Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
ac3e7709
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ac3e7709
编写于
8月 14, 2018
作者:
qnqinan
提交者:
GitHub
8月 14, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into develop
上级
69783c3b
80fa3521
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
299 addition
and
246 deletion
+299
-246
src/operators/math/depthwise_conv_3x3.cpp
src/operators/math/depthwise_conv_3x3.cpp
+234
-245
test/CMakeLists.txt
test/CMakeLists.txt
+9
-0
test/net/test_mobilenet.cpp
test/net/test_mobilenet.cpp
+3
-0
test/net/test_mobilenet_combine.cpp
test/net/test_mobilenet_combine.cpp
+51
-0
test/test_helper.h
test/test_helper.h
+1
-0
tools/op.cmake
tools/op.cmake
+1
-1
未找到文件。
src/operators/math/depthwise_conv_3x3.cpp
浏览文件 @
ac3e7709
...
...
@@ -699,7 +699,7 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
:
output_data
[(
output_height
-
1
)
*
output_width
+
j
];
}
}
#pragma omp parallel for
#pragma omp parallel for
for
(
int
i
=
1
;
i
<
output_height
-
1
;
i
++
)
{
for
(
int
m
=
1
;
(
m
+
3
)
<
output_width
-
1
;
m
=
m
+
4
)
{
float
*
output_ptr
=
output_data
+
i
*
output_width
+
m
;
...
...
@@ -1466,6 +1466,7 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
Tensor
*
output
,
const
Tensor
*
new_scale
,
const
Tensor
*
new_bias
,
bool
if_relu
)
{
#if __ARM_NEON
#ifdef _OPENMP
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
...
...
@@ -1642,251 +1643,239 @@ void DepthwiseConvAddBNRelu3x3s2p1v2(const Tensor *input, const Tensor *filter,
}
}
// const float *input_data = input->data<float>();
// const float *filter_data = filter->data<float>();
// float *output_data = output->data<float>();
// const float *newscale_data = new_scale->data<float>();
// const float *newbias_data = new_bias->data<float>();
//
// float32x4_t vnewbias = vdupq_n_f32(0.0);
// float32x4_t vnewscale = vdupq_n_f32(1.0);
//
// const int in_h = static_cast<int>(input->dims()[2]);
// const int in_w = static_cast<int>(input->dims()[3]);
// const int out_h = static_cast<int>(output->dims()[2]);
// const int out_w = static_cast<int>(output->dims()[3]);
// const int out_l = out_h;
// const int in_l = in_h;
// const int inhxw = in_h * in_w;
// const int outhxw = out_h * out_w;
// const int if_pad = in_l - 1 == (out_l - 1) * 2 ? 1 : 0;
// const int batch_size = static_cast<int>(input->dims()[0]);
// const int c = static_cast<int>(input->dims()[1]);
// const float *input_row_ptr;
// float *output_row_ptr;
//
// const int w_times = (out_w - 2) / 3;
//
// float32x4x2_t input_buff_mid{}, input_buff_bottom[w_times + 1];
// float32x4_t elewise_res0, elewise_res1, elewise_res2, res3;
// int out2in_mid;
// float32x4_t zero = vdupq_n_f32(0.0);
// for (int b = batch_size; b > 0; --b) {
// const float *filter_data_tmp = filter_data;
// for (int j = 0; j < c; ++j) {
// auto output_data_tmp = output_data + j * out_h * out_w;
// auto input_data_tmp = input_data + j * in_h * in_w;
// auto input_const = input_data_tmp;
//
// vnewbias = vdupq_n_f32(newbias_data[j]);
// vnewscale = vdupq_n_f32(newscale_data[j]);
//
// float w00 = filter_data_tmp[0];
// float w01 = filter_data_tmp[1];
