Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
b38753da
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b38753da
编写于
2月 12, 2020
作者:
Y
Yuan Shuai
提交者:
GitHub
2月 12, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[LITE][OPENCL] Add opencl image2d conv3x3. test=develop (#2853)
* [LITE][OPENCL] Add opencl image2d conv3x3. test=develop
上级
6e39cfa6
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
987 addition
and
0 deletion
+987
-0
lite/backends/opencl/cl_kernel/image/conv2d_3x3_kernel.cl
lite/backends/opencl/cl_kernel/image/conv2d_3x3_kernel.cl
+428
-0
lite/kernels/opencl/conv_compute.cc
lite/kernels/opencl/conv_compute.cc
+193
-0
lite/kernels/opencl/conv_compute.h
lite/kernels/opencl/conv_compute.h
+1
-0
lite/kernels/opencl/conv_image2d_compute_test.cc
lite/kernels/opencl/conv_image2d_compute_test.cc
+365
-0
未找到文件。
lite/backends/opencl/cl_kernel/image/conv2d_3x3_kernel.cl
0 → 100644
浏览文件 @
b38753da
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors.
All
Rights
Reserved.
Licensed
under
the
Apache
License,
Version
2.0
(
the
"License"
)
;
you
may
not
use
this
file
except
in
compliance
with
the
License.
You
may
obtain
a
copy
of
the
License
at
http://www.apache.org/licenses/LICENSE-2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND,
either
express
or
implied.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License.
*/
#
include
<cl_common.h>
__kernel
void
conv2d_3x3
(
__private
const
int
global_size_dim0,
__private
const
int
global_size_dim1,
__private
const
int
global_size_dim2,
__read_only
image2d_t
input_image,
__read_only
image2d_t
filter,
#
if
defined
(
BIASE_CH
)
|
| defined(BIASE_ELE)
__read_only image2d_t bias,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height,/* of one block */
__private const int output_width,
__private const int output_height,
__private const int output_c,
__private const int filter_channel,
__private const int filter_width,
__private const int filter_height,
__private const int group) {
const int out_c = get_global_id(0);
const int out_w = get_global_id(1);
const int out_nh = get_global_id(2);
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST;
int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);
if (out_c >= global_size_dim0 ||
out_w >= global_size_dim1 ||
out_nh >= global_size_dim2) {
return;
}
int2 stride_xy;
stride_xy.x = stride;
stride_xy.y = stride;
int2 ouput_pos_in_one_block;
ouput_pos_in_one_block.x = out_w;
ouput_pos_in_one_block.y = out_nh;
int2 in_pos_in_one_block;
in_pos_in_one_block.x = ouput_pos_in_one_block.x * stride + offset;
in_pos_in_one_block.y = ouput_pos_in_one_block.y * stride + offset;
#ifdef BIASE_CH
CL_DTYPE4 output = READ_IMG_TYPE(CL_DTYPE_CHAR, bias, sampler, (int2)(out_c, 0));
#elif defined(BIASE_ELE)
CL_DTYPE4 output = READ_IMG_TYPE(CL_DTYPE_CHAR, bias, sampler, output_pos);
#else
CL_DTYPE4 output = 0.0f;
#endif
CL_DTYPE4 input[9]; // 3x3 region of input
if (group == 1) {
for (int i = 0; i < input_c; ++i) { // each run for 3x3
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
input[0] = select(READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y - dilation)),
(CL_DTYPE4)(0.0f),
(ushort4)((in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height) << 15));
input[1] = select(READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler,
(int2)(pos_in.x, pos_in.y - dilation)),
(CL_DTYPE4)(0.0f),
(ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - dilation >= input_height) << 15));
input[2] = select(READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y - dilation)),
(CL_DTYPE4)(0.0f),
(ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height) << 15));
input[3] = select(READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y)),
(CL_DTYPE4)(0.0f),
(ushort4)((in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y >= input_height) << 15));
input[4] = select(READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler,
(int2)(pos_in.x, pos_in.y)),
(CL_DTYPE4)(0.0f),
(ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height) << 15));
input[5] = select(READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y)),
(CL_DTYPE4)(0.0f),
(ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y >= input_height) << 15));
input[6] = select(READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y + dilation)),
(CL_DTYPE4)(0.0f),
(ushort4)((in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));
input[7] = select(READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler,
(int2)(pos_in.x, pos_in.y + dilation)),
(CL_DTYPE4)(0.0f),
(ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));
input[8] = select(READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y + dilation)),
(CL_DTYPE4)(0.0f),
(ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));
int j = 0;
int2 pos_of_weight;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
CL_DTYPE4 weight_x = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y += 3;
CL_DTYPE4 weight_y = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y += 3;
CL_DTYPE4 weight_z = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y += 3;
