Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
ae0e0530
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ae0e0530
编写于
5月 19, 2018
作者:
E
eclipsess
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add batchnorm and batchnorm_test
上级
fcb16d5d
变更
11
显示空白变更内容
内联
并排
Showing
11 changed file
with
464 addition
and
57 deletion
+464
-57
src/operators/batchnorm_op.cpp
src/operators/batchnorm_op.cpp
+31
-0
src/operators/batchnorm_op.h
src/operators/batchnorm_op.h
+52
-0
src/operators/kernel/arm/batchnorm_kernel.cpp
src/operators/kernel/arm/batchnorm_kernel.cpp
+93
-0
src/operators/kernel/batchnorm_kernel.h
src/operators/kernel/batchnorm_kernel.h
+36
-0
src/operators/op_param.h
src/operators/op_param.h
+72
-0
test/CMakeLists.txt
test/CMakeLists.txt
+4
-0
test/operators/test_batchnorm_op.cpp
test/operators/test_batchnorm_op.cpp
+176
-0
test/operators/test_concat_op.cpp
test/operators/test_concat_op.cpp
+0
-15
test/operators/test_elementwise_add_op.cpp
test/operators/test_elementwise_add_op.cpp
+0
-12
test/operators/test_lrn_op.cpp
test/operators/test_lrn_op.cpp
+0
-15
test/operators/test_mul_op.cpp
test/operators/test_mul_op.cpp
+0
-15
未找到文件。
src/operators/batchnorm_op.cpp
0 → 100644
浏览文件 @
ae0e0530
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include "batchnorm_op.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
Dtype
,
typename
T
>
void
BatchNormOp
<
Dtype
,
T
>::
InferShape
()
const
{
auto
x_dims
=
param_
.
InputX
()
->
dims
();
param_
.
OutputY
()
->
Resize
(
x_dims
);
}
template
class
BatchNormOp
<
CPU
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
src/operators/batchnorm_op.h
0 → 100644
浏览文件 @
ae0e0530
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include "framework/operator.h"
#include "operators/kernel/batchnorm_kernel.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
using
namespace
framework
;
template
<
typename
DeviceType
,
typename
T
>
class
BatchNormOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
>
{
public:
BatchNormOp
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
>
(
type
,
inputs
,
outputs
,
attrs
,
scope
),
param_
(
inputs
,
outputs
,
attrs
,
*
scope
)
{}
void
Run
()
const
{
operators
::
BatchNormKernel
<
DeviceType
,
T
>
kernel
;
kernel
.
Compute
(
param_
);
}
using
framework
::
OperatorWithKernel
<
DeviceType
>::
OperatorWithKernel
;
void
InferShape
()
const
override
;
protected:
BatchNormParam
param_
;
};
}
// namespace operators
}
// namespace paddle_mobile
src/operators/kernel/arm/batchnorm_kernel.cpp
0 → 100644
浏览文件 @
ae0e0530
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "operators/kernel/batchnorm_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
>
void
BatchNormKernel
<
CPU
,
float
>::
Compute
(
const
BatchNormParam
&
param
)
const
{
/// todo: test.
const
Tensor
*
input_x
=
param
.
InputX
();
auto
input_x_ptr
=
input_x
->
data
<
float
>
();
const
auto
&
x_dims
=
input_x
->
dims
();
const
int
N
=
x_dims
[
0
];
const
int
C
=
x_dims
[
1
];
const
int
H
=
x_dims
[
2
];
const
int
W
=
x_dims
[
3
];
const
int
stride0
=
C
*
H
*
W
;
const
int
stride1
=
H
*
W
;
const
int
stride2
=
W
;
Tensor
*
out
=
param
.
OutputY
();
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
const
float
epsilon
=
param
.
Epsilon
();
const
Tensor
*
mean
=
param
.
InputMean
();
const
Tensor
*
variance
=
param
.
InputVariance
();
const
Tensor
*
scale
=
param
.
InputScale
();
const
Tensor
*
bias
=
param
.