// float w02 = filter_data_tmp[2];
// float w10 = filter_data_tmp[3];
// float w11 = filter_data_tmp[4];
// float w12 = filter_data_tmp[5];
// float w20 = filter_data_tmp[6];
// float w21 = filter_data_tmp[7];
// float w22 = filter_data_tmp[8];
//
// int h_mid = 0;
//
// for (; h_mid < out_h - 1; h_mid++) {
// input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
// output_row_ptr = output_data_tmp + 1 + h_mid * out_w;
//
// for (int w4 = 0; w4 < w_times + 1; w4++) {
// if (h_mid == 0) {
// elewise_res1 = zero;
// elewise_res0 = zero;
// elewise_res2 = zero;
// } else {
// elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
// elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
// elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);
// }
// input_buff_mid = vld2q_f32(input_row_ptr);
// input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);
//
// elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1],
// w11); elewise_res0 = vmlaq_n_f32(elewise_res0,
// input_buff_mid.val[0], w10); elewise_res2 =
// vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);
//
// elewise_res1 =
// vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1],
// w21);
// elewise_res0 =
// vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0],
// w20);
// elewise_res2 =
// vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0],
// w22);
//
// res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
// vaddq_f32(elewise_res0, elewise_res1));
// res3 = vmlaq_f32(vnewbias, vnewscale, res3);
//
// if (if_relu) {
// res3 = vmaxq_f32(res3, zero);
// }
// vst1q_f32(output_row_ptr, res3);
//
// input_row_ptr += 6;
// output_row_ptr += 3;
// }
// }
// clock();
//
// input_row_ptr = input_data_tmp + 1 + h_mid * 2 * in_w;
// output_row_ptr = output_data_tmp + 1 + h_mid * out_w;
//
// for (int w4 = 0; w4 < w_times + 1; w4++) {
// elewise_res1 = vmulq_n_f32(input_buff_bottom[w4].val[1], w01);
// elewise_res0 = vmulq_n_f32(input_buff_bottom[w4].val[0], w00);
// elewise_res2 = vmulq_n_f32(input_buff_bottom[w4].val[0], w02);
//
// input_buff_mid = vld2q_f32(input_row_ptr);
// input_buff_bottom[w4] = vld2q_f32(input_row_ptr + in_w);
//
// elewise_res1 = vmlaq_n_f32(elewise_res1, input_buff_mid.val[1],
// w11); elewise_res0 = vmlaq_n_f32(elewise_res0,
// input_buff_mid.val[0], w10); elewise_res2 =
// vmlaq_n_f32(elewise_res2, input_buff_mid.val[0], w12);
//
// if (!if_pad) {
// elewise_res1 =
// vmlaq_n_f32(elewise_res1, input_buff_bottom[w4].val[1],
// w21);
// elewise_res0 =
// vmlaq_n_f32(elewise_res0, input_buff_bottom[w4].val[0],
// w20);
// elewise_res2 =
// vmlaq_n_f32(elewise_res2, input_buff_bottom[w4].val[0],
// w22);
// }
// res3 = vaddq_f32(vextq_f32(elewise_res2, zero, 1),
// vaddq_f32(elewise_res0, elewise_res1));
// res3 = vmlaq_f32(vnewbias, vnewscale, res3);
//
// if (if_relu) {
// res3 = vmaxq_f32(res3, zero);
// }
// if ((w4 != w_times)) {
// vst1q_f32(output_row_ptr, res3);
// } else {
// if (out_l - 2 - w_times * 3 == 1) {
// vst1q_lane_f32(output_row_ptr, res3, 0);
// } else if (out_l - 2 - w_times * 3 == 2) {
// vst1q_lane_f32(output_row_ptr, res3, 0);