CL_DTYPE4 weight_w = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 1;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 2;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 3;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 4;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 5;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 6;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 7;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
j = 8;
pos_of_weight.x = i * 3 + j % 3;
pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
weight_x = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.x += dot(input[j], weight_x);
pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
weight_y = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.y += dot(input[j], weight_y);
pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
weight_z = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.z += dot(input[j], weight_z);
pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
weight_w = READ_IMG_TYPE(CL_DTYPE_CHAR, filter, sampler, pos_of_weight);
output.w += dot(input[j], weight_w);
}
} else { // group != 1
for (int i = 0; i < 4; i++) {
int used_input_channel_num =
(out_c * 4 + i) / (output_c / group) * filter_channel;
for (int f_c = 0; f_c < filter_channel; ++f_c) {
int input_c = used_input_channel_num + f_c;
int input_block = input_c / 4;
int2 pos_in = (int2)(input_block * input_width + in_pos_in_one_block.x,
in_pos_in_one_block.y);
input[0] = select(
READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y - dilation)),
(CL_DTYPE4)(0.0f),
(ushort4)((in_pos_in_one_block.x - dilation < 0 ||
in_pos_in_one_block.y - dilation < 0 ||
in_pos_in_one_block.x - dilation >= input_width ||
in_pos_in_one_block.y - dilation >= input_height)
<< 15));
input[1] =
select(READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler,
(int2)(pos_in.x, pos_in.y - dilation)),
(CL_DTYPE4)(0.0f),
(ushort4)((in_pos_in_one_block.x < 0 ||
in_pos_in_one_block.y - dilation < 0 ||
in_pos_in_one_block.x >= input_width ||
in_pos_in_one_block.y - dilation >= input_height)
<< 15));
input[2] = select(
READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y - dilation)),
(CL_DTYPE4)(0.0f),
(ushort4)((in_pos_in_one_block.x + dilation < 0 ||
in_pos_in_one_block.y - dilation < 0 ||
in_pos_in_one_block.x + dilation >= input_width ||
in_pos_in_one_block.y - dilation >= input_height)
<< 15));
input[3] = select(
READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y)),
(CL_DTYPE4)(0.0f),
(ushort4)((in_pos_in_one_block.x - dilation < 0 ||
in_pos_in_one_block.y < 0 ||
in_pos_in_one_block.x - dilation >= input_width ||
in_pos_in_one_block.y >= input_height)
<< 15));
input[4] = select(
READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler, (int2)(pos_in.x, pos_in.y)),
(CL_DTYPE4)(0.0f),
(ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 ||
in_pos_in_one_block.x >= input_width ||
in_pos_in_one_block.y >= input_height)
<< 15));
input[5] =
select(READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y)),
(CL_DTYPE4)(0.0f),
(ushort4)((in_pos_in_one_block.x + dilation < 0 ||
in_pos_in_one_block.y < 0 ||
in_pos_in_one_block.x + dilation >= input_width ||
in_pos_in_one_block.y >= input_height)
<< 15));
input[6] = select(
READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler,
(int2)(pos_in.x - dilation, pos_in.y + dilation)),
(CL_DTYPE4)(0.0f),
(ushort4)((in_pos_in_one_block.x - dilation < 0 ||
in_pos_in_one_block.y + dilation < 0 ||
in_pos_in_one_block.x - dilation >= input_width ||
in_pos_in_one_block.y + dilation >= input_height)
<< 15));
input[7] =
select(READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler,
(int2)(pos_in.x, pos_in.y + dilation)),
(CL_DTYPE4)(0.0f),
(ushort4)((in_pos_in_one_block.x < 0 ||
in_pos_in_one_block.y + dilation < 0 ||
in_pos_in_one_block.x >= input_width ||
in_pos_in_one_block.y + dilation >= input_height)
<< 15));
input[8] = select(
READ_IMG_TYPE(CL_DTYPE_CHAR, input_image, sampler,
(int2)(pos_in.x + dilation, pos_in.y + dilation)),
(CL_DTYPE4)(0.0f),
(ushort4)((in_pos_in_one_block.x + dilation < 0 ||
in_pos_in_one_block.y + dilation < 0 ||
in_pos_in_one_block.x + dilation >= input_width |
|
in_pos_in_one_block.y
+
dilation
>=
input_height
)
<<
15
))
;
CL_DTYPE
tmp_out
=
0
;
for
(
int
j
=
0
; j < 9; j++) {
int2
pos_of_weight
;
pos_of_weight.x
=
(
f_c
/
4
)
*
3
+
j
%
3
;
pos_of_weight.y
=
out_c
*
4
*
3
+
i
*
3
+
j
/
3
;
CL_DTYPE4
weight
=
READ_IMG_TYPE
(
CL_DTYPE_CHAR,
filter,
sampler,
pos_of_weight
)
;
int
f_c_offset
=
f_c
%
4
;
CL_DTYPE
f_value
;
if
(
f_c_offset
==
0
)
{
f_value
=
weight.x
;
}
else
if
(
f_c_offset
==
1
)
{
f_value
=
weight.y
;
}
else
if
(
f_c_offset
==
2
)
{
f_value
=
weight.z
;
}
else
if
(
f_c_offset
==
3
)
{
f_value
=
weight.w
;
}
int
input_c_offset
=
input_c
%
4
;
CL_DTYPE
input_value
;
if
(
input_c_offset
==
0
)
{
input_value
=
input[j].x
;
}
else
if
(
input_c_offset
==
1
)
{
input_value
=
input[j].y
;
}
else
if
(
input_c_offset
==
2
)
{
input_value
=
input[j].z
;
}
else
if
(
input_c_offset
==
3
)
{
input_value
=
input[j].w
;
}
tmp_out
+=
f_value
*
input_value
;
}
if
(
i
==
0
)
{
output.x
+=
tmp_out
;
}
else
if
(
i
==
1
)
{
output.y
+=
tmp_out
;
}
else
if
(
i
==
2
)
{
output.z
+=
tmp_out
;
}
else
if
(
i
==
3
)
{
output.w
+=
tmp_out
;
}
}
}
}
output
=
activation_type4
(
output
)
;
WRITE_IMG_TYPE
(
CL_DTYPE_CHAR,
output_image,
output_pos,
output
)
;
}
lite/kernels/opencl/conv_compute.cc
浏览文件 @
b38753da
...
