bool
isInitSuccess
()
{
return
framework
::
CLEngine
::
Instance
()
->
isInitSuccess
();
}
}
// namespace paddle_mobile
#endif
src/io/opencl_interface.h
0 → 100644
浏览文件 @
ba7458fa
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef PADDLE_MOBILE_CL
#include "CL/cl.h"
namespace
paddle_mobile
{
cl_context
getContext
();
cl_command_queue
getClCommandQueue
();
bool
isInitSuccess
();
#endif
}
// namespace paddle_mobile
src/io/paddle_mobile.cpp
浏览文件 @
ba7458fa
...
...
@@ -20,6 +20,8 @@ limitations under the License. */
#endif // _OPENMP
#ifdef PADDLE_MOBILE_CL
#include <CL/cl.h>
#include <mutex>
#include "framework/cl/cl_engine.h"
#include "framework/cl/cl_tensor.h"
#endif
#include "operators/math/gemm.h"
...
...
@@ -202,11 +204,15 @@ double PaddleMobile<CPU, float>::GetPredictTime() {
operators
::
math
::
Gemm
gemm
;
auto
time1
=
paddle_mobile
::
time
();
int
times
=
4
;
for
(
int
j
=
0
;
j
<
times
;
++
j
)
{
gemm
.
Sgemm
(
m
,
n
,
k
,
static_cast
<
float
>
(
1
),
a
,
lda
,
b
,
ldb
,
static_cast
<
float
>
(
0
),
c
,
ldc
,
false
,
static_cast
<
float
*>
(
nullptr
));
}
auto
time2
=
paddle_mobile
::
time
();
double
cost
=
paddle_mobile
::
time_diff
(
time1
,
time2
);
double
cost
=
paddle_mobile
::
time_diff
(
time1
,
time2
)
/
times
;
paddle_mobile
::
memory
::
Free
(
a
);
paddle_mobile
::
memory
::
Free
(
b
);
paddle_mobile
::
memory
::
Free
(
c
);
...
...
@@ -282,21 +288,11 @@ void PaddleMobile<Device, T>::SetCLPath(std::string path) {
template
<
>
double
PaddleMobile
<
GPU_CL
,
float
>::
GetPredictTime
()
{
cl_int
status
;
cl_uint
nPlatform
;
clGetPlatformIDs
(
0
,
NULL
,
&
nPlatform
);
cl_platform_id
*
listPlatform
=
reinterpret_cast
<
cl_platform_id
*>
(
malloc
(
nPlatform
*
sizeof
(
cl_platform_id
)));
clGetPlatformIDs
(
nPlatform
,
listPlatform
,
NULL
);
cl_uint
nDevice
=
0
;
clGetDeviceIDs
(
listPlatform
[
0
],
CL_DEVICE_TYPE_GPU
,
0
,
NULL
,
&
nDevice
);
cl_device_id
*
listDevice
=
reinterpret_cast
<
cl_device_id
*>
(
malloc
(
nDevice
*
sizeof
(
cl_device_id
)));
clGetDeviceIDs
(
listPlatform
[
0
],
CL_DEVICE_TYPE_GPU
,
nDevice
,
listDevice
,
NULL
);
cl_context
context
=
clCreateContext
(
NULL
,
nDevice
,
listDevice
,
NULL
,
NULL
,
&
status
);
cl_command_queue
queue
=
clCreateCommandQueue
(
context
,
listDevice
[
0
],
0
,
&
status
);
if
(
!
framework
::
CLEngine
::
Instance
()
->
isInitSuccess
())
{
return
-
1
;
}
cl_context
context
=
framework
::
CLEngine
::
Instance
()
->
getContext
();
cl_command_queue
queue
=
framework
::
CLEngine
::
Instance
()
->
getClCommandQueue
();
int
n
=
1
;
int
c
=
3
;
...
...
@@ -410,7 +406,7 @@ double PaddleMobile<GPU_CL, float>::GetPredictTime() {
CL_CHECK_ERRORS
(
status
);
clFinish
(
queue
);
queue
=
clCreateCommandQueue
(
context
,
listDevice
[
0
],
0
,
&
status
);
//
queue = clCreateCommandQueue(context, listDevice[0], 0, &status);
path
=
framework
::
CLEngine
::
Instance
()
->
GetCLPath
()
+
"/cl_kernel/conv_kernel.cl"
;
...
...