// vst1q_lane_f32(output_row_ptr + 1, res3, 1);
// }
// }
// input_row_ptr += 6;
// output_row_ptr += 3;
// }
//
// output_data_tmp[0] = input_const[0] * w11 + input_const[1] * w12 +
// input_const[in_l] * w21 +
// input_const[in_l + 1] * w22;
//
// out2in_mid = (out_l - 1) * 2;
// output_data_tmp[out_l - 1] =
// w10 * input_const[out2in_mid - 1] + w11 *
// input_const[out2in_mid] + w20 * input_const[out2in_mid + in_w -
// 1] + w21 * input_const[out2in_mid + in_w] + (1 - if_pad) * (w12
// * input_const[out2in_mid + 1] +
// w22 * input_const[out2in_mid + in_w + 1]);
//
// out2in_mid = (out_l - 1) * 2 * in_w;
//
// output_data_tmp[out_l * (out_l - 1)] =
// w01 * input_const[out2in_mid - in_w] +
// w02 * input_const[out2in_mid - in_w + 1] +
// w11 * input_const[out2in_mid] + w12 * input_const[out2in_mid +
// 1] + (1 - if_pad) * (w21 * input_const[out2in_mid + in_w] +
// w22 * input_const[out2in_mid + in_w + 1]);
// out2in_mid = (out_l - 1) * 2 * in_w + (out_l - 1) * 2;
//
// output_data_tmp[out_l * out_l - 1] =
// w00 * input_const[out2in_mid - in_w - 1] +
// w01 * input_const[out2in_mid - in_w] +
// w10 * input_const[out2in_mid - 1] + w11 *
// input_const[out2in_mid] + (1 - if_pad) * (w20 *
// input_const[out2in_mid + in_w - 1] +
// w21 * input_const[out2in_mid + in_w] +
// w02 * input_const[out2in_mid - in_w + 1] +
// w12 * input_const[out2in_mid + 1] +
// w22 * input_const[out2in_mid + in_w + 1]);
// output_data_tmp[0] =
// output_data_tmp[0] * newscale_data[j] + newbias_data[j];
// output_data_tmp[out_l - 1] =
// output_data_tmp[out_l - 1] * newscale_data[j] + newbias_data[j];
// output_data_tmp[out_l * (out_l - 1)] =
// output_data_tmp[out_l * (out_l - 1)] * newscale_data[j] +
// newbias_data[j];
// output_data_tmp[out_l * out_l - 1] =
// output_data_tmp[out_l * out_l - 1] * newscale_data[j] +
// newbias_data[j];
// if (if_relu) {
// output_data_tmp[0] = output_data_tmp[0] < 0 ? 0 :
// output_data_tmp[0]; output_data_tmp[out_l - 1] =
// output_data_tmp[out_l - 1] < 0 ? 0 : output_data_tmp[out_l -
// 1];
// output_data_tmp[out_l * (out_l - 1)] =
// output_data_tmp[out_l * (out_l - 1)] < 0
// ? 0
// : output_data_tmp[out_l * (out_l - 1)];
// output_data_tmp[out_l * out_l - 1] =
// output_data_tmp[out_l * out_l - 1] < 0
// ? 0
// : output_data_tmp[out_l * out_l - 1];
// }
// for (int i = 1; i < out_h - 1; i++) {
// out2in_mid = i * 2 * in_w;
// output_data_tmp[i * out_l] = w01 * input_const[out2in_mid - in_w]
// +
// w02 * input_const[out2in_mid - in_w +
// 1] + w11 * input_const[out2in_mid] +
// w12 * input_const[out2in_mid + 1] +
// w21 * input_const[out2in_mid + in_w]
// + w22 * input_const[out2in_mid + in_w
// + 1];
//
// out2in_mid = i * 2 * in_w + (out_l - 1) * 2;
// output_data_tmp[i * out_l + out_l - 1] =
// w00 * input_const[out2in_mid - in_w - 1] +
// w01 * input_const[out2in_mid - in_w] +
// w10 * input_const[out2in_mid - 1] + w11 *
// input_const[out2in_mid] + w20 * input_const[out2in_mid + in_w
// - 1] + w21 * input_const[out2in_mid + in_w] + (1 - if_pad) *
// (w02 * input_const[out2in_mid - in_w + 1] +
// w12 * input_const[out2in_mid + 1] +
// w22 * input_const[out2in_mid + in_w + 1]);