@@ -362,6 +362,20 @@ void ConvImageCompute::PrepareForRun() {
...
@@ -362,6 +362,20 @@ void ConvImageCompute::PrepareForRun() {
filter_image_dims
[
0
],
filter_image_dims
[
1
],
filter_image_v
.
data
());
filter_image_dims
[
0
],
filter_image_dims
[
1
],
filter_image_v
.
data
());
impl_
=
&
ConvImageCompute
::
Conv2d1x1
;
impl_
=
&
ConvImageCompute
::
Conv2d1x1
;
}
else
if
(
kernel_h
==
3
&&
kernel_h
==
3
)
{
// conv2d_3x3
kernel_func_names_
.
push_back
(
"conv2d_3x3"
);
kernel_func_paths_
.
push_back
(
"image/conv2d_3x3_kernel.cl"
);
CLImageConverterFolder
converter
;
const
DDim
&
filter_image_dims
=
converter
.
InitImageDimInfoWith
(
filter_dims
);
std
::
vector
<
float
>
filter_image_v
(
filter_image_dims
[
0
]
*
filter_image_dims
[
1
]
*
4
);
// 4 : RGBA
converter
.
NCHWToImage
(
filter_cpu
,
filter_image_v
.
data
(),
filter_dims
);
filter_gpu_image_
.
mutable_data
<
float
,
cl
::
Image2D
>
(
filter_image_dims
[
0
],
filter_image_dims
[
1
],
filter_image_v
.
data
());
impl_
=
&
ConvImageCompute
::
Conv2d3x3
;
}
else
if
(
kernel_h
==
5
&&
kernel_w
==
5
)
{
}
else
if
(
kernel_h
==
5
&&
kernel_w
==
5
)
{
// conv2d_5x5
// conv2d_5x5
kernel_func_names_
.
push_back
(
"conv2d_5x5"
);
kernel_func_names_
.
push_back
(
"conv2d_5x5"
);
...
@@ -582,6 +596,184 @@ void ConvImageCompute::Conv2d1x1() {
...
@@ -582,6 +596,184 @@ void ConvImageCompute::Conv2d1x1() {
CL_CHECK_FATAL
(
status
);
CL_CHECK_FATAL
(
status
);
context
.
cl_wait_list
()
->
emplace
(
out_image
,
event_
);
context
.
cl_wait_list
()
->
emplace
(
out_image
,
event_
);
}
}
void
ConvImageCompute
::
Conv2d3x3
()
{
const
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
auto
input_dims
=
param
.
x
->
dims
();
auto
paddings
=
*
param
.
paddings
;
auto
strides
=
param
.
strides
;
auto
*
input_image
=
param
.
x
->
data
<
float
,
cl
::
Image2D
>
();
auto
*
filter_image
=
filter_gpu_image_
.
data
<
float
,
cl
::
Image2D
>
();
auto
filter_dims
=
param
.
filter
->
dims
();
auto
output_dims
=
param
.
output
->
dims
();
int
input_width
=
input_dims
[
3
];
int
input_height
=
input_dims
[
2
];
int
input_channel
=
input_dims
[
1
];
int
output_width
=
output_dims
[
3
];
int
output_height
=
output_dims
[
2
];
int
output_channel
=
output_dims
[
1
];
int
filter_width
=
filter_dims
[
3
];
int
filter_height
=
filter_dims
[
2
];
int
filter_channel
=
filter_dims
[
1
];
auto
out_image_shape
=
InitImageDimInfoWith
(
output_dims
);
auto
*
out_image
=
param
.
output
->
mutable_data
<
float
,
cl
::
Image2D
>
(
out_image_shape
[
"width"
],
out_image_shape
[
"height"
]);
const
bool
has_bias
=
param
.
bias
!=
nullptr
;
const
bool
is_element_wise_bias
=
has_bias
&&
param
.
output
->
dims
()
==
param
.
bias
->
dims
();
int
offset
=
static_cast
<
int
>
(
param
.
filter
->
dims
()[
2
])
/
2
-
static_cast
<
int
>
(
paddings
[
0
]);
// calc input_c_block
auto
input_image_shape
=
InitImageDimInfoWith
(
input_dims
);
int
input_c_block
=
input_image_shape
[
"width"
]
/
input_dims
[
3
];
int
input_c
=
input_dims
[
1
];
auto
dilations
=
*
param
.
dilations
;
// re-calc group
int
new_groups
{
param
.
groups
};
if
(
filter_dims
[
0
]
==
output_dims
[
1
]
&&
filter_dims
[
1
]
==
input_dims
[
1
])
{
new_groups
=
1
;
}
else
if
(
!