InputBias
();
auto
mean_ptr
=
mean
->
data
<
float
>
();
auto
variance_ptr
=
variance
->
data
<
float
>
();
auto
scale_ptr
=
scale
->
data
<
float
>
();
auto
bias_ptr
=
bias
->
data
<
float
>
();
Tensor
inv_std
;
auto
inv_std_ptr
=
inv_std
.
mutable_data
<
float
>
(
make_ddim
({
C
}));
if
(
C
!=
variance
->
numel
())
{
std
::
cout
<<
"C must equal to variance.numel()"
<<
std
::
endl
;
}
assert
(
C
==
variance
->
numel
());
/// std = (var + epsilon).sqrt();
/// inv_std = 1 / std;
for
(
int
i
=
0
;
i
<
C
;
i
++
)
{
inv_std_ptr
[
i
]
=
1
/
static_cast
<
float
>
(
pow
((
variance_ptr
[
i
]
+
epsilon
),
0.5
));
}
Tensor
new_scale
;
auto
new_scale_ptr
=
new_scale
.
mutable_data
<
float
>
(
make_ddim
({
C
}));
Tensor
new_bias
;
auto
new_bias_ptr
=
new_bias
.
mutable_data
<
float
>
(
make_ddim
({
C
}));
/// ((x - est_mean) * (inv_var) * scale + bias equal to
/// (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
for
(
int
i
=
0
;
i
<
C
;
i
++
)
{
new_scale_ptr
[
i
]
=
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
new_bias_ptr
[
i
]
=
bias_ptr
[
i
]
-
mean_ptr
[
i
]
*
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
{
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
h
=
0
;
h
<
H
;
h
++
)
{
for
(
int
w
=
0
;
w
<
W
;
w
++
)
{
int
index
=
n
*
stride0
+
i
*
stride1
+
h
*
stride2
+
w
;
out_ptr
[
index
]
=
input_x_ptr
[
index
]
*
new_scale_ptr
[
i
]
+
new_bias_ptr
[
i
];
}
}
}
}
}
DLOG
<<
"input[2,5,1,0](input[102]) ,channel 5 :"
;
DLOG
<<
"input_x_ptr : "
<<
input_x_ptr
[
102
];
DLOG
<<
"variance : "
<<
variance_ptr
[
5
];
DLOG
<<
"inv_std_ptr : "
<<
inv_std_ptr
[
5
];
DLOG
<<
"new_scale_ptr : "
<<
new_scale_ptr
[
5
];
DLOG
<<
"new_bias_ptr : "
<<
new_bias_ptr
[
5
];
DLOG
<<
"out_ptr : "
<<
out_ptr
[
102
];
}
}
// namespace operators
}
// namespace paddle_mobile
src/operators/kernel/batchnorm_kernel.h
0 → 100644
浏览文件 @
ae0e0530
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include "framework/operator.h"
#include "operators/op_param.h"
#pragma once;
namespace
paddle_mobile
{
namespace
operators
{
using
namespace
framework
;
template
<
typename
DeviceType
,
typename
T
>
class
BatchNormKernel
:
public
framework
::
OpKernelBase
<
DeviceType
,
BatchNormParam
>
{
public:
void
Compute
(
const
BatchNormParam
&
param
)
const
;
};
}
// namespace operators
}
// namespace paddle_mobile
src/operators/op_param.h
浏览文件 @
ae0e0530
...
@@ -48,6 +48,25 @@ class OpParam : PaddleMobileObject {
...
