diff --git a/CMakeLists.txt b/CMakeLists.txt index 199b3bda17f4ac22c1d657b6794446832d448440..1ec5352fa4009144b9f572ecbe061aba11e884d3 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -59,6 +59,7 @@ lite_option(LITE_WITH_CUDA "Enable CUDA in lite mode" OFF) lite_option(LITE_WITH_X86 "Enable X86 in lite mode" ON) lite_option(LITE_WITH_ARM "Enable ARM in lite mode" OFF) lite_option(LITE_WITH_NPU "Enable NPU in lite mode" OFF) +lite_option(LITE_WITH_XPU "Enable XPU in lite mode" OFF) lite_option(LITE_WITH_OPENMP "Enable OpenMP in lite framework" ON) lite_option(LITE_WITH_OPENCL "Enable OpenCL support in lite" OFF) lite_option(LITE_WITH_FPGA "Enable FPGA support in lite" OFF) @@ -184,6 +185,10 @@ if(LITE_WITH_CUDA) include(cuda) endif() +if(LITE_WITH_XPU) + include(xpu) +endif() + include(generic) # simplify cmake module include(ccache) # set ccache for compilation include(util) # set unittest and link libs diff --git a/cmake/configure.cmake b/cmake/configure.cmake index 67830fe2e0ec3c35064acb4c00ec152989ddb655..5dbb7f3fca4a2ecdab943cd49f34ee97f9bac9b0 100644 --- a/cmake/configure.cmake +++ b/cmake/configure.cmake @@ -127,6 +127,10 @@ if (LITE_WITH_NPU) add_definitions("-DLITE_WITH_NPU") endif() +if (LITE_WITH_XPU) + add_definitions("-DLITE_WITH_XPU") +endif() + if (LITE_WITH_OPENCL) add_definitions("-DLITE_WITH_OPENCL") endif() diff --git a/cmake/lite.cmake b/cmake/lite.cmake index 7d8641d96da86cf9a2be442b797507ac79058efa..9b6fab3f6261ff13361bda35cfa9cd681075c77d 100644 --- a/cmake/lite.cmake +++ b/cmake/lite.cmake @@ -22,7 +22,7 @@ endfunction() function (lite_deps TARGET) set(options "") set(oneValueArgs "") - set(multiValueArgs DEPS X86_DEPS CUDA_DEPS ARM_DEPS PROFILE_DEPS LIGHT_DEPS HVY_DEPS CL_DEPS FPGA_DEPS NPU_DEPS ARGS) + set(multiValueArgs DEPS X86_DEPS CUDA_DEPS ARM_DEPS PROFILE_DEPS LIGHT_DEPS HVY_DEPS CL_DEPS FPGA_DEPS NPU_DEPS XPU_DEPS ARGS) cmake_parse_arguments(lite_deps "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) set(deps ${lite_deps_DEPS}) @@ -83,6 +83,12 @@ function (lite_deps TARGET) endforeach(var) endif() + if (LITE_WITH_XPU) + foreach(var ${lite_deps_XPU_DEPS}) + set(deps ${deps} ${var}) + endforeach(var) + endif() + set(${TARGET} ${deps} PARENT_SCOPE) endfunction() @@ -107,7 +113,7 @@ file(WRITE ${offline_lib_registry_file} "") # clean function(lite_cc_library TARGET) set(options SHARED shared STATIC static MODULE module) set(oneValueArgs "") - set(multiValueArgs SRCS DEPS X86_DEPS CUDA_DEPS CL_DEPS NPU_DEPS ARM_DEPS FPGA_DEPS PROFILE_DEPS LIGHT_DEPS + set(multiValueArgs SRCS DEPS X86_DEPS CUDA_DEPS CL_DEPS NPU_DEPS XPU_DEPS ARM_DEPS FPGA_DEPS PROFILE_DEPS LIGHT_DEPS HVY_DEPS EXCLUDE_COMPILE_DEPS ARGS) cmake_parse_arguments(args "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) @@ -118,6 +124,7 @@ function(lite_cc_library TARGET) CUDA_DEPS ${args_CUDA_DEPS} CL_DEPS ${args_CL_DEPS} NPU_DEPS ${args_NPU_DEPS} + XPU_DEPS ${args_XPU_DEPS} ARM_DEPS ${args_ARM_DEPS} FPGA_DEPS ${args_FPGA_DEPS} PROFILE_DEPS ${args_PROFILE_DEPS} @@ -236,6 +243,7 @@ set(arm_kernels CACHE INTERNAL "arm kernels") set(x86_kernels CACHE INTERNAL "x86 kernels") set(fpga_kernels CACHE INTERNAL "fpga kernels") set(npu_kernels CACHE INTERNAL "npu kernels") +set(xpu_kernels CACHE INTERNAL "xpu kernels") set(opencl_kernels CACHE INTERNAL "opencl kernels") set(host_kernels CACHE INTERNAL "host kernels") @@ -305,6 +313,12 @@ function(add_kernel TARGET device level) endif() set(npu_kernels "${npu_kernels};${TARGET}" CACHE INTERNAL "") endif() + if ("${device}" STREQUAL "XPU") + if (NOT LITE_WITH_XPU) + return() + endif() + set(xpu_kernels "${xpu_kernels};${TARGET}" CACHE INTERNAL "") + endif() if ("${device}" STREQUAL "FPGA") if (NOT LITE_WITH_FPGA) return() @@ -338,6 +352,7 @@ function(add_kernel TARGET device level) lite_cc_library(${TARGET} SRCS ${args_SRCS} DEPS ${args_DEPS} X86_DEPS ${args_X86_DEPS} + XPU_DEPS ${args_XPU_DEPS} CUDA_DEPS ${args_CUDA_DEPS} CL_DEPS ${args_CL_DEPS} ARM_DEPS ${args_ARM_DEPS} @@ -386,6 +401,7 @@ function(add_operator TARGET level) lite_cc_library(${TARGET} SRCS ${args_SRCS} DEPS ${args_DEPS} X86_DEPS ${args_X86_DEPS} + XPU_DEPS ${args_XPU_DEPS} CUDA_DEPS ${args_CUDA_DEPS} CL_DEPS ${args_CL_DEPS} ARM_DEPS ${args_ARM_DEPS} diff --git a/cmake/xpu.cmake b/cmake/xpu.cmake new file mode 100644 index 0000000000000000000000000000000000000000..7bf63f93d3646a2a1f009bd51b369e6bc014091a --- /dev/null +++ b/cmake/xpu.cmake @@ -0,0 +1,103 @@ +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +if(NOT LITE_WITH_XPU) + return() +endif() + +if(NOT DEFINED XPU_SDK_ROOT) + set(XPU_SDK_ROOT $ENV{XPU_SDK_ROOT}) + if(NOT XPU_SDK_ROOT) + message(FATAL_ERROR "Must set XPU_SDK_ROOT or env XPU_SDK_ROOT when LITE_WITH_XPU=ON") + endif() +endif() + +message(STATUS "XPU_SDK_ROOT: ${XPU_SDK_ROOT}") +find_path(XPU_SDK_INC NAMES xtcl.h + PATHS ${XPU_SDK_ROOT}/XTCL/include/xtcl NO_DEFAULT_PATH) +if(NOT XPU_SDK_INC) + message(FATAL_ERROR "Can not find xtcl.h in ${XPU_SDK_ROOT}/include") +endif() + +include_directories("${XPU_SDK_ROOT}/XTCL/include") +include_directories("${XPU_SDK_ROOT}/XTDK/include") + +find_library(XPU_SDK_XTCL_FILE NAMES xtcl + PATHS ${XPU_SDK_ROOT}/XTCL/so) + +if(NOT XPU_SDK_XTCL_FILE) + message(FATAL_ERROR "Can not find XPU XTCL Library in ${XPU_SDK_ROOT}") +else() + message(STATUS "Found XPU XTCL Library: ${XPU_SDK_XTCL_FILE}") + add_library(xpu_sdk_xtcl SHARED IMPORTED GLOBAL) + set_property(TARGET xpu_sdk_xtcl PROPERTY IMPORTED_LOCATION ${XPU_SDK_XTCL_FILