Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
b53ece7a
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b53ece7a
编写于
12月 20, 2019
作者:
Z
zhupengyang
提交者:
GitHub
12月 20, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU] add transpose bridge and unit test (#2630)
* [XPU] add transpose bridge and unit test test=develop
上级
30ec4fba
变更
12
显示空白变更内容
内联
并排
Showing
12 changed file
with
258 addition
and
15 deletion
+258
-15
lite/backends/xpu/device.cc
lite/backends/xpu/device.cc
+6
-1
lite/core/arena/framework.cc
lite/core/arena/framework.cc
+6
-6
lite/core/arena/framework.h
lite/core/arena/framework.h
+5
-1
lite/kernels/xpu/bridges/CMakeLists.txt
lite/kernels/xpu/bridges/CMakeLists.txt
+2
-0
lite/kernels/xpu/bridges/paddle_use_bridges.h
lite/kernels/xpu/bridges/paddle_use_bridges.h
+2
-0
lite/kernels/xpu/bridges/transpose_op.cc
lite/kernels/xpu/bridges/transpose_op.cc
+58
-0
lite/kernels/xpu/bridges/utility.cc
lite/kernels/xpu/bridges/utility.cc
+12
-0
lite/kernels/xpu/bridges/utility.h
lite/kernels/xpu/bridges/utility.h
+3
-0
lite/kernels/xpu/subgraph_compute.cc
lite/kernels/xpu/subgraph_compute.cc
+11
-6
lite/operators/transpose_op.cc
lite/operators/transpose_op.cc
+9
-0
lite/tests/kernels/CMakeLists.txt
lite/tests/kernels/CMakeLists.txt
+2
-1
lite/tests/kernels/transpose_compute_test.cc
lite/tests/kernels/transpose_compute_test.cc
+142
-0
未找到文件。
lite/backends/xpu/device.cc
浏览文件 @
b53ece7a
...
...
@@ -30,7 +30,12 @@ std::unique_ptr<xtcl::network::xRuntimeInstance> Device::Build(
// The XPU compiler build the graph and fill all of the constant params, only
// one output is supported now.
xtcl
::
xNetwork
network
=
builder
->
FinalizeNetwork
(
*
((
*
outputs
)[
0
]));
xtcl
::
Array
<
xtcl
::
xExpr
>
all_outs
;
for
(
size_t
i
=
0
;
i
<
outputs
->
size
();
i
++
)
{
all_outs
.
push_back
(
*
outputs
->
at
(
i
));
}
xtcl
::
xNetwork
network
=
builder
->
FinalizeNetwork
(
xtcl
::
relay
::
TupleNode
::
make
(
all_outs
));
auto
target
=
xtcl
::
Target
::
Create
(
device_name_
);
auto
compiler
=
xtcl
::
network
::
xTensorCompiler
(
network
,
target
);
compiler
.
SetParams
(
*
params
);
// Set the data of constant tensors
...
...
lite/core/arena/framework.cc
浏览文件 @
b53ece7a
...
...
@@ -35,12 +35,12 @@ void TestCase::CreateInstruction() {
op_desc_
.
reset
(
new
cpp
::
OpDesc
());
op_desc_
->
SetType
(
"subgraph"
);
op_desc_
->
SetAttr
<
int32_t
>
(
"sub_block"
,
sub_block_idx
);
op_desc_
->
SetInput
(
"Inputs"
,
op_desc_
->
input_vars
()
);
op_desc_
->
SetOutput
(
"Outputs"
,
op_desc_
->
output_vars
()
);
op_desc_
->
Set
Attr
<
std
::
vector
<
std
::
string
>>
(
"input_data_names"
,
sub_block_op_desc
->
input_vars
()
);
op_desc_
->
SetAttr
<
std
::
vector
<
std
::
string
>>
(
"output_data_names"
,
sub_block_op_desc
->
output_vars
()
);
auto
in_names
=
sub_block_op_desc
->
input_vars
(
);
auto
out_names
=
sub_block_op_desc
->
output_vars
(
);
op_desc_
->
Set
Input
(
"Inputs"
,
in_names
);
op_desc_
->
SetOutput
(
"Outputs"
,
out_names
);
op_desc_
->
SetAttr
<
std
::
vector
<
std
::
string
>>
(
"input_data_names"
,
in_names
);
op_desc_
->
SetAttr
<
std
::
vector
<
std
::
string
>>
(
"output_data_names"
,
out_names
);
op
=
LiteOpRegistry
::
Global
().