@@ -48,6 +48,25 @@ class OpParam : PaddleMobileObject {
return
GetVarValue
<
T
>
(
"Y"
,
inputs
,
scope
);
return
GetVarValue
<
T
>
(
"Y"
,
inputs
,
scope
);
}
}
template
<
typename
T
>
static
T
*
InputBiasFrom
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"Bias"
,
inputs
,
scope
);
}
template
<
typename
T
>
static
T
*
InputVarianceFrom
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"Variance"
,
inputs
,
scope
);
}
template
<
typename
T
>
static
T
*
InputMeanFrom
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"Mean"
,
inputs
,
scope
);
}
template
<
typename
T
>
static
T
*
InputScaleFrom
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"Scale"
,
inputs
,
scope
);
}
template
<
typename
T
>
template
<
typename
T
>
static
std
::
vector
<
T
*>
InputMultiFrom
(
const
VariableNameMap
&
inputs
,
static
std
::
vector
<
T
*>
InputMultiFrom
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
const
Scope
&
scope
)
{
...
@@ -64,6 +83,11 @@ class OpParam : PaddleMobileObject {
...
@@ -64,6 +83,11 @@ class OpParam : PaddleMobileObject {
return
GetVarValue
<
T
>
(
"Out"
,
outputs
,
scope
);
return
GetVarValue
<
T
>
(
"Out"
,
outputs
,
scope
);
}
}
template
<
typename
T
>
static
T
*
OutputYFrom
(
const
VariableNameMap
&
outputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"Y"
,
outputs
,
scope
);
}
template
<
typename
T
>
template
<
typename
T
>
static
T
*
MidOutFrom
(
const
VariableNameMap
&
outputs
,
const
Scope
&
scope
)
{
static
T
*
MidOutFrom
(
const
VariableNameMap
&
outputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"MidOut"
,
outputs
,
scope
);
return
GetVarValue
<
T
>
(
"MidOut"
,
outputs
,
scope
);
...
@@ -268,6 +292,54 @@ class LrnParam : public OpParam {
...
@@ -268,6 +292,54 @@ class LrnParam : public OpParam {
float
k_
;
float
k_
;
std
::
string
data_format_
;
std
::
string
data_format_
;
};
};
class
BatchNormParam
:
OpParam
{
public:
BatchNormParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
input_x_
=
InputXFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
output_y_
=
OutputYFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
input_bias_
=
InputBiasFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
input_mean_
=
InputMeanFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
input_scale_
=
InputScaleFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
input_variance_
=
InputVarianceFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
epsilon_
=
GetAttr
<
float
>
(
"epsilon"
,
attrs
);
momentum_
=
GetAttr
<
float
>
(
"momentum"
,
attrs
);
is_test_
=
GetAttr
<
bool
>
(
"is_test"
,
attrs
);
}
const
Tensor
*
InputX
()
const
{
return
input_x_
;
}
Tensor
*
OutputY
()
const
{
return
output_y_
;
}
const
Tensor
*
InputBias
()
const
{
return
input_bias_
;
}
const
Tensor
*
InputMean
()
const
{
return
input_mean_
;
}
const
Tensor
*
InputScale
()
const
{
return
input_scale_
;
}
const
Tensor
*
InputVariance
()
const
{
return
input_variance_
;
}
const
float
&
Epsilon
()
const
{
return
epsilon_
;
}
const
float
&
Momentum
()
const
{
return
momentum_
;
}
const
bool
&
IsTest
()
const
{
return
is_test_
;
}
const
std
::
string
&
DataFormat
()
const
{
return
data_format_
;
}
private:
Tensor
*
input_x_
;
Tensor
*
output_y_
;
Tensor
*
input_bias_
;
Tensor
*
input_mean_
;
Tensor
*
input_scale_
;
Tensor
*
input_variance_
;
float
epsilon_
;
float
momentum_
;
bool
is_test_
;
std
::
string
data_format_
;
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
test/CMakeLists.txt
浏览文件 @
ae0e0530
...
@@ -19,6 +19,10 @@ target_link_libraries(test-concat-op paddle-mobile)
...
@@ -19,6 +19,10 @@ target_link_libraries(test-concat-op paddle-mobile)
ADD_EXECUTABLE
(
test-lrn-op operators/test_lrn_op.cpp test_helper.h test_include.h
)
ADD_EXECUTABLE
(
test-lrn-op operators/test_lrn_op.cpp test_helper.h test_include.h
)
target_link_libraries
(
test-lrn-op paddle-mobile
)
target_link_libraries
(
test-lrn-op paddle-mobile
)
# gen test
ADD_EXECUTABLE
(
test-batchnorm-op operators/test_batchnorm_op.cpp test_helper.h test_include.h
)
target_link_libraries
(
test-batchnorm-op paddle-mobile
)
# gen test log
# gen test log
ADD_EXECUTABLE
(
test-log common/test_log.cpp
)
ADD_EXECUTABLE
(
test-log common/test_log.cpp
)
target_link_libraries
(
test-log paddle-mobile
)
target_link_libraries
(
test-log paddle-mobile
)
...
...
test/operators/test_batchnorm_op.cpp
0 → 100644
浏览文件 @
ae0e0530
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#pragma once
#include "../test_include.h"
#include "operators/batchnorm_op.h"
namespace
paddle_mobile
{
namespace
framework
{
template
<
typename
Dtype
>
class
TestBatchNormOp
{
public:
explicit
TestBatchNormOp
(
const
Program
<
Dtype
>
p
)
:
program_
(
p
)
{
if
(
use_optimize_
)
{
to_predict_program_
=
program_
.
optimizeProgram
;
}
else
{
to_predict_program_
=
program_
.
originProgram
;
}
const
std
::
vector
<
std
::
shared_ptr
<
BlockDesc
>>
blocks
=
to_predict_program_
->
Blocks
();
// DLOG << " **block size " << blocks.size();
for
(
int
i
=
0
;
i
<
blocks
.
size
();
++
i
)
{
std
::
shared_ptr
<
BlockDesc
>
block_desc
=
blocks
[
i
];
std
::
vector
<
std
::
shared_ptr
<
OpDesc
>>
ops
=
block_desc
->
Ops
();
// DLOG << " ops " << ops.size();
for
(
int
j
=
0
;
j
<
ops
.
size
();
++
j
)
{
std
::
shared_ptr
<
OpDesc
>
op
=
ops
[
j
];
if
(
op
->
Type
()
==
"batch_norm"
&&
op
->
Input
(
"X"
)[
0
]
==
"conv2d_0.tmp_0"
)
{
DLOG
<<
" mul attr size: "
<<
op
->
GetAttrMap
().
size
();
DLOG
<<
" inputs size: "
<<
op
->
GetInputs
().
size
();
DLOG
<<
" outputs size: "
<<
op
->
GetOutputs
().
size
();
DLOG
<<
" Input X is : "
<<
op
->
Input
(
"X"
)[
0
];
DLOG
<<
" Input Mean is : "
<<
op
->
Input
(
"Mean"
)[
0
];
DLOG
<<
" Input Variance is : "
<<
op
->
Input
(
"Variance"
)[
0
];
DLOG
<<
" Input Scale is : "
<<
op
->
Input
(
"Scale"
)[
0
];
DLOG
<<
" Input Bias is : "
<<
op
->
Input
(
"Bias"
)[
0
];
DLOG
<<
" Output Y is : "
<<
op
->
Output
(
"Y"
)[
0
];
DLOG
<<
" epsilon : "
<<
op
->
GetAttrMap
().
at
(
"epsilon"
).
Get
<
float
>
();
std
::
shared_ptr
<
operators
::
BatchNormOp
<
Dtype
,
float
>>
lrn
=
std
::
make_shared
<
operators
::
BatchNormOp
<
Dtype
,
float
>>
(
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
program_
.
scope
);
ops_of_block_
[
*
block_desc
.
get
()].
push_back
(
lrn
);
}
}
}
}
std
::
shared_ptr
<
Tensor
>
predict_bn
(
Tensor
&
t1
,
Tensor
&
t2
,
Tensor
&
t3
,
Tensor
&
t4
,
Tensor
&
t5
)
{
// feed
auto
scope
=
program_
.
scope
;
Variable
*
x1_feed_value
=
scope
->
Var
(
"conv2d_0.tmp_0"
);
auto
tensor_x1
=
x1_feed_value
->
GetMutable
<
Tensor
>
();
tensor_x1
->
ShareDataWith
(
t1
);
Variable
*
mean_feed_value
=
scope
->
Var
(
"batch_norm_0.w_1"
);
auto
tensor_mean
=
mean_feed_value
->
GetMutable
<
Tensor
>
();
tensor_mean
->
ShareDataWith
(
t2
);
Variable
*
scale_feed_value
=
scope
->
Var
(
"batch_norm_0.w_0"
);
auto
tensor_scale
=
scale_feed_value
->
GetMutable
<
Tensor
>
();
tensor_scale
->
ShareDataWith
(
t3
);
Variable
*
variance_feed_value
=
scope
->
Var
(
"batch_norm_0.w_2"
);
auto
tensor_variance
=
variance_feed_value
->
GetMutable
<
Tensor
>
();
tensor_variance
->
ShareDataWith
(
t4
);
Variable
*
bias_feed_value
=
scope
->
Var
(
"batch_norm_0.b_0"
);
auto
tensor_bias
=
bias_feed_value
->
GetMutable
<
Tensor
>
();
tensor_bias
->
ShareDataWith
(
t5
);
Variable
*
output
=
scope
->
Var
(
"batch_norm_0.tmp_2"
);
auto
*
output_tensor
=
output
->
GetMutable
<
Tensor
>
();
output_tensor
->
mutable_data
<
float
>
({
4
,
10
,
2
,
2
});
// DLOG << typeid(output_tensor).name();
// DLOG << "output_tensor dims: " << output_tensor->dims();
std
::
shared_ptr
<
Tensor
>
out_tensor
=
std
::
make_shared
<
LoDTensor
>
();
out_tensor
.
reset
(
output_tensor
);
predict_bn
(
t1
,
t2
,
t3
,
t4
,
t5
,
0
);
return
out_tensor
;
}
private:
const
framework
::
Program
<
Dtype
>
program_
;
std
::
shared_ptr
<
ProgramDesc
>
to_predict_program_
;
std
::
map
<
framework
::
BlockDesc
,
std
::
vector
<
std
::
shared_ptr
<
OperatorBase
<
Dtype
>>>>
ops_of_block_
;
bool
use_optimize_
=
false
;
void
predict_bn
(
const
Tensor
&
t1
,
const
Tensor
&
t2
,
const
Tensor
&
t3
,
const
Tensor
&
t4
,
const
Tensor
&
t5
,
int
block_id
)
{
std
::
shared_ptr
<
BlockDesc
>
to_predict_block
=
to_predict_program_
->
Block
(
block_id
);
for
(
int
j
=
0
;
j
<
ops_of_block_
[
*
to_predict_block
.
get
()].
size
();
++
j
)
{
auto
op
=
ops_of_block_
[
*
to_predict_block
.
get
()][
j
];
DLOG
<<
"op -> run()"
;
op
->
Run
();
}
}
};
template
class
TestBatchNormOp
<
CPU
>;
}
// namespace framework
}
// namespace paddle_mobile
int
main
()
{
DLOG
<<
"----------**********----------"
;
DLOG
<<
"begin to run BatchNormOp Test"
;
paddle_mobile
::
Loader
<
paddle_mobile
::
CPU
>
loader
;
auto
program
=
loader
.
Load
(
std
::
string
(
"../../test/models/image_classification_resnet.inference.model"
));
/// input x (4,10,2,2)
paddle_mobile
::
framework
::
Tensor
inputx1
;
SetupTensor
<
float
>
(
&
inputx1
,
{
4
,
10
,
2
,
2
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
auto
*
inputx1_ptr
=
inputx1
.
data
<
float
>
();
paddle_mobile
::
framework
::
Tensor
mean
;
SetupTensor
<
float
>
(
&
mean
,
{
10
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
auto
*
mean_ptr
=
mean
.
