Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
b7b9fc26
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b7b9fc26
编写于
10月 09, 2018
作者:
R
Ray Liu
提交者:
GitHub
10月 09, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1043 from codeWorm2015/opencl
Opencl
上级
103479d8
f7599e30
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
546 addition
and
4 deletion
+546
-4
src/operators/kernel/cl/cl_kernel/common.h
src/operators/kernel/cl/cl_kernel/common.h
+36
-0
src/operators/kernel/cl/cl_kernel/conv_kernel.cl
src/operators/kernel/cl/cl_kernel/conv_kernel.cl
+159
-4
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
+164
-0
src/operators/kernel/cl/cl_kernel/depthwise_conv_kernel.cl
src/operators/kernel/cl/cl_kernel/depthwise_conv_kernel.cl
+111
-0
src/operators/kernel/cl/conv_add_bn_kernel.cpp
src/operators/kernel/cl/conv_add_bn_kernel.cpp
+38
-0
src/operators/kernel/cl/conv_add_kernel.cpp
src/operators/kernel/cl/conv_add_kernel.cpp
+38
-0
未找到文件。
src/operators/kernel/cl/cl_kernel/common.h
0 → 100644
浏览文件 @
b7b9fc26
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once;
/*
inline hafl4 activation(half4 in
#ifdef PRELU
,half4 prelu_alpha
#endif
) {
half4 output;
#ifdef PRELU
output = select(prelu_alpha * in, in, in >= (half4)0.0);
#endif
#ifdef RELU
fmax(in, 0.0);
#endif
return output;
}
*/
src/operators/kernel/cl/cl_kernel/conv_kernel.cl
浏览文件 @
b7b9fc26
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
__kernel
void
conv_3x3
(
__global
float*
in,
__global
float*
out
)
{
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
int
num
=
get_global_id
(
0
)
;
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
out[num]
=
in[num]
*
0.1
+
102
;
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
/*
#
include
"common.h"
__kernel
void
conv_1x1
(
__private
const
int
global_size_dim0,
__private
const
int
global_size_dim1,
__private
const
int
global_size_dim2,
__read_only
image2d_t
input,
__read_only
image2d_t
filter,
__read_only
image2d_t
bias,
__write_only
image2d_t
output_image,
__private
const
int
stride,
__private
const
int
offset,
__private
const
int
input_c,
__private
const
int
input_width,/*
of
one
block
*/
__private
const
int
input_height/*
of
one
block
*/
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
const
uint
kernelHXW
=
1
;
int2
stride_xy
=
int2
(
stride,
stride
)
;
int2
ouput_pos_in_one_block
=
int2
(
out_w,
out_nh
)
;
int2
in_pos_in_one_block
=
ouput_pos_in_one_block
*
stride_xy
+
int2
(
offset,
offset
)
;
int
input_c
;
half4
output
=
read_imageh
(
bias,
sampler,
int2
(
out_c,
0
))
;
for
(
int
i
=
0
; i < input_c;h ++i) {
int2
pos_in
=
int2
(
i
*
input_width
+
in_pos_in_one_block.x,
in_pos_in_one_block.y
)
;
if
(
pos_in.x
>=0
&&
pos_in.y
>=
0
&&
pos_in.x
<
input_width
&&
pos_in.y
<
input_height
)
{
hafl4
input
=
read_imageh
(
input,
sampler,
pos_in
)
;
half4
weight_x
=
read_imageh
(
filter,
sampler,
int2
(
i,
out_c
*
4
+
0
))
;
output.x
+=
dot
(
input,
weight_x
)
;
half4
weight_y
=
read_imageh
(
filter,
sampler,
int2
(
i,
out_c
*
4
+
1
))
;
output.y
+=
dot
(
input,
weight_y
)
;
half4
weight_z
=
read_imageh
(
filter,
sampler,
int2
(
i,
out_c
*
4
+
2
))
;
output.z
+=
dot
(
input,
weight_z
)
;
half4
weight_w
=
read_imageh
(
filter,
sampler,
int2
(
i,
out_c
*
4
+
3
))
;
output.w
+=
dot
(
input,
weight_w
)
;
}
}
}
#
if
defined
(
RELU
)
output
=
activation
(
output
)
;
#
endif
int2
output_pos
(
out_c
*
global_size_dim1
+
out_w,