(
filter_dims
[
0
]
==
input_dims
[
1
]
&&
filter_dims
[
1
]
==
1
))
{
new_groups
=
input_channel
/
filter_channel
;
}
/* TODO(ysh329): mobile has no case below
else {
LOG(FATAL) << "Not support conv3x3 case with"
<< " input_dims:" << input_dims << " output_dims:" <<
output_dims
<< " filter_dims:" << filter_dims;
}
*/
const
std
::
vector
<
size_t
>&
default_work_size
=
DefaultWorkSize
(
output_dims
,
DDim
(
std
::
vector
<
DDim
::
value_type
>
{
static_cast
<
int64_t
>
(
out_image_shape
[
"width"
]),
static_cast
<
int64_t
>
(
out_image_shape
[
"height"
])}));
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
VLOG
(
4
)
<<
"============ conv2d params ============"
;
VLOG
(
4
)
<<
"input_image_shape: "
<<
input_image_shape
[
"width"
]
<<
","
<<
input_image_shape
[
"height"
];
VLOG
(
4
)
<<
"input_c_block: "
<<
input_c_block
;
VLOG
(
4
)
<<
"input_c: "
<<
input_c
;
VLOG
(
4
)
<<
"input_image: "
<<
input_image
;
VLOG
(
4
)
<<
"input_dims: "
<<
input_dims
;
VLOG
(
4
)
<<
"filter_dims: "
<<
filter_dims
;
VLOG
(
4
)
<<
"filter_image: "
<<
filter_image
;
VLOG
(
4
)
<<
"output_dims: "
<<
output_dims
;
VLOG
(
4
)
<<
"out_image_shape: "
<<
out_image_shape
[
"width"
]
<<
", "
<<
out_image_shape
[
"height"
];
VLOG
(
4
)
<<
"paddings: "
<<
paddings
[
0
]
<<
","
<<
paddings
[
1
];
VLOG
(
4
)
<<
"has bias: "
<<
has_bias
;
VLOG
(
4
)
<<
"is_element_wise_bias : "
<<
is_element_wise_bias
;
VLOG
(
4
)
<<
"strides: "
<<
strides
[
0
]
<<
","
<<
strides
[
1
];
VLOG
(
4
)
<<
"offset: "
<<
offset
;
VLOG
(
4
)
<<
"dilations.size : "
<<
dilations
.
size
();
VLOG
(
4
)
<<
"dilations: "
<<
dilations
[
0
]
<<
", "
<<
dilations
[
1
];
VLOG
(
4
)
<<
"param.groups(groups):"
<<
param
.
groups
;
VLOG
(
4
)
<<
"new_groups:"
<<
new_groups
;
VLOG
(
4
)
<<
"default work size{c_block, w, nh}: "
<<
"{"
<<
c_block
<<
", "
<<
w
<<
", "
<<
nh
<<
""
<<
"}"
;
CHECK_GE
(
dilations
.
size
(),
2
);
CHECK
(
dilations
[
0
]
==
dilations
[
1
]);
CHECK_GE
(
input_dims
.
size
(),
4
);
CHECK_GE
(
paddings
.
size
(),
2
);
CHECK
(
paddings
[
0
]
==
paddings
[
1
]);
CHECK_GE
(
strides
.
size
(),
2
);
CHECK
(
strides
[
0
]
==
strides
[
1
]);
const
cl
::
Image2D
*
bias_image
=
nullptr
;
if
(
has_bias
)
{
bias_image
=
bias_gpu_image_
.
data
<
float
,
cl
::
Image2D
>
();
}
auto
&
context
=
ctx_
->
As
<
OpenCLContext
>
();
CHECK
(
context
.
cl_context
()
!=
nullptr
);
STL
::
stringstream
kernel_key
;
kernel_key
<<
kernel_func_names_
[
0
]
<<
build_options_
[
0
];
auto
kernel
=
context
.
cl_context
()
->
GetKernel
(
kernel_key
.
str
());
VLOG
(
4
)
<<
"kernel_key: "
<<
kernel_key
.
str
();
VLOG
(
4
)
<<
"kernel ready ... "
<<
kernel_key
.
str
();
VLOG
(
4
)
<<
"w: "
<<
w
;
cl_int
status
;
int
arg_idx
=
0
;
status
=
kernel
.
setArg
(
arg_idx
,
c_block
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
w
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
nh
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
*
input_image
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
*
filter_image
);
CL_CHECK_FATAL
(
status
);
if
(
has_bias
)
{
VLOG
(
4
)
<<
"set bias_image: "
;
status
=
kernel
.