data
<
float
>
();
paddle_mobile
::
framework
::
Tensor
scale
;
SetupTensor
<
float
>
(
&
scale
,
{
10
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
auto
*
scale_ptr
=
scale
.
data
<
float
>
();
paddle_mobile
::
framework
::
Tensor
variance
;
SetupTensor
<
float
>
(
&
variance
,
{
10
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
auto
*
variance_ptr
=
variance
.
data
<
float
>
();
paddle_mobile
::
framework
::
Tensor
bias
;
SetupTensor
<
float
>
(
&
bias
,
{
10
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
auto
*
bias_ptr
=
bias
.
data
<
float
>
();
paddle_mobile
::
framework
::
TestBatchNormOp
<
paddle_mobile
::
CPU
>
testBatchNormOp
(
program
);
auto
output_bn
=
testBatchNormOp
.
predict_bn
(
inputx1
,
mean
,
scale
,
variance
,
bias
);
auto
*
output_bn_ptr
=
output_bn
->
data
<
float
>
();
/// [2, 5, 1, 0]
DLOG
<<
" ("
<<
inputx1_ptr
[
102
]
<<
" - "
<<
mean_ptr
[
5
]
<<
")/(("
<<
variance_ptr
[
5
]
<<
" + 0.00001"
<<
")^0.5)* "
<<
scale_ptr
[
5
]
<<
" + "
<<
bias_ptr
[
5
]
<<
" = "
;
DLOG
<<
output_bn_ptr
[
102
];
return
0
;
}
test/operators/test_concat_op.cpp
浏览文件 @
ae0e0530
...
@@ -41,21 +41,6 @@ template <typename Dtype> class TestConcatOp {
...
@@ -41,21 +41,6 @@ template <typename Dtype> class TestConcatOp {
// DLOG << " ops " << ops.size();
// DLOG << " ops " << ops.size();
for
(
int
j
=
0
;
j
<
ops
.
size
();
++
j
)
{
for
(
int
j
=
0
;
j
<
ops
.
size
();
++
j
)
{
std
::
shared_ptr
<
OpDesc
>
op
=
ops
[
j
];
std
::
shared_ptr
<
OpDesc
>
op
=
ops
[
j
];
// if (op->Type() == "mul") {
// DLOG << "x_num_col_dims :
// "
// << op->GetAttrMap()
// .at("x_num_col_dims")
// .Get<int>();
// DLOG << "y_num_col_dims :
// "
// << op->GetAttrMap()
// .at("y_num_col_dims")
// .Get<int>();
// DLOG << " Input X is : "
// << op->Input("X")[0];
// }
// DLOG << "op:" << op->Type();
if
(
op
->
Type
()
==
"concat"
&&
if
(
op
->
Type
()
==
"concat"
&&
op
->
Input
(
"X"
)[
0
]
==
"conv2d_3.tmp_1"
)
{
op
->
Input
(
"X"
)[
0
]
==
"conv2d_3.tmp_1"
)
{
DLOG
<<
" mul attr size: "
<<
op
->
GetAttrMap
().
size
();
DLOG
<<
" mul attr size: "
<<
op
->
GetAttrMap
().
size
();
...
...
test/operators/test_elementwise_add_op.cpp
浏览文件 @
ae0e0530
...
@@ -41,18 +41,6 @@ template <typename Dtype> class TestElementwiseAddOp {
...
@@ -41,18 +41,6 @@ template <typename Dtype> class TestElementwiseAddOp {
// DLOG << " ops " << ops.size();
// DLOG << " ops " << ops.size();
for
(
int
j
=
0
;
j
<
ops
.
size
();
++
j
)
{
for
(
int
j
=
0
;
j
<
ops
.
size
();
++
j
)
{
std
::
shared_ptr
<
OpDesc
>
op
=
ops
[
j
];
std
::
shared_ptr
<
OpDesc
>
op
=
ops
[
j
];
// if (op->Type() ==
// "elementwise_add") {
// if
// (op->GetAttrMap().at("axis").Get<int>()
// != -1) {
// DLOG << "attr: axis =
// "
// <<
// op->GetAttrMap().at("axis").Get<int>();
// }
// }
// DLOG << "op:" << op->Type();
if
(
op
->
Type
()
==
"elementwise_add"
&&
if
(
op
->
Type
()
==
"elementwise_add"
&&
op
->
Input
(
"X"
)[
0
]
==
"batch_norm_2.tmp_2"
)
{
op
->
Input
(
"X"
)[
0
]
==
"batch_norm_2.tmp_2"
)
{
DLOG
<<
" elementwise_add attr size: "
DLOG
<<
" elementwise_add attr size: "
...
...
test/operators/test_lrn_op.cpp
浏览文件 @
ae0e0530
...
@@ -41,21 +41,6 @@ template <typename Dtype> class TestLrnOp {
...
@@ -41,21 +41,6 @@ template <typename Dtype> class TestLrnOp {
// DLOG << " ops " << ops.size();
// DLOG << " ops " << ops.size();
for
(
int
j
=
0
;
j
<
ops
.
size
();
++
j
)
{
for
(
int
j
=
0
;
j
<
ops
.
size
();
++
j
)
{
std
::
shared_ptr
<
OpDesc
>
op
=
ops
[
j
];
std
::
shared_ptr
<
OpDesc
>
op
=
ops
[
j
];
// if (op->Type() == "mul") {
// DLOG << "x_num_col_dims :
// "
// << op->GetAttrMap()
// .at("x_num_col_dims")
// .Get<int>();
// DLOG << "y_num_col_dims :
// "
// << op->GetAttrMap()
// .at("y_num_col_dims")
// .Get<int>();
// DLOG << " Input X is : "
// << op->Input("X")[0];
// }
// DLOG << "op:" << op->Type();
if
(
op
->
Type
()
==
"lrn"
&&
if
(
op
->
Type
()
==
"lrn"
&&
op
->
Input
(
"X"
)[
0
]
==
"pool2d_0.tmp_0"
)
{
op
->
Input
(
"X"
)[
0
]
==
"pool2d_0.tmp_0"
)
{
DLOG
<<
" mul attr size: "
<<
op
->
GetAttrMap
().
size
();
DLOG
<<
" mul attr size: "
<<
op
->
GetAttrMap
().
size
();
...
...
test/operators/test_mul_op.cpp
浏览文件 @
ae0e0530
...
@@ -41,21 +41,6 @@ template <typename Dtype> class TestMulOp {
...
@@ -41,21 +41,6 @@ template <typename Dtype> class TestMulOp {
// DLOG << " ops " << ops.size();
// DLOG << " ops " << ops.size();
for
(
int
j
=
0
;
j
<
ops
.
size
();
++
j
)
{
for
(
int
j
=
0
;
j
<
ops
.
size
();
++
j
)
{
std
::
shared_ptr
<
OpDesc
>
op
=
ops
[
j
];
std
::
shared_ptr
<
OpDesc
>
op
=
ops
[
j
];
// if (op->Type() == "mul") {
// DLOG << "x_num_col_dims :
// "
// << op->GetAttrMap()
// .at("x_num_col_dims")
// .Get<int>();
// DLOG << "y_num_col_dims :
// "
// << op->GetAttrMap()
// .at("y_num_col_dims")
// .Get<int>();
// DLOG << " Input X is : "
// << op->Input("X")[0];
// }
// DLOG << "op:" << op->Type();
if
(
op
->
Type
()
==
"mul"
&&
if
(
op
->
Type
()
==
"mul"
&&
op
->
Input
(
"X"
)[
0
]
==
"pool2d_0.tmp_0"
)
{
op
->
Input
(
"X"
)[
0
]
==
"pool2d_0.tmp_0"
)
{
DLOG
<<
" mul attr size: "
<<
op
->
GetAttrMap
().
size
();
DLOG
<<
" mul attr size: "
<<
op
->
GetAttrMap
().
size
();
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录