out_nh
)
;
write_imageh
(
output_image,
output_pos,
output
)
;
}
__kernel
void
conv_3x3
(
__private
const
int
global_size_dim0,
__private
const
int
global_size_dim1,
__private
const
int
global_size_dim2,
__read_only
image2d_t
input,
__read_only
image2d_t
filter,
__read_only
image2d_t
bias,
__write_only
image2d_t
output_image,
__private
const
int
stride,
__private
const
int
offset,
__private
const
int
input_c,
__private
const
int
dilation,
__private
const
int
input_width,/*
of
one
block
*/
__private
const
int
input_height/*
of
one
block
*/
)
{
int2
stride_xy
=
int2
(
stride,
stride
)
;
int2
ouput_pos_in_one_block
=
int2
(
out_w,
out_nh
)
;
int2
in_pos_in_one_block
=
ouput_pos_in_one_block
*
stride_xy
+
int2
(
offset,
offset
)
;
half4
output
=
read_imageh
(
bias,
sampler,
int2
(
out_c,
0
))
;
half4
input[9]
;
for
(
int
i
=
0
; i < input_c; ++i) {
int2
pos_in
=
int2
(
i
*
input_width
+
in_pos_in_one_block.x,
in_pos_in_one_block.y
)
;
input[0]
=
select
(
read_imageh
(
input,
sampler,
int2
(
pos_in.x
-
dilation,
pos_in.y
-
dilation
))
,
half4
(
0.0
)
,
in_pos_in_one_block.x
-
dilation
<
0
|
| in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height);
input[1] = select(read_imageh(input, sampler,
int2(pos_in.x, pos_in.y - dilation)),
half4(0.0),in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - dilation >= input_height);
input[2] = select(read_imageh(input, sampler,
int2(pos_in.x + dilation, pos_in.y - dilation)),
half4(0.0),in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height);
input[3] = select(read_imageh(input, sampler,
int2(pos_in.x - dilation, pos_in.y)),
half4(0.0), in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y >= input_height);
input[4] = select(read_imageh(input, sampler,
int2(pos_in.x, pos_in.y)),
half4(0.0), in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height);
input[5] = select(read_imageh(input, sampler,
int2(pos_in.x + dilation, pos_in.y)),
half4(0.0), in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y >= input_height);
input[6] = select(read_imageh(input, sampler,
int2(pos_in.x - dilation, pos_in.y + dilation)),
half4(0.0), in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height);
input[7] = select(read_imageh(input, sampler,
int2(pos_in.x, pos_in.y + dilation)),
half4(0.0), in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + dilation >= input_height);
input[8] = select(read_imageh(input, sampler,
int2(pos_in.x + dilation, pos_in.y + dilation)),
half4(0.0), pos_in.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || pos_in.x + dilation >= input_width |
|
in_pos_in_one_block.y
+
dilation
>=
input_height
)
;
for
(
int
j
=
0
; j < 9; ++j) {
half4
weight_x
=
read_imageh
(
filter,
sampler,
int2
(
i
*
3
+
j
%
3
,
out_c
*
4
*
3
+
0
*
out_c
*
3
+
j
/
3
))
;
output.x
+=
dot
(
input[j],
weight_x
)
;
half4
weight_y
=
read_imageh
(
filter,
sampler,
int2
(
i
*
3
+
j
%
3
,
out_c
*
4
*
3
+
1
*
out_c
*
3
+
j
/
3
))
;
output.y
+=
dot
(
input[j],
weight_y
)
;
half4
weight_z
=
read_imageh
(
filter,
sampler,
int2
(
i
*
3
+
j
%
3
,
out_c
*
4
*
3
+
2
*
out_c
*
3
+
j
/
3
))
;
output.z
+=
dot
(
input[j],
weight_z
)
;
half4
weight_w
=
read_imageh
(
filter,
sampler,
int2
(
i
*
3
+
j
%
3
,
out_c
*
4
*
3
+
3
*
out_c
*
3
+
j
/
3
))
;
output.w
+=
dot
(
input[j],
weight_w
)
;
}
}
#
if
defined
(
RELU
)
output
=
activation
(
output
)
;
#
endif
int2
output_pos
(
out_c
*
global_size_dim1
+
out_w,
out_nh
)
;