@@ -465,15 +461,18 @@ double PaddleMobile<GPU_CL, float>::GetPredictTime() {
// cl_event wait_event = param.Input()->GetClEvent();
size_t
global_work_size2
[
3
]
=
{
8
,
224
,
224
};
auto
time1
=
paddle_mobile
::
time
();
int
times
=
10
;
for
(
int
i
=
0
;
i
<
times
;
++
i
)
{
status
=
clEnqueueNDRangeKernel
(
queue
,
kernel
,
3
,
NULL
,
global_work_size2
,
NULL
,
0
,
NULL
,
NULL
);
}
CL_CHECK_ERRORS
(
status
);
clFinish
(
queue
);
auto
time2
=
paddle_mobile
::
time
();
paddle_mobile
::
memory
::
Free
(
input
);
paddle_mobile
::
memory
::
Free
(
filter
);
if
(
status
==
CL_SUCCESS
)
{
return
paddle_mobile
::
time_diff
(
time1
,
time2
);
return
paddle_mobile
::
time_diff
(
time1
,
time2
)
/
times
;
}
else
{
return
-
1
;
}
...
...
src/operators/activation_op.cpp
浏览文件 @
ba7458fa
...
...
@@ -66,6 +66,9 @@ REGISTER_OPERATOR_CL(relu, ops::ReluOp);
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU
(
sigmoid
,
ops
::
SigmoidOp
);
#endif
#ifdef PADDLE_MOBILE_CL
REGISTER_OPERATOR_CL
(
sigmoid
,
ops
::
SigmoidOp
);
#endif
#endif // SIGMOID_OP
#ifdef TANH_OP
...
...
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
浏览文件 @
ba7458fa
此差异已折叠。
点击以展开。
src/operators/kernel/cl/cl_kernel/sigmoid.cl
0 → 100644
浏览文件 @
ba7458fa
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
sigmoid
(
__read_only
image2d_t
input,
__write_only
image2d_t
output
)
{
const
int
x
=
get_global_id
(
0
)
;
const
int
y
=
get_global_id
(
1
)
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
half4
in
=
read_imageh
(
input,
sampler,
(
int2
)(
x,
y
))
;
in
=
1.0f
/
(
1
+
exp
(
-in
))
;
write_imageh
(
output,
(
int2
)(
x,
y
)
,
in
)
;
}
\ No newline at end of file
src/operators/kernel/cl/conv_add_bn_relu_kernel.cpp
浏览文件 @
ba7458fa
...
...
@@ -21,7 +21,7 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
operators
{
bool
optimise
=
true
;
template
<
>
bool
ConvAddBNReluKernel
<
GPU_CL
,
float
>::
Init
(
FusionConvAddBNReluParam
<
GPU_CL
>
*
param
)
{
...
...
@@ -139,7 +139,12 @@ bool ConvAddBNReluKernel<GPU_CL, float>::Init(
if
(
param
->
Filter
()
->
dims
()[
2
]
==
1
&&
param
->
Filter
()
->
dims
()[
3
]
==
1
)
{
param
->
Filter
()
->
InitNImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
if
(
optimise
)
{
this
->
cl_helper_
.
AddKernel
(
"conv_1x1_spl"
,
"conv_add_bn_relu_kernel.cl"
);
}
else
{
this
->
cl_helper_
.
AddKernel
(
"conv_1x1"
,
"conv_add_bn_relu_kernel.cl"
);
}
DLOG
<<
" conv add bn relu conv 1x1"
;
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
...
...
@@ -205,10 +210,13 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
cl_int
status
;
if
(
optimise
)
{
if
(
param
.
Filter
()
->
dims
()[
2
]
==
1
&&
param
.
Filter
()
->
dims
()[
3
]
==
1
)
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
int
maped_w
=
maptofactor
(
w
,
4
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
maped_w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
...
...
@@ -256,30 +264,132 @@ void ConvAddBNReluKernel<GPU_CL, float>::Compute(
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
// cl_event out_event = param.Output()->GetClEvent(
);
// cl_event wait_event = param.Input()->GetClEvent(
);
status
=
clSetKernelArg
(
kernel
,
17
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
/*
if (param.Filter()->dims()[2] == 1 &&
param.Filter()->dims()[3] == 1 &&
param.Filter()->dims()[0] % 16 == 0) {
DLOG << " before modifi work size: " << default_work_size;
const
size_t
work_size
[
3
]
=
{
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
0
]),
static_cast
<
const
uint32_t
>
(
maped_w
),
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
2
])};
default_work_size[0] = default_work_size[0] / 4;
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
DLOG << " modification work size: " << default_work_size;
DLOG << " input dims " << param.Input()->dims();
DLOG << " output dims " << param.Output()->dims();
DLOG << " filter dims: " << param.Filter()->dims();
DLOG << " biase dims : " << param.Bias()->dims();
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
*/
}
else
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
new_scale
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_mem
),
&
new_bias
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
16
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
()
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
template
class
ConvAddBNReluKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/conv_add_kernel.cpp
浏览文件 @
ba7458fa
...