// output_data_tmp[i * out_l] =
// output_data_tmp[i * out_l] * newscale_data[j] +
// newbias_data[j];
// output_data_tmp[i * out_l + out_l - 1] =
// output_data_tmp[i * out_l + out_l - 1] * newscale_data[j] +
// newbias_data[j];
// if (if_relu) {
// output_data_tmp[i * out_l] =
// output_data_tmp[i * out_l] < 0 ? 0 : output_data_tmp[i *
// out_l];
// output_data_tmp[i * out_l + out_l - 1] =
// output_data_tmp[i * out_l + out_l - 1] < 0
// ? 0
// : output_data_tmp[i * out_l + out_l - 1];
// }
// }
// filter_data_tmp += 9;
// }
// input_data += inhxw * c;
// output_data += outhxw * c;
// }
#else
const
float
*
input_data
=
input
->
data
<
float
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
float
*
output_data
=
output
->
data
<
float
>
();
const
float
*
newscale_data
=
new_scale
->
data
<
float
>
();
const
float
*
newbias_data
=
new_bias
->
data
<
float
>
();
float32x4_t
vnewbias
=
vdupq_n_f32
(
0.0
);
float32x4_t
vnewscale
=
vdupq_n_f32
(
1.0
);
const
int
in_h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
in_w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
out_h
=
static_cast
<
int
>
(
output
->
dims
()[
2
]);
const
int
out_w
=
static_cast
<
int
>
(
output
->
dims
()[
3
]);
const
int
out_l
=
out_h
;
const
int
in_l
=
in_h
;
const
int
inhxw
=
in_h
*
in_w
;
const
int
outhxw
=
out_h
*
out_w
;
const
int
if_pad
=
in_l
-
1
==
(
out_l
-
1
)
*
2
?
1
:
0
;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
float
*
input_row_ptr
;
float
*
output_row_ptr
;
const
int
w_times
=
(
out_w
-
2
)
/
3
;
float32x4x2_t
input_buff_mid
{},
input_buff_bottom
[
w_times
+
1
];
float32x4_t
elewise_res0
,
elewise_res1
,
elewise_res2
,
res3
;
int
out2in_mid
;
float32x4_t
zero
=
vdupq_n_f32
(
0.0
);
for
(
int
b
=
batch_size
;
b
>
0
;
--
b
)
{
const
float
*
filter_data_tmp
=
filter_data
;
for
(
int
j
=
0
;
j
<
c
;
++
j
)
{
auto
output_data_tmp
=
output_data
+
j
*
out_h
*
out_w
;
auto
input_data_tmp
=
input_data
+
j
*
in_h
*
in_w
;
auto
input_const
=
input_data_tmp
;
vnewbias
=
vdupq_n_f32
(
newbias_data
[
j
]);
vnewscale
=
vdupq_n_f32
(
newscale_data
[
j
]);
float
w00
=
filter_data_tmp
[
0
];
float
w01
=
filter_data_tmp
[
1
];
float
w02
=
filter_data_tmp
[
2
];
float
w10
=
filter_data_tmp
[
3
];
float
w11
=
filter_data_tmp
[
4
];
float
w12
=
filter_data_tmp
[
5
];
float
w20
=
filter_data_tmp
[
6
];
float
w21
=
filter_data_tmp
[
7
];
float
w22
=
filter_data_tmp
[
8
];
int
h_mid
=
0
;
for
(;
h_mid
<
out_h
-
1
;
h_mid
++
)
{
input_row_ptr
=
input_data_tmp
+
1
+
h_mid
*
2
*
in_w
;
output_row_ptr
=
output_data_tmp
+
1
+
h_mid
*
out_w
;
for
(
int
w4
=
0
;
w4
<
w_times
+
1
;
w4
++
)
{
if
(
h_mid
==
0
)
{
elewise_res1
=
zero
;
elewise_res0
=
zero
;
elewise_res2
=
zero
;
}
else
{
elewise_res1
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
1
],
w01
);
elewise_res0
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w00
);
elewise_res2
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w02
);
}
input_buff_mid
=
vld2q_f32
(
input_row_ptr
);
input_buff_bottom
[
w4
]
=
vld2q_f32
(
input_row_ptr
+
in_w
);
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_mid
.