setArg
(
++
arg_idx
,
*
bias_image
);
CL_CHECK_FATAL
(
status
);
}
status
=
kernel
.
setArg
(
++
arg_idx
,
*
out_image
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
strides
[
0
]);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
offset
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
input_c_block
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
dilations
[
0
]);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
input_width
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
input_height
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
output_width
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
output_height
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
output_channel
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
filter_channel
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
filter_width
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
filter_height
);
CL_CHECK_FATAL
(
status
);
status
=
kernel
.
setArg
(
++
arg_idx
,
new_groups
);
CL_CHECK_FATAL
(
status
);
auto
global_work_size
=
cl
::
NDRange
{
static_cast
<
size_t
>
(
default_work_size
.
data
()[
0
]),
static_cast
<
size_t
>
(
default_work_size
.
data
()[
1
]),
static_cast
<
size_t
>
(
default_work_size
.
data
()[
2
])};
VLOG
(
4
)
<<
"out_image: "
<<
out_image
;
VLOG
(
4
)
<<
"global_work_size[3D]: {"
<<
global_work_size
[
0
]
<<
","
<<
global_work_size
[
1
]
<<
","
<<
global_work_size
[
2
]
<<
"}"
;
status
=
context
.
cl_context
()
->
GetCommandQueue
().
enqueueNDRangeKernel
(
kernel
,
cl
::
NullRange
,
global_work_size
,
cl
::
NullRange
,
nullptr
,
event_
.
get
());
CL_CHECK_FATAL
(
status
);
context
.
cl_wait_list
()
->
emplace
(
out_image
,
event_
);
}
void
ConvImageCompute
::
Conv2d5x5
()
{
void
ConvImageCompute
::
Conv2d5x5
()
{
const
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
const
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
auto
input_dims
=
param
.
x
->
dims
();
auto
input_dims
=
param
.
x
->
dims
();
...
@@ -726,6 +918,7 @@ void ConvImageCompute::Conv2d5x5() {
...
@@ -726,6 +918,7 @@ void ConvImageCompute::Conv2d5x5() {
CL_CHECK_FATAL
(
status
);
CL_CHECK_FATAL
(
status
);
context
.
cl_wait_list
()
->
emplace
(
out_image
,
event_
);
context
.
cl_wait_list
()
->
emplace
(
out_image
,
event_
);
}
}
void
ConvImageCompute
::
Conv2d7x7
()
{
void
ConvImageCompute
::
Conv2d7x7
()
{
const
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
const
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
auto
input_dims
=
param
.
x
->
dims
();
auto
input_dims
=
param
.
x
->
dims
();
...
...
lite/kernels/opencl/conv_compute.h
浏览文件 @
b38753da
...
@@ -71,6 +71,7 @@ class ConvImageCompute : public KernelLite<TARGET(kOpenCL),
...
@@ -71,6 +71,7 @@ class ConvImageCompute : public KernelLite<TARGET(kOpenCL),
private:
private:
void
Conv2d1x1
();
void
Conv2d1x1
();
void
Conv2d3x3
();
void
Conv2d5x5
();
void
Conv2d5x5
();
void
Conv2d7x7
();
void
Conv2d7x7
();
...
...
lite/kernels/opencl/conv_image2d_compute_test.cc
浏览文件 @
b38753da
...
@@ -446,6 +446,371 @@ TEST(conv2d, compute_image2d_1x1) {
...
@@ -446,6 +446,371 @@ TEST(conv2d, compute_image2d_1x1) {
#undef LOOP_TEST
#undef LOOP_TEST
#undef PRINT_RESULT
#undef PRINT_RESULT
// #define PRINT_RESULT
// #define LOOP_TEST
TEST
(
conv2d
,
compute_image2d_3x3
)
{
// conv infos
const
int
ksize
=
3
;
// int loop_cnt = 0;
#ifdef LOOP_TEST
const
int
pad
=
1
;
const
int
dilation
=
1
;
const
int
stride
=
2
;
const
int
group
=
1
;
for
(
int
batch_size
=
1
;
batch_size
<
2
;
++
batch_size
)
{
for
(
int
oc
=
1
;
oc
<
10
;
oc
+=
1
)
{
// oc
for
(
int
ih
=
5
;
ih
<
9
;
ih
+=
1
)
{
// ih
int
iw
=
ih
;
for
(
int
ic
=
1
;
ic
<
10
;
ic
+=
1
)
{
// ic
for
(
bool
bias_flag
:
{
true
,
false
})
{
for
(
std
::
string
relu_flag
:
{
/*true,*/
"relu"
})
{
#else
const
int
pad
=
1
;
const
int
dilation
=
1
;
#if 0 // small scale with group, but result of cpu reference is wrong
const int stride = 2;
const int group = 2;
const int batch_size = 1;
const int ic = 1;
const int ih = 3;
const int iw = 3;
const int oc = 2;
#else
// big scale with group
const
int
stride
=
1
;
const
int
group
=
32
;
const
int
batch_size
=
1
;
const
int
ic
=
32
;
const
int
ih
=
112
;
const
int
iw
=
112
;
const
int
oc
=
32
;
#endif
const
bool
bias_flag
=
false
;
const
std
::
string
relu_flag
=
"relu"
;
#endif
int
filter_channel
=
ic
;
if
(
group
>
1
)
{
filter_channel
=
1
;
}
const
int
oh
=
ConvOutputSize
(
ih
,
ksize
,
dilation
,
pad
,
pad
,
stride
);
const
int
ow
=
ConvOutputSize
(
iw
,
ksize
,
dilation
,
pad
,
pad
,
stride
);
SHADOW_LOG
<<
"to get kernel ..."