...
@@ -18,6 +18,7 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
operators
{
bool
optimise_convadd
=
true
;
template
<
>
bool
ConvAddKernel
<
GPU_CL
,
float
>::
Init
(
FusionConvAddParam
<
GPU_CL
>
*
param
)
{
...
...
@@ -35,8 +36,11 @@ bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
if
(
param
->
Filter
()
->
dims
()[
2
]
==
1
&&
param
->
Filter
()
->
dims
()[
3
]
==
1
)
{
param
->
Filter
()
->
InitNImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
if
(
optimise_convadd
)
{
this
->
cl_helper_
.
AddKernel
(
"conv_1x1_spl"
,
"conv_add_kernel.cl"
);
}
else
{
this
->
cl_helper_
.
AddKernel
(
"conv_1x1"
,
"conv_add_kernel.cl"
);
}
}
else
if
(
param
->
Filter
()
->
dims
()[
1
]
==
1
&&
param
->
Input
()
->
dims
()[
1
]
==
param
->
Output
()
->
dims
()[
1
]
&&
param
->
Filter
()
->
dims
()[
2
]
==
3
)
{
...
...
@@ -95,10 +99,13 @@ void ConvAddKernel<GPU_CL, float>::Compute(
cl_int
status
;
if
(
optimise_convadd
&&
param
.
Filter
()
->
dims
()[
2
]
==
1
&&
param
.
Filter
()
->
dims
()[
3
]
==
1
)
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
int
maped_w
=
maptofactor
(
w
,
4
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
maped_w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
...
...
@@ -140,13 +147,69 @@ void ConvAddKernel<GPU_CL, float>::Compute(
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
// cl_event out_event = param.Output()->GetClEvent();
// cl_event wait_event = param.Input()->GetClEvent();
status
=
clSetKernelArg
(
kernel
,
15
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
const
size_t
work_size
[
3
]
=
{
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
0
]),
static_cast
<
const
uint32_t
>
(
maped_w
),
static_cast
<
const
uint32_t
>
(
default_work_size
.
data
()[
2
])};
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
else
{
status
=
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
biase
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
7
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
8
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
9
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
10
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
11
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
12
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
13
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
14
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
default_work_size
.
size
()
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
}
template
class
ConvAddKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/reshape_kernel.cpp
浏览文件 @
ba7458fa
...
...
@@ -11,6 +11,7 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef RESHAPE_OP
#include "operators/kernel/reshape_kernel.h"
...
...
@@ -102,3 +103,4 @@ template class ReshapeKernel<GPU_CL, float>;
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/cl/sigmoid_kernel.cpp
0 → 100644
浏览文件 @
ba7458fa
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef SIGMOID_OP
#include "operators/kernel/activation_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
SigmoidKernel
<
GPU_CL
,
float
>::
Init
(
SigmoidParam
<
GPU_CL
>*
param
)
{
this
->
cl_helper_
.
AddKernel
(
"sigmoid"
,
"sigmoid.cl"
);
return
true
;
}
template
<
>
void
SigmoidKernel
<
GPU_CL
,
float
>::
Compute
(
const
SigmoidParam
<
GPU_CL
>&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
const
auto
*
input
=
param
.
InputX
();
auto
*
output
=
param
.
Out
();
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
output
);
auto
inputImage
=
input
->
GetCLImage
();
auto
outputImage
=
output
->
GetCLImage
();
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_mem
),
&
inputImage
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_mem
),
&
outputImage
);
const
size_t
work_size
[
2
]
=
{
input
->
ImageWidth
(),
input
->
ImageHeight
()};
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
2
,
NULL
,
work_size
,
NULL
,
0
,
NULL
,
NULL
);
}
template
class
SigmoidKernel
<
GPU_CL
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/conv_add_bn_relu_kernel.h
浏览文件 @
ba7458fa
...
...
@@ -36,6 +36,9 @@ class ConvAddBNReluKernel
public:
void
Compute
(
const
FusionConvAddBNReluParam
<
DeviceType
>
&
param
);
bool
Init
(
FusionConvAddBNReluParam
<
DeviceType
>
*
param
);
inline
int
maptofactor
(
int
i
,
int
factor
)
{
return
(
i
+
factor
-
1
)
/
factor
;
}
};
}
// namespace operators
...
...
src/operators/kernel/conv_add_kernel.h
浏览文件 @
ba7458fa
...
...