val
[
1
],
w11
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_mid
.
val
[
0
],
w10
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_mid
.
val
[
0
],
w12
);
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_bottom
[
w4
].
val
[
1
],
w21
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_bottom
[
w4
].
val
[
0
],
w20
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_bottom
[
w4
].
val
[
0
],
w22
);
res3
=
vaddq_f32
(
vextq_f32
(
elewise_res2
,
zero
,
1
),
vaddq_f32
(
elewise_res0
,
elewise_res1
));
res3
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
res3
);
if
(
if_relu
)
{
res3
=
vmaxq_f32
(
res3
,
zero
);
}
vst1q_f32
(
output_row_ptr
,
res3
);
input_row_ptr
+=
6
;
output_row_ptr
+=
3
;
}
}
clock
();
input_row_ptr
=
input_data_tmp
+
1
+
h_mid
*
2
*
in_w
;
output_row_ptr
=
output_data_tmp
+
1
+
h_mid
*
out_w
;
for
(
int
w4
=
0
;
w4
<
w_times
+
1
;
w4
++
)
{
elewise_res1
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
1
],
w01
);
elewise_res0
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w00
);
elewise_res2
=
vmulq_n_f32
(
input_buff_bottom
[
w4
].
val
[
0
],
w02
);
input_buff_mid
=
vld2q_f32
(
input_row_ptr
);
input_buff_bottom
[
w4
]
=
vld2q_f32
(
input_row_ptr
+
in_w
);
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_mid
.
val
[
1
],
w11
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_mid
.
val
[
0
],
w10
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_mid
.
val
[
0
],
w12
);
if
(
!
if_pad
)
{
elewise_res1
=
vmlaq_n_f32
(
elewise_res1
,
input_buff_bottom
[
w4
].
val
[
1
],
w21
);
elewise_res0
=
vmlaq_n_f32
(
elewise_res0
,
input_buff_bottom
[
w4
].
val
[
0
],
w20
);
elewise_res2
=
vmlaq_n_f32
(
elewise_res2
,
input_buff_bottom
[
w4
].
val
[
0
],
w22
);
}
res3
=
vaddq_f32
(
vextq_f32
(
elewise_res2
,
zero
,
1
),
vaddq_f32
(
elewise_res0
,
elewise_res1
));
res3
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
res3
);
if
(
if_relu
)
{
res3
=
vmaxq_f32
(
res3
,
zero
);
}
if
((
w4
!=
w_times
))
{
vst1q_f32
(
output_row_ptr
,
res3
);
}
else
{
if
(
out_l
-
2
-
w_times
*
3
==
1
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
}
else
if
(
out_l
-
2
-
w_times
*
3
==
2
)
{
vst1q_lane_f32
(
output_row_ptr
,
res3
,
0
);
vst1q_lane_f32
(
output_row_ptr
+
1
,
res3
,
1
);
}
}
input_row_ptr
+=
6
;
output_row_ptr
+=
3
;
}
output_data_tmp
[
0
]
=
input_const
[
0
]
*
w11
+
input_const
[
1
]
*
w12
+
input_const
[
in_l
]
*
w21
+
input_const
[
in_l
+
1
]
*
w22
;
out2in_mid
=
(
out_l
-
1
)
*
2
;
output_data_tmp
[
out_l
-
1
]
=
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
(
1
-
if_pad
)
*
(
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
out2in_mid
=
(
out_l
-
1
)
*
2
*
in_w
;
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
(
1
-
if_pad
)
*
(
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
out2in_mid
=
(
out_l
-
1
)
*
2
*
in_w
+
(
out_l
-
1
)
*
2
;
output_data_tmp
[
out_l
*
out_l
-
1
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
(
1
-
if_pad
)
*
(
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
output_data_tmp
[
0
]
=
output_data_tmp
[
0
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_l
-
1
]
=
output_data_tmp
[
out_l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
=
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
out_l
*
out_l
-
1
]
=
output_data_tmp
[
out_l
*
out_l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
if
(
if_relu
)
{
output_data_tmp
[
0
]
=
output_data_tmp
[
0
]
<
0
?