;
auto
kernels
=
KernelRegistry
::
Global
().
Create
(
"conv2d"
,
TARGET
(
kOpenCL
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kImageDefault
));
ASSERT_FALSE
(
kernels
.
empty
());
CHECK
(
batch_size
==
1
)
<<
"conv3x3 only supprt batch_size == 1"
;
auto
kernel
=
std
::
move
(
kernels
.
front
());
SHADOW_LOG
<<
"created conv2d kernel"
;
SHADOW_LOG
<<
"prepare kernel ------"
;
lite
::
Tensor
input
,
filter
,
bias
,
output
;
operators
::
ConvParam
param
;
param
.
x
=
&
input
;
param
.
filter
=
&
filter
;
param
.
output
=
&
output
;
param
.
groups
=
group
;
if
(
bias_flag
)
{
param
.
bias
=
&
bias
;
}
if
(
relu_flag
==
"relu"
)
{
param
.
fuse_relu
=
true
;
}
else
if
(
relu_flag
==
"None"
)
{
param
.
fuse_relu
=
false
;
}
else
if
(
relu_flag
==
"relu6"
)
{
param
.
activation_param
.
Relu_clipped_coef
=
6.
f
;
param
.
activation_param
.
has_active
=
true
;
param
.
activation_param
.
active_type
=
lite_api
::
ActivationType
::
kRelu6
;
}
std
::
vector
<
int
>
paddings
=
{
pad
,
pad
,
pad
,
pad
};
std
::
vector
<
int
>
dilations
=
{
dilation
,
dilation
};
param
.
paddings
=
std
::
make_shared
<
std
::
vector
<
int
>>
(
paddings
);
param
.
dilations
=
std
::
make_shared
<
std
::
vector
<
int
>>
(
dilations
);
param
.
strides
=
std
::
vector
<
int
>
{
stride
,
stride
};
std
::
unique_ptr
<
KernelContext
>
context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
InitOnce
();
std
::
unique_ptr
<
KernelContext
>
conv_1x1_context
(
new
KernelContext
);
context
->
As
<
OpenCLContext
>
().
CopySharedTo
(
&
(
conv_1x1_context
->
As
<
OpenCLContext
>
()));
kernel
->
SetContext
(
std
::
move
(
conv_1x1_context
));
const
DDim
&
input_dim
=
lite
::
DDim
{
std
::
vector
<
int64_t
>
({
batch_size
,
ic
,
ih
,
iw
})};
const
DDim
&
filter_dim
=
lite
::
DDim
{
std
::
vector
<
int64_t
>
({
oc
,
filter_channel
,
ksize
,
ksize
})};
const
DDim
&
out_dim
=
lite
::
DDim
{
std
::
vector
<
int64_t
>
({
batch_size
,
oc
,
oh
,
ow
})};
// element wise bias
const
DDim
&
bias_dim
=
lite
::
DDim
{
std
::
vector
<
int64_t
>
({
oc
})};
LOG
(
INFO
)
<<
"input_dim:"
<<
input_dim
<<
" filter_dim:"
<<
filter_dim
<<
" out_dim:"
<<
out_dim
;
param
.
x
->
Resize
(
input_dim
);
param
.
filter
->
Resize
(
filter_dim
);
param
.
output
->
Resize
(
out_dim
);
if
(
bias_flag
)
{
param
.
bias
->
Resize
(
bias_dim
);
}
kernel
->
SetParam
(
param
);
size_t
input_image_width
=
iw
*
((
ic
+
3
)
/
4
);
size_t
input_image_height
=
ih
*
batch_size
;
size_t
out_image_width
=
ow
*
((
oc
+
3
)
/
4
);
size_t
out_image_height
=
oh
*
batch_size
;
size_t
bias_image_width
=
ow
*
((
oc
+
3
)
/
4
);
size_t
bias_image_height
=
oh
*
batch_size
;
size_t
filter_image_width
=
ksize
*
((
filter_channel
+
3
)
/
4
);
size_t
filter_image_height
=
oc
*
ksize
;
const
size_t
cl_image2d_row_pitch
{
0
};
const
size_t
cl_image2d_slice_pitch
{
0
};
std
::
default_random_engine
engine
;
std
::
uniform_real_distribution
<
float
>
gen
(
-
5
,
5
);
std
::
vector
<
float
>
input_v
(
batch_size
*
ic
*
ih
*
iw
);
std
::
vector
<
float
>
filter_v
(
oc
*
filter_channel
*
ksize
*
ksize
);
std
::
vector
<
float
>
output_v
(
batch_size
*
oc
*
oh
*
ow
);
std
::
vector
<
float
>
bias_v
(
oc
);
SHADOW_LOG
<<
"gen input and filter ..."