write_imageh
(
output_image,
output_pos,
output
)
;
}
*/
src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
0 → 100644
浏览文件 @
b7b9fc26
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
/*
#
include
"common.h"
__kernel
void
conv_1x1
(
__private
const
int
global_size_dim0,
__private
const
int
global_size_dim1,
__private
const
int
global_size_dim2,
__read_only
image2d_t
input,
__read_only
image2d_t
filter,
__read_only
image2d_t
bias,
__write_only
image2d_t
output_image,
__private
const
int
stride,
__private
const
int
offset,
__private
const
int
input_c,
__private
const
int
input_width,/*
of
one
block
*/
__private
const
int
input_height/*
of
one
block
*/
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
const
uint
kernelHXW
=
1
;
int2
stride_xy
=
int2
(
stride,
stride
)
;
int2
ouput_pos_in_one_block
=
int2
(
out_w,
out_nh
)
;
int2
in_pos_in_one_block
=
ouput_pos_in_one_block
*
stride_xy
+
int2
(
offset,
offset
)
;
int
input_c
;
half4
output
=
read_imageh
(
bias,
sampler,
int2
(
out_c,
0
))
;
for
(
int
i
=
0
; i < input_c;h ++i) {
int2
pos_in
=
int2
(
i
*
input_width
+
in_pos_in_one_block.x,
in_pos_in_one_block.y
)
;
if
(
pos_in.x
>=0
&&
pos_in.y
>=
0
&&
pos_in.x
<
input_width
&&
pos_in.y
<
input_height
)
{
hafl4
input
=
read_imageh
(
input,
sampler,
pos_in
)
;
half4
weight_x
=
read_imageh
(
filter,
sampler,
int2
(
i,
out_c
*
4
+
0
))
;
output.x
+=
dot
(
input,
weight_x
)
;
half4
weight_y
=
read_imageh
(
filter,
sampler,
int2
(
i,
out_c
*
4
+
1
))
;
output.y
+=
dot
(
input,
weight_y
)
;
half4
weight_z
=
read_imageh
(
filter,
sampler,
int2
(
i,
out_c
*
4
+
2
))
;
output.z
+=
dot
(
input,
weight_z
)
;
half4
weight_w
=
read_imageh
(
filter,
sampler,
int2
(
i,
out_c
*
4
+
3
))
;
output.w
+=
dot
(
input,
weight_w
)
;
}
}
#
if
defined
(
RELU
)
output
=
activation
(
output
)
;
#
endif
int2
output_pos
(
out_c
*
global_size_dim1
+
out_w,
out_nh
)
;
write_imageh
(
output_image,
output_pos,
output
)
;
}
__kernel
void
conv_3x3
(
__private
const
int
global_size_dim0,
__private
const
int
global_size_dim1,
__private
const
int
global_size_dim2,
__read_only
image2d_t
input,
__read_only
image2d_t
filter,
__read_only
image2d_t
bias,
__write_only
image2d_t
output_image,
__private
const
int
stride,
__private
const
int
offset,
__private
const
int
input_c,
__private
const
int
dilation,
__private
const
int
input_width,/*
of
one
block
*/
__private
const
int
input_height/*
of
one
block
*/
)
{
int2
stride_xy
=
int2
(
stride,
stride
)
;
int2
ouput_pos_in_one_block
=
int2
(
out_w,
out_nh
)
;
int2
in_pos_in_one_block
=
ouput_pos_in_one_block
*
stride_xy
+
int2
(
offset,
offset
)
;
half4
output
=
read_imageh
(
bias,
sampler,
int2
(
out_c,
0
))
;
half4
input[9]
;
for
(
int
i
=
0
; i < input_c; ++i) {
int2
pos_in
=
int2
(
i
*
input_width
+
in_pos_in_one_block.x,
in_pos_in_one_block.y
)
;
input[0]
=
select
(
read_imageh
(
input,
sampler,
int2
(
pos_in.x
-
dilation,
pos_in.y
-
dilation
))
,
half4
(
0.0
)
,
in_pos_in_one_block.x
-
dilation
<
0
|
| in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height);
input[1] = select(read_imageh(input, sampler,
int2(pos_in.x, pos_in.y - dilation)),
half4(0.0),in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - dilation >= input_height);
input[2] = select(read_imageh(input, sampler,
int2(pos_in.x + dilation, pos_in.y - dilation)),
half4(0.0),in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height);
input[3] = select(read_imageh(input, sampler,
int2(pos_in.x - dilation, pos_in.y)),
half4(0.0), in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y >= input_height);
input[4] = select(read_imageh(input, sampler,
int2(pos_in.x, pos_in.y)),
half4(0.0), in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height);
input[5] = select(read_imageh(input, sampler,
int2(pos_in.x + dilation, pos_in.y)),
half4(0.0), in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y >= input_height);
input[6] = select(read_imageh(input, sampler,
int2(pos_in.x - dilation, pos_in.y + dilation)),
half4(0.0), in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height);
input[7] = select(read_imageh(input, sampler,
int2(pos_in.x, pos_in.y + dilation)),
half4(0.0), in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + dilation >= input_height);
input[8] = select(read_imageh(input, sampler,
int2(pos_in.x + dilation, pos_in.y + dilation)),
half4(0.0), pos_in.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || pos_in.x + dilation >= input_width |
|
in_pos_in_one_block.y
+
dilation
>=
input_height
)
;
for
(
int
j
=
0
; j < 9; ++j) {
half4
weight_x
=
read_imageh
(
filter,
sampler,
int2
(
i
*
3
+
j
%
3
,
out_c
*
4
*
3
+
0
*
out_c
*
3
+
j
/
3
))
;
output.x
+=
dot
(
input[j],
weight_x
)
;
half4
weight_y
=
read_imageh
(
filter,
sampler,
int2
(
i
*
3
+
j
%
3
,
out_c
*
4
*
3
+
1
*
out_c
*
3
+
j
/
3
))
;
output.y
+=
dot
(
input[j],
weight_y
)
;
half4
weight_z
=
read_imageh
(
filter,
sampler,
int2
(
i
*
3
+
j
%
3
,
out_c
*
4
*
3
+
2
*
out_c
*
3
+
j
/
3
))
;
output.z
+=
dot
(
input[j],
weight_z
)
;
half4
weight_w
=
read_imageh
(
filter,
sampler,
int2
(
i
*
3
+
j
%
3
,
out_c
*
4
*
3
+
3
*
out_c
*
3
+
j
/
3
))
;
output.w
+=
dot
(
input[j],
weight_w
)
;
}
}
#
if
defined
(
RELU
)
output
=
activation
(
output
)
;
#
endif
int2
output_pos
(
out_c
*
global_size_dim1
+
out_w,
out_nh
)
;
write_imageh
(
output_image,
output_pos,
output
)
;
}
*/
src/operators/kernel/cl/cl_kernel/depthwise_conv_kernel.cl
0 → 100644
浏览文件 @
b7b9fc26
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
/*
__kernel
void
depth_conv_3x3
(
__private
const
int
global_size_dim0,
__private
const
int
global_size_dim1,
__private
const
int
global_size_dim2,
__read_only
image2d_t
input,
__read_only
image2d_t
filter,
__read_only
image2d_t
bias,
__write_only
image2d_t
output_image,
__private
const
int
stride,
__private
const
int
offset,
__private
const
int
input_c,
__private
const
int
dilation,
__private
const
int
input_width,/*
of
one
block
*/
__private
const
int
input_height,
/*
of
one
block
*/
__private
const
int
output_width,
__private
const
int
output_height
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
|
CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
const
int
batch_index
=
out_nh
/
output_height
;
const
int
out_nh_in_one_batch
=
out_nh
%
output_height
;
const
uint
kernelHXW
=
1
;
int2
stride_xy
=
int2
(
stride,
stride
)
;
int2
ouput_pos_in_one_block
=
int2
(
out_w,
out_nh_in_one_batch
)
;
int2
in_pos_in_one_block
=
ouput_pos_in_one_block
*
stride_xy
+
int2
(
offset,
offset
)
;
half4
output
=
read_imageh
(
bias,
sampler,
int2
(
out_c,
0
))
;
int2
pos_in_input_block
=
int2
(
out_c
*
input_width,
batch_index
*
input_height
)
;
int
weight_x_to
=
out_c
*
3
;
half4
inputs[9]
;
inputs[0]
=
select
(
read_imageh
(
input,
sampler,
int2
(
pos_in_input_block.x
+
in_pos_in_one_block.x
-
1
,
pos_in_input_block.y
+
in_pos_in_one_block.y
-
1
))
,
0.0
,
in_pos_in_one_block.x
-
1
<
0
|
| in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height);
inputs[1] = select(read_imageh(input, sampler, int2(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
0.0,
n_pos_in_one_block.x < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - 1 >= input_height);
inputs[2] = select(read_imageh(input, sampler, int2(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
0.0,
in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height);
inputs[3] = select(read_imageh(input, sampler, int2(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y)),
0.0,
in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y >= input_height);
inputs[4] = select(read_imageh(input, sampler, int2(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y)),
0.0,
in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height);
inputs[5] = select(read_imageh(input, sampler, int2(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y)),
0.0,
in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y >= input_height);
inputs[6] = select(read_imageh(input, sampler, int2(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
0.0,
in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height);
inputs[7] = select(read_imageh(input, sampler, int2(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
0.0,
in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + 1 >= input_height);
inputs[8] = select(read_imageh(input, sampler, int2(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
0.0,
in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x + 1 >= input_width |
|
in_pos_in_one_block.y
+
1
>=
input_height
)
;
for
(
int
j
=
0
; j < 9; ++j) {
half4
input
=
inputs[j]
;
half4
weight
=
read_imageh
(
filter,
sampler,
int2
(
weight_x_to
+
j
%
3
,
j
/
3
))
;
output.x
+=
input.x
*
weight.x
;
output.y
+=
input.y
*
weight.y
;
output.z
+=
input.z
*
weight.z
;
output.w
+=
input.w
*
weight.w
;
}
#
if
defined
(
RELU
)
output
=
activation
(
output
)
;
#
endif
int2
output_pos
(
out_c
*
global_size_dim1
+
out_w,
out_nh
)
;
write_imageh
(
output_image,
output_pos,
output
)
;
}
*/
\ No newline at end of file
src/operators/kernel/cl/conv_add_bn_kernel.cpp
0 → 100644
浏览文件 @
b7b9fc26
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADDBNRELU_OP
#include "operators/kernel/conv_add_bn_relu_kernel.h"
#include "operators/kernel/central-arm-func/conv_add_bn_relu_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
ConvAddBNReluKernel
<
GPU_CL
,
float
>::
Init
(
FusionConvAddBNReluParam
<
GPU_CL
>
*
param
)
{
return
true
;
}
template
<
>
void
ConvAddBNReluKernel
<
GPU_CL
,
float
>::
Compute
(
const
FusionConvAddBNReluParam
<
GPU_CL
>
&
param
)
{
}
template
class
ConvAddBNReluKernel
<
GPU_CL
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/cl/conv_add_kernel.cpp
0 → 100644
浏览文件 @
b7b9fc26
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADD_OP
#include "operators/kernel/conv_add_kernel.h"
#include "../central-arm-func/conv_add_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
bool
ConvAddKernel
<
GPU_CL
,
float
>::
Init
(
FusionConvAddParam
<
GPU_CL
>
*
param
)
{
return
true
;
}
template
<
>
void
ConvAddKernel
<
GPU_CL
,
float
>::
Compute
(
const
FusionConvAddParam
<
GPU_CL
>
&
param
)
{
}
template
class
ConvAddKernel
<
GPU_CL
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
#endif
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录