0
:
output_data_tmp
[
0
];
output_data_tmp
[
out_l
-
1
]
=
output_data_tmp
[
out_l
-
1
]
<
0
?
0
:
output_data_tmp
[
out_l
-
1
];
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
=
output_data_tmp
[
out_l
*
(
out_l
-
1
)]
<
0
?
0
:
output_data_tmp
[
out_l
*
(
out_l
-
1
)];
output_data_tmp
[
out_l
*
out_l
-
1
]
=
output_data_tmp
[
out_l
*
out_l
-
1
]
<
0
?
0
:
output_data_tmp
[
out_l
*
out_l
-
1
];
}
for
(
int
i
=
1
;
i
<
out_h
-
1
;
i
++
)
{
out2in_mid
=
i
*
2
*
in_w
;
output_data_tmp
[
i
*
out_l
]
=
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
];
out2in_mid
=
i
*
2
*
in_w
+
(
out_l
-
1
)
*
2
;
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
=
w00
*
input_const
[
out2in_mid
-
in_w
-
1
]
+
w01
*
input_const
[
out2in_mid
-
in_w
]
+
w10
*
input_const
[
out2in_mid
-
1
]
+
w11
*
input_const
[
out2in_mid
]
+
w20
*
input_const
[
out2in_mid
+
in_w
-
1
]
+
w21
*
input_const
[
out2in_mid
+
in_w
]
+
(
1
-
if_pad
)
*
(
w02
*
input_const
[
out2in_mid
-
in_w
+
1
]
+
w12
*
input_const
[
out2in_mid
+
1
]
+
w22
*
input_const
[
out2in_mid
+
in_w
+
1
]);
output_data_tmp
[
i
*
out_l
]
=
output_data_tmp
[
i
*
out_l
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
=
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
if
(
if_relu
)
{
output_data_tmp
[
i
*
out_l
]
=
output_data_tmp
[
i
*
out_l
]
<
0
?
0
:
output_data_tmp
[
i
*
out_l
];
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
=
output_data_tmp
[
i
*
out_l
+
out_l
-
1
]
<
0
?
0
:
output_data_tmp
[
i
*
out_l
+
out_l
-
1
];
}
}
filter_data_tmp
+=
9
;
}
input_data
+=
inhxw
*
c
;
output_data
+=
outhxw
*
c
;
}
#endif
#endif
}
...
...
test/CMakeLists.txt
浏览文件 @
ac3e7709
...
...
@@ -9,6 +9,11 @@ elseif ("mobilenet" IN_LIST NET)
# gen test
ADD_EXECUTABLE
(
test-mobilenet net/test_mobilenet.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-mobilenet paddle-mobile
)
# gen test
ADD_EXECUTABLE
(
test-mobilenet-combine net/test_mobilenet_combine.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-mobilenet-combine paddle-mobile
)
elseif
(
"yolo"
IN_LIST NET
)
# gen test
ADD_EXECUTABLE
(
test-yolo net/test_yolo.cpp test_helper.h test_include.h executor_for_test.h
)
...
...