;
for
(
int
i
=
0
;
i
<
input_v
.
size
();
++
i
)
{
input_v
[
i
]
=
i
;
// gen(engine);
}
for
(
int
i
=
0
;
i
<
filter_v
.
size
();
++
i
)
{
filter_v
[
i
]
=
1
;
// gen(engine);
}
SHADOW_LOG
<<
"after gen input and filter ..."
;
SHADOW_LOG
<<
"input_v.size(): "
<<
input_v
.
size
();
SHADOW_LOG
<<
"filter_v.size(): "
<<
filter_v
.
size
();
SHADOW_LOG
<<
"output_v.size(): "
<<
output_v
.
size
();
SHADOW_LOG
<<
"bias_v.size(): "
<<
bias_v
.
size
();
SHADOW_LOG
<<
"input_dim.production(): "
<<
input_dim
.
production
();
SHADOW_LOG
<<
"filter_dim.production(): "
<<
filter_dim
.
production
();
SHADOW_LOG
<<
"out_dim.production(): "
<<
out_dim
.
production
();
SHADOW_LOG
<<
"bias_dim.production(): "
<<
bias_dim
.
production
();
SHADOW_LOG
<<
"input_image_height:"
<<
input_image_height
<<
" input_image_width:"
<<
input_image_width
;
SHADOW_LOG
<<
"filter_image_height:"
<<
filter_image_height
<<
" filter_image_width:"
<<
filter_image_width
;
SHADOW_LOG
<<
"4 * input_image_height *input_image_width: "
<<
4
*
input_image_height
*
input_image_width
;
SHADOW_LOG
<<
"4 * filter_image_width * filter_image_height: "
<<
4
*
filter_image_width
*
filter_image_height
;
CHECK
(
input_dim
.
production
()
==
input_v
.
size
());
CHECK_LE
(
input_dim
.
production
(),
4
*
input_image_height
*
input_image_width
);
CHECK
(
filter_dim
.
production
()
==
filter_v
.
size
());
CHECK_LE
(
filter_dim
.
production
(),
4
*
filter_image_width
*
filter_image_height
);
paddle
::
lite
::
CLImageConverterDefault
default_convertor
;
SHADOW_LOG
<<
"set mapped input ..."
;
std
::
vector
<
float
>
x_image_v
(
input_image_width
*
input_image_height
*
4
);
// 4 :RGBA
std
::
vector
<
float
>
filter_image_v
(
filter_image_width
*
filter_image_height
*
4
);
// 4 : RGBA
std
::
vector
<
float
>
bias_image_v
(
bias_image_width
*
bias_image_height
*
4
);
// 4 : RGBA
std
::
vector
<
float
>
out_image_v
(
out_image_width
*
out_image_height
*
4
);
// 4 :RGBA
default_convertor
.
NCHWToImage
(
input_v
.
data
(),
x_image_v
.
data
(),
input_dim
);
SHADOW_LOG
<<
"输入: ---- "
;
for
(
int
i
=
0
;
i
<
input_v
.
size
();
i
++
)
{
SHADOW_LOG
<<
"("
<<
i
<<
")"
<<
input_v
[
i
];
}
SHADOW_LOG
<<
"输入image : ---- "
;
for
(
int
i
=
0
;
i
<
x_image_v
.
size
();
i
++
)
{
SHADOW_LOG
<<
"("
<<
i
<<
")"
<<
x_image_v
[
i
];
}
SHADOW_LOG
<<
"set mapped filter ..."
;
CLImageConverterFolder
folder_convertor
;
folder_convertor
.
NCHWToImage
(
filter_v
.
data
(),
filter_image_v
.
data
(),
filter_dim
);
SHADOW_LOG
<<
"卷积核: ---- "
;
for
(
int
i
=
0
;
i
<
filter_v
.
size
();
i
++
)
{
SHADOW_LOG
<<
"("
<<
i
<<
")"
<<
filter_v
[
i
];
}
SHADOW_LOG
<<
"卷积核image: ---- "
;
for
(
int
i
=
0
;
i
<
filter_image_v
.
size
();
i
++
)
{
SHADOW_LOG
<<
"("
<<
i
<<
")"
<<
filter_image_v
[
i
];
}
auto
*
input_image2d
=
input
.
mutable_data
<
float
,
cl
::
Image2D
>
(
input_image_width
,
input_image_height
,
x_image_v
.
data
());
// assign filter as target arm
filter
.
Assign
<
float
,
lite
::
DDim
,
TARGET
(
kARM
)
>
(
filter_v
.
data
(),
filter_dim
);
// filter kernel
// auto* filter_image2d = filter.mutable_data<float,
// cl::Image2D>(
// filter_image_width,
// filter_image_height,
// filter_image_v.data());
if
(
bias_flag
)
{
for
(
int
i
=
0
;
i
<
bias_dim
.
production
();
++
i
)
{
bias_v
[
i
]
=
static_cast
<
int
>
(
gen
(
engine
));
}
bias
.