Create
(
op_desc
().
Type
());
static_cast
<
operators
::
SubgraphOp
*>
(
op
.
get
())
->
SetSubBlock
(
sub_block_desc
);
}
else
{
...
...
lite/core/arena/framework.h
浏览文件 @
b53ece7a
...
...
@@ -188,13 +188,17 @@ class Arena {
tester_
->
Prepare
();
}
bool
TestPrecision
()
{
bool
TestPrecision
(
const
std
::
vector
<
std
::
string
>&
exclude_outs
=
{}
)
{
tester_
->
RunBaseline
(
tester_
->
baseline_scope
());
tester_
->
RunInstruction
();
bool
success
=
true
;
for
(
auto
&
out
:
tester_
->
op_desc
().
OutputArgumentNames
())
{
for
(
auto
&
var
:
tester_
->
op_desc
().
Output
(
out
))
{
if
(
std
::
find
(
exclude_outs
.
begin
(),
exclude_outs
.
end
(),
var
)
!=
exclude_outs
.
end
())
{
continue
;
}
success
=
success
&&
CompareTensor
(
out
,
var
);
}
}
...
...
lite/kernels/xpu/bridges/CMakeLists.txt
浏览文件 @
b53ece7a
...
...
@@ -14,6 +14,7 @@ lite_cc_library(subgraph_bridge_pool_op_xpu SRCS pool_op.cc DEPS ${subgraph_brid
lite_cc_library
(
subgraph_bridge_softmax_op_xpu SRCS softmax_op.cc DEPS
${
subgraph_bridge_deps_xpu
}
)
lite_cc_library
(
subgraph_bridge_mul_op_xpu SRCS mul_op.cc DEPS
${
xpu_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_batch_norm_op_xpu SRCS batch_norm_op.cc DEPS
${
xpu_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_transpose_op_xpu SRCS transpose_op.cc DEPS
${
xpu_subgraph_bridge_deps
}
)
set
(
xpu_subgraph_bridges
subgraph_bridge_registry
...
...
@@ -26,6 +27,7 @@ set(xpu_subgraph_bridges
subgraph_bridge_softmax_op_xpu
subgraph_bridge_mul_op_xpu
subgraph_bridge_batch_norm_op_xpu
subgraph_bridge_transpose_op_xpu
CACHE INTERNAL
"xpu_subgraph_bridges"
)
message
(
STATUS
"+++++ xpu_subgraph_bridges:
${
xpu_subgraph_bridges
}
"
)
lite/kernels/xpu/bridges/paddle_use_bridges.h
浏览文件 @
b53ece7a
...
...
@@ -22,3 +22,5 @@ USE_SUBGRAPH_BRIDGE(XPU, pool2d);
USE_SUBGRAPH_BRIDGE
(
XPU
,
softmax
);
USE_SUBGRAPH_BRIDGE
(
XPU
,
mul
);
USE_SUBGRAPH_BRIDGE
(
XPU
,
batch_norm
);
USE_SUBGRAPH_BRIDGE
(
XPU
,
transpose
);
USE_SUBGRAPH_BRIDGE
(
XPU
,
transpose2
);
lite/kernels/xpu/bridges/transpose_op.cc
0 → 100644
浏览文件 @
b53ece7a
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/xpu/bridges/graph.h"
#include "lite/kernels/xpu/bridges/utility.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
xpu
{
int
TransposeConverter
(
void
*
ctx
,
OpLite
*
op
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
VLOG
(
3
)
<<
"[XPU] Converting "
+
op_type
+
"..."
;
// Create node and set params from op
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
out_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
axis
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"axis"
);
CHECK
(
graph
->
HasNode
(
x_var_name
));
graph
->
AddNode
(
out_var_name
,
graph
->
builder_
.
CreateTranspose
(
*
graph
->
GetNode
(
x_var_name
),
Cvt2ArrayInt
(
std
::
vector
<
int64_t
>
(
axis
.
begin
(),
axis
.
end
()))));
return
SUCCESS
;
}
}
// namespace xpu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
XPU
,
transpose
,
paddle
::
lite
::
subgraph
::
xpu
::
TransposeConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
XPU
,
transpose2
,
paddle
::
lite
::
subgraph
::
xpu
::
TransposeConverter
);
lite/kernels/xpu/bridges/utility.cc
浏览文件 @
b53ece7a
...
...
@@ -125,6 +125,18 @@ std::shared_ptr<xtcl::xNDArray> CvtTensor(const Tensor& in_tensor,
return
out_tensor
;
}
xtcl
::
Array
<
xtcl
::
Integer
>
Cvt2ArrayInt
(
const
std
::
vector
<
int64_t
>&
input
)
{
xtcl
::
Array
<
xtcl
::
Integer
>
output
;
for
(
auto
i
:
input
)
{
output
.
push_back
(
i
);
}
return
output
;
}
xtcl
::
Array
<
xtcl
::
Integer
>
Cvt2ArrayInt
(
const
DDim
&
input
)
{
return
Cvt2ArrayInt
(
input
.
Vectorize
());
}
}
// namespace xpu
}
// namespace subgraph
}
// namespace lite
...
...
lite/kernels/xpu/bridges/utility.h
浏览文件 @
b53ece7a
...
...
@@ -47,6 +47,9 @@ std::shared_ptr<xtcl::xNDArray> CvtTensor(
PrecisionType
in_ptype
=
PRECISION
(
kFloat
),
DataLayoutType
in_ltype
=
DATALAYOUT
(
kNCHW
));
xtcl
::
Array
<
xtcl
::
Integer
>
Cvt2ArrayInt
(
const
std
::
vector
<
int64_t
>&
input
);
xtcl
::
Array
<
xtcl
::
Integer
>
Cvt2ArrayInt
(
const
DDim
&
input
);
}
// namespace xpu
}
// namespace subgraph
}
// namespace lite
...
...
lite/kernels/xpu/subgraph_compute.cc
浏览文件 @
b53ece7a
...
...
@@ -60,9 +60,14 @@ int SubgraphEngine::BuildDeviceProgram() {
// Obtain the output nodes of the XPU IR graph and build the graph to XPU
// runtime
std
::
vector
<
xtcl
::
xExpr
*>
output_nodes
;
std
::
vector
<
std
::
string
>
valid_output_names
;
for
(
auto
&
output_name
:
output_names_
)
{
if
(
graph
.
HasNode
(
output_name
))
{
output_nodes
.
push_back
(
graph
.
GetNode
(
output_name
).
get
());
valid_output_names
.
push_back
(
output_name
);
}
}
CHECK
(
!
valid_output_names
.
empty
())
<<
"[XPU] no valid output names"
;
device_program_
=
lite
::
xpu
::
Device
::
Global
().
Build
(
&
graph
.
builder_
,
&
graph
.
params_
,
&
output_nodes
);
if
(
device_program_
==
nullptr
)
{
...
...
@@ -73,16 +78,16 @@ int SubgraphEngine::BuildDeviceProgram() {
// Query and check the dimensions of input and output tensors
origin_idims_
.
resize
(
input_names_
.
size
());
origin_itensors_
.
resize
(
input_names_
.
size
());
origin_odims_
.
resize
(
output_names_
.
size
());
origin_otensors_
.
resize
(
output_names_
.
size
());
origin_odims_
.
resize
(
valid_output_names
.
size
());
origin_otensors_
.
resize
(
valid_output_names
.
size
());
for
(
int
i
=
0
;
i
<
input_names_
.
size
();
i
++
)
{
origin_itensors_
[
i
]
=
scope_
->
FindMutableTensor
(
input_names_
[
i
]);
CHECK
(
origin_itensors_
[
i
]);
origin_idims_
[
i
]
=
origin_itensors_
[
i
]
->
dims
();
VLOG
(
3
)
<<
"[XPU] Input dims["
<<
i
<<
"]: "
<<
origin_idims_
[
i
];
}
for
(
int
i
=
0
;
i
<
output_names_
.
size
();
i
++
)
{
origin_otensors_
[
i
]
=
scope_
->
FindMutableTensor
(
output_names_
[
i
]);
for
(
int
i
=
0
;
i
<
valid_output_names
.
size
();
i
++
)
{
origin_otensors_
[
i
]
=
scope_
->
FindMutableTensor
(
valid_output_names
[
i
]);
CHECK
(
origin_otensors_
[
i
]);
origin_odims_
[
i
]
=
origin_otensors_
[
i
]
->
dims
();
VLOG
(
3
)
<<
"[XPU] Output dims["
<<
i
<<
"]: "
<<
origin_odims_
[
i
];
...
...
@@ -113,7 +118,7 @@ int SubgraphEngine::LaunchDeviceProgram() {
device_program_
->
Run
();
VLOG
(
3
)
<<
"[XPU] Process cost "
<<
GetCurrentUS
()
-
start_time
<<
" us"
;
// Copy the data of output XPU tensor to the buffer of origin output tensors
for
(
size_t
i
=
0
;
i
<
o
utput_name
s_
.
size
();
i
++
)
{
for
(
size_t
i
=
0
;
i
<
o
rigin_otensor
s_
.
size
();
i
++
)
{
auto
output_ndarray
=
device_program_
->
GetOutput
(
i
);
std
::
memcpy
(
origin_otensors_
[
i
]
->
mutable_data
<
float
>
(),
static_cast
<
float
*>
(
output_ndarray
.
ToDLPack
()
->
dl_tensor
.
data
),
...
...
lite/operators/transpose_op.cc
浏览文件 @
b53ece7a
...
...
@@ -135,6 +135,15 @@ bool Transpose2Op::InferShape() const {
out_dims
[
i
]
=
x_dims
[
axis
[
i
]];
}
param_
.
output
->
Resize
(
out_dims
);
std
::
vector
<
DDim
::
value_type
>
xshape_dims
(
x_dims
.
size
()
+
1
,
0
);
for
(
size_t
i
=
0
;
i
<
x_dims
.
size
();
i
++
)
{
xshape_dims
[
i
+
1
]
=
x_dims
[
i
];
}
param_
.
xshape
->
Resize
(
xshape_dims
);
auto
xshape_lod
=
param_
.
xshape
->
mutable_lod
();
*
xshape_lod
=
param_
.
x
->
lod
();
return
true
;
}
...
...
lite/tests/kernels/CMakeLists.txt
浏览文件 @
b53ece7a
if
((
NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA
AND NOT LITE_WITH_XPU
)
AND
(
LITE_WITH_X86 OR LITE_WITH_ARM
))
if
((
NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA
)
AND
(
LITE_WITH_X86 OR LITE_WITH_ARM
))
lite_cc_test
(
test_kernel_scale_compute SRCS scale_compute_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_power_compute SRCS power_compute_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_shuffle_channel_compute SRCS shuffle_channel_compute_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
...
...
@@ -24,6 +24,7 @@ if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA AND NOT LITE_WITH_XPU) AND (LITE
#lite_cc_test(test_kernel_write_to_array_compute SRCS write_to_array_compute_test.cc DEPS arena_framework ${x86_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
#lite_cc_test(test_kernel_read_from_array_compute SRCS read_from_array_compute_test.cc DEPS arena_framework ${x86_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test
(
test_concat_compute SRCS concat_compute_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_transpose_compute SRCS transpose_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
if
(
LITE_BUILD_EXTRA
)
lite_cc_test
(
test_gru_unit SRCS gru_unit_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
...
...
lite/tests/kernels/transpose_compute_test.cc
0 → 100644
浏览文件 @
b53ece7a
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
namespace
paddle
{
namespace
lite
{
int
data_index
(
std
::
vector
<
int
>
pos
,
DDimLite
dims
)
{
int
d1
=
dims
[
1
];
int
d2
=
dims
[
2
];
int
d3
=
dims
[
3
];
return
pos
[
3
]
+
pos
[
2
]
*
d3
+
pos
[
1
]
*
d3
*
d2
+
pos
[
0
]
*
d3
*
d2
*
d1
;
}
std
::
vector
<
int
>
pos_trans
(
std
::
vector
<
int
>
in_pos
,
std
::
vector
<
int
>
axis
)
{
std
::
vector
<
int
>
out_pos
(
in_pos
.
size
());
for
(
int
i
=
0
;
i
<
axis
.
size
();
i
++
)
{
out_pos
[
axis
[
i
]]
=
in_pos
[
i
];
}
return
out_pos
;
}
class
TransposeComputeTester
:
public
arena
::
TestCase
{
protected:
// common attributes for this op.
std
::
string
op_type_
=
"transpose2"
;
std
::
string
input_
=
"x"
;
std
::
string
output_
=
"out"
;
std
::
string
xshape_
=
"xshape"
;
DDim
x_dims_
;
std
::
vector
<
int
>
axis_
;
public:
TransposeComputeTester
(
const
Place
&
place
,
const
std
::
string
&
alias
,
DDim
x_dims
,
std
::
vector
<
int
>
axis
)
:
TestCase
(
place
,
alias
),
x_dims_
(
x_dims
),
axis_
(
axis
)
{}
void
RunBaseline
(
Scope
*
scope
)
override
{
auto
*
out
=
scope
->
NewTensor
(
output_
);
CHECK
(
out
);
auto
*
x
=
scope
->
FindTensor
(
input_
);
auto
x_dims
=
x
->
dims
();
std
::
vector
<
int64_t
>
out_shape
(
x_dims
.
size
(),
0
);
for
(
size_t
i
=
0
;
i
<
x_dims
.
size
();
i
++
)
{
out_shape
[
i
]
=
x_dims
[
axis_
[
i
]];
}
out
->
Resize
(
out_shape
);
auto
y_dims
=
out
->
dims
();
int
input_n
=
x_dims
[
0
];
int
input_c
=
x_dims
[
1
];
int
input_h
=
x_dims
[
2
];
int
input_w
=
x_dims
[
3
];
auto
input_data
=
x
->
data
<
float
>
();
auto
output_data
=
out
->
mutable_data
<
float
>
();
for
(
int
n
=
0
;
n
<
input_n
;
++
n
)
{
for
(
int
c
=
0
;
c
<
input_c
;
++
c
)
{
for
(
int
h
=
0
;
h
<
input_h
;
++
h
)
{
for
(
int
w
=
0
;
w
<
input_w
;
++
w
)
{
std
::
vector
<
int
>
in_pos
{
n
,
c
,
h
,
w
};
std
::
vector
<
int
>
out_pos
=
pos_trans
(
in_pos
,
axis_
);
int
in_index
=
data_index
(
in_pos
,
x_dims
);
int
out_index
=
data_index
(
out_pos
,
y_dims
);
output_data
[
out_index
]
=
input_data
[
in_index
];
}
}
}
}
if
(
op_type_
==
"transpose2"
)
{
auto
*
xshape
=
scope
->
NewTensor
(
xshape_
);
auto
xshape_dims
=
x_dims
.
Vectorize
();
xshape_dims
.
insert
(
xshape_dims
.
begin
(),
0
);
xshape
->
Resize
(
xshape_dims
);
}
}
void
PrepareOpDesc
(
cpp
::
OpDesc
*
op_desc
)
{
op_desc
->
SetType
(
op_type_
);
op_desc
->
SetInput
(
"X"
,
{
input_
});
op_desc
->
SetOutput
(
"Out"
,
{
output_
});
if
(
op_type_
==
"transpose2"
)
{
op_desc
->
SetOutput
(
"XShape"
,
{
xshape_
});
}
op_desc
->
SetAttr
(
"axis"
,
axis_
);
}
void
PrepareData
()
override
{
std
::
vector
<
float
>
data
(
x_dims_
.
production
());
for
(
int
i
=
0
;
i
<
x_dims_
.
production
();
i
++
)
{
data
[
i
]
=
i
*
1.1
;
}
SetCommonTensor
(
input_
,
x_dims_
,
data
.
data
());
}
};
TEST
(
Transpose
,
precision
)
{
LOG
(
INFO
)
<<
"test Transpose op"
;
float
abs_error
=
2e-5
;
Place
place
;
#ifdef LITE_WITH_XPU
place
=
TARGET
(
kXPU
);
#else
return
;
#endif
DDim
x_dims
{{
2
,
3
,
4
,
5
}};
// [XPU]: {3, 1, 0, 2} is unsupported
std
::
vector
<
std
::
vector
<
int
>>
axes
{
{
0
,
1
,
2
,
3
},
{
0
,
1
,
3
,
2
},
{
0
,
2
,
1
,
3
},
{
3
,
1
,
2
,
0
}};
for
(
auto
axis
:
axes
)
{
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
TransposeComputeTester
(
place
,
"def"
,
x_dims
,
axis
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
abs_error
);
arena
.
TestPrecision
({
"xshape"
});
}
}
}
// namespace lite
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录