@@ -138,6 +143,10 @@ else ()
ADD_EXECUTABLE
(
test-mobilenetssd net/test_mobilenet+ssd.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-mobilenetssd paddle-mobile
)
# gen test
ADD_EXECUTABLE
(
test-mobilenet-combine net/test_mobilenet_combine.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-mobilenet-combine paddle-mobile
)
# gen test
ADD_EXECUTABLE
(
test-sigmoid operators/test_sigmoid_op.cpp test_include.h
)
target_link_libraries
(
test-sigmoid paddle-mobile
)
...
...
test/net/test_mobilenet.cpp
浏览文件 @
ac3e7709
...
...
@@ -44,5 +44,8 @@ int main() {
<<
std
::
endl
;
}
std
::
cout
<<
"如果结果Nan请查看: test/images/test_image_1x3x224x224_float 是否存在?"
<<
std
::
endl
;
return
0
;
}
test/net/test_mobilenet_combine.cpp
0 → 100644
浏览文件 @
ac3e7709
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <iostream>
#include "../test_helper.h"
#include "../test_include.h"
int
main
()
{
paddle_mobile
::
PaddleMobile
<
paddle_mobile
::
CPU
>
paddle_mobile
;
paddle_mobile
.
SetThreadNum
(
4
);
auto
time1
=
time
();
if
(
paddle_mobile
.
Load
(
std
::
string
(
g_mobilenet_combined
)
+
"/model"
,
std
::
string
(
g_mobilenet_combined
)
+
"/params"
,
true
))
{
auto
time2
=
time
();
std
::
cout
<<
"load cost :"
<<
time_diff
(
time1
,
time1
)
<<
"ms"
<<
std
::
endl
;
std
::
vector
<
float
>
input
;
std
::
vector
<
int64_t
>
dims
{
1
,
3
,
224
,
224
};
GetInput
<
float
>
(
g_test_image_1x3x224x224_banana
,
&
input
,
dims
);
// 预热一次
auto
vec_result
=
paddle_mobile
.
Predict
(
input
,
dims
);
std
::
vector
<
float
>::
iterator
biggest
=
std
::
max_element
(
std
::
begin
(
vec_result
),
std
::
end
(
vec_result
));
std
::
cout
<<
" Max element is "
<<
*
biggest
<<
" at position "
<<
std
::
distance
(
std
::
begin
(
vec_result
),
biggest
)
<<
std
::
endl
;
auto
time3
=
time
();
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
auto
vec_result
=
paddle_mobile
.
Predict
(
input
,
dims
);
}
auto
time4
=
time
();
std
::
cout
<<
"predict cost :"
<<
time_diff
(
time3
,
time4
)
/
10
<<
"ms"
<<
std
::
endl
;
}
std
::
cout
<<
"如果结果Nan请查看: test/images/test_image_1x3x224x224_float 是否存在?"
<<
std
::
endl
;
return
0
;
}
test/test_helper.h
浏览文件 @
ac3e7709
...
...
@@ -27,6 +27,7 @@ limitations under the License. */
static
const
char
*
g_ocr
=
"../models/ocr"
;
static
const
char
*
g_mobilenet_ssd
=
"../models/mobilenet+ssd"
;
static
const
char
*
g_mobilenet_ssd_gesture
=
"../models/mobilenet+ssd_gesture"
;
static
const
char
*
g_mobilenet_combined
=
"../models/mobilenet_combine"
;
static
const
char
*
g_squeezenet
=
"../models/squeezenet"
;
static
const
char
*
g_googlenet
=
"../models/googlenet"
;
static
const
char
*
g_mobilenet
=
"../models/mobilenet"
;
...
...
tools/op.cmake
浏览文件 @
ac3e7709
...
...
@@ -21,7 +21,7 @@ if ("mobilenet" IN_LIST NET)
set
(
ELEMENTWISEADD_OP ON
)
set
(
RELU_OP ON
)
set
(
SOFTMAX_OP ON
)
set
(
SOFTMAX
_OP ON
)
set
(
MUL
_OP ON
)
set
(
DEPTHWISECONV_OP ON
)
set
(
BATCHNORM_OP ON
)
set
(
POOL_OP ON
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录