Assign
<
float
,
lite
::
DDim
,
TARGET
(
kARM
)
>
(
bias_v
.
data
(),
bias_dim
);
// CLImageConverterFolder folder_convertor;
// folder_convertor.NCHWToImage(
// bias_v.data(), bias_image_v.data(),
// bias_dim);
//
// auto* bias_data = bias.mutable_data<float,
// cl::Image2D>(
// bias_image_width, bias_image_height,
// bias_image_v.data());
}
SHADOW_LOG
<<
"resize output ..."
;
output
.
Resize
(
out_dim
);
// cpu conv basic calc
lite
::
Tensor
out_ref
;
out_ref
.
Resize
(
out_dim
);
SHADOW_LOG
<<
"prepare kernel ready"
;
SHADOW_LOG
<<
"kernel launch ..."
;
kernel
->
Launch
();
SHADOW_LOG
<<
"mutable output ..."
;
auto
*
output_image2d
=
output
.
mutable_data
<
float
,
cl
::
Image2D
>
(
out_image_width
,
out_image_height
);
auto
*
wait_list
=
context
->
As
<
OpenCLContext
>
().
cl_wait_list
();
auto
*
out_ptr
=
param
.
output
->
data
<
float
,
cl
::
Image2D
>
();
auto
it
=
wait_list
->
find
(
out_ptr
);
if
(
it
!=
wait_list
->
end
())
{
SHADOW_LOG
<<
"--- Find the sync event for the target cl "
"tensor. ---"
;
auto
&
event
=
*
(
it
->
second
);
event
.
wait
();
}
else
{
LOG
(
FATAL
)
<<
"Could not find the sync event for the target "
"cl tensor."
;
}
TargetWrapperCL
::
ImgcpySync
(
out_image_v
.
data
(),
output
.
data
<
float
,
cl
::
Image2D
>
(),
out_image_width
,
out_image_height
,
cl_image2d_row_pitch
,
cl_image2d_slice_pitch
,
IoDirection
::
DtoH
);
DDim
out_image_shape
=
default_convertor
.
InitImageDimInfoWith
(
output
.
dims
());
default_convertor
.
ImageToNCHW
(
out_image_v
.
data
(),
output_v
.
data
(),
out_image_shape
,
output
.
dims
());
SHADOW_LOG
<<
"输出: ---- "
;
for
(
int
i
=
0
;
i
<
output_v
.
size
();
i
++
)
{
SHADOW_LOG
<<
"("
<<
i
<<
")"
<<
output_v
[
i
];
}
SHADOW_LOG
<<
"输出image: ---- "
;
for
(
int
i
=
0
;
i
<
out_image_v
.
size
();
i
++
)
{
SHADOW_LOG
<<
"("
<<
i
<<
")"
<<
out_image_v
[
i
];
}
SHADOW_LOG
<<
"mutable_data out_ref_data: "
;
// run cpu ref
auto
*
out_ref_data
=
out_ref
.
mutable_data
<
float
>
(
TARGET
(
kARM
));
SHADOW_LOG
<<
" conv_basic beigin ..... "
;
conv_basic
<
float
,
float
>
(
input_v
.
data
(),
out_ref_data
,
batch_size
,
oc
,
oh
,
ow
,
ic
,
ih
,
iw
,
filter_v
.
data
(),
bias_v
.
data
(),
// mapped_bias,
group
,
ksize
,
ksize
,
stride
,
stride
,
dilation
,
dilation
,
pad
,
pad
,
bias_flag
,
relu_flag
);
SHADOW_LOG
<<
" conv_basic end ..... "
;
SHADOW_LOG
<<
" out_dim: "
<<
out_dim
;
const
DDim
&
out_image_dims
=
lite
::
DDim
{
std
::
vector
<
int64_t
>
(
{
static_cast
<
int64_t
>
(
out_image_width
),
static_cast
<
int64_t
>
(
out_image_height
)})};
#ifdef PRINT_RESULT
for
(
int
i
=
0
;
i
<
out_dim
.
production
();
i
++
)
{
VLOG
(
4
)
<<
"output_v["
<<
i
<<
"]:"
<<
output_v
[
i
]
<<
" out_ref_data["
<<
i
<<
"]:"
<<
out_ref_data
[
i
];
}
#endif
for
(
int
i
=
0
;
i
<
out_dim
.
production
();
i
++
)
{
EXPECT_NEAR
(
output_v
[
i
],
out_ref_data
[
i
],
1e-2
);
if
(
abs
(
output_v
[
i
]
-
out_ref_data
[
i
])
>
1e-2
)
{
LOG
(
FATAL
)
<<
"error idx:"
<<
i
;
}
}
#ifdef LOOP_TEST
}
}
}
}
}
}
#else
// nothing to do.
#endif
}
#undef LOOP_TEST
#undef PRINT_RESULT
// #define PRINT_RESULT
// #define PRINT_RESULT
// #define LOOP_TEST
// #define LOOP_TEST
TEST
(
conv2d
,
compute_image2d_5x5
)
{
TEST
(
conv2d
,
compute_image2d_5x5
)
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录