@@ -41,6 +41,9 @@ class ConvAddKernel
public:
void
Compute
(
const
FusionConvAddParam
<
DeviceType
>
&
param
);
bool
Init
(
FusionConvAddParam
<
DeviceType
>
*
param
);
inline
int
maptofactor
(
int
i
,
int
factor
)
{
return
(
i
+
factor
-
1
)
/
factor
;
}
};
}
// namespace operators
...
...
src/operators/op_param.cpp
浏览文件 @
ba7458fa
...
...
@@ -44,12 +44,17 @@ template class ConvParam<FPGA>;
template
class
ConvParam
<
GPU_MALI
>;
#endif
#ifdef ELEMENTWISEADD_OP
template
class
ElementwiseAddParam
<
CPU
>;
template
class
ElementwiseAddParam
<
FPGA
>;
template
class
ElementwiseAddParam
<
GPU_MALI
>;
#endif
#ifdef ELEMENTWISEMUL_OP
template
class
ElementwiseMulParam
<
CPU
>;
template
class
ElementwiseMulParam
<
FPGA
>;
template
class
ElementwiseMulParam
<
GPU_MALI
>;
#endif
#ifdef MUL_OP
template
class
MulParam
<
CPU
>;
...
...
test/CMakeLists.txt
浏览文件 @
ba7458fa
...
...
@@ -154,6 +154,15 @@ if (CON GREATER -1)
endif
()
list
(
FIND NET
"op"
CON
)
if
(
CON GREATER -1
)
# gen test
ADD_EXECUTABLE
(
test-sigmoid operators/test_sigmoid_op.cpp test_include.h
)
target_link_libraries
(
test-sigmoid paddle-mobile
)
set
(
FOUND_MATCH ON
)
endif
()
if
(
NOT FOUND_MATCH
)
# gen test
ADD_EXECUTABLE
(
test-resnet net/test_resnet.cpp test_helper.h test_include.h executor_for_test.h
)
...
...
test/net/test_mobilenet_GPU.cpp
浏览文件 @
ba7458fa
...
...
@@ -25,11 +25,11 @@ int main() {
paddle_mobile
.
SetCLPath
(
"/data/local/tmp/bin"
);
#endif
auto
isok
=
paddle_mobile
.
Load
(
std
::
string
(
g_mobilenet_vision
)
+
"/vision_mobilenet_model"
,
std
::
string
(
g_mobilenet_vision
)
+
"/vision_mobilenet_params"
,
true
);
//
auto isok = paddle_mobile.Load(
//
std::string(g_mobilenet_vision) + "/vision_mobilenet_model",
//
std::string(g_mobilenet_vision) + "/vision_mobilenet_params", true);
//
auto isok = paddle_mobile.Load(std::string(g_mobilenet), true);
auto
isok
=
paddle_mobile
.
Load
(
std
::
string
(
g_mobilenet
),
true
);
if
(
isok
)
{
auto
time2
=
paddle_mobile
::
time
();
std
::
cout
<<
"load cost :"
<<
paddle_mobile
::
time_diff
(
time1
,
time2
)
<<
"ms"
...
...
@@ -37,8 +37,7 @@ int main() {
std
::
vector
<
float
>
input
;
std
::
vector
<
int64_t
>
dims
{
1
,
3
,
224
,
224
};
GetInput
<
float
>
(
g_test_image_1x3x224x224_vision_mobilenet_input
,
&
input
,
dims
);
GetInput
<
float
>
(
g_test_image_1x3x224x224_banana
,
&
input
,
dims
);
std
::
vector
<
float
>
vec_result
=
paddle_mobile
.
Predict
(
input
,
dims
);
...
...
tools/build.sh
浏览文件 @
ba7458fa
#!/usr/bin/env bash
NETS
=
""
declare
-a
supportedNets
=(
"googlenet"
"mobilenet"
"yolo"
"squeezenet"
"resnet"
"mobilenetssd"
"nlp"
"mobilenetfssd"
"genet"
"super"
)
declare
-a
supportedNets
=(
"googlenet"
"mobilenet"
"yolo"
"squeezenet"
"resnet"
"mobilenetssd"
"nlp"
"mobilenetfssd"
"genet"
"super"
"op"
)
build_for_mac
()
{
if
[
!
`
which brew
`
]
;
then
...
...
tools/op.cmake
浏览文件 @
ba7458fa
...
...
@@ -228,6 +228,12 @@ if (CON GREATER -1)
set
(
FOUND_MATCH ON
)
endif
()
list
(
FIND NET
"op"
CON
)
if
(
CON GREATER -1
)
message
(
"op enabled"
)
set
(
SIGMOID_OP ON
)
set
(
FOUND_MATCH ON
)
endif
()
if
(
NOT FOUND_MATCH
)
message
(
"--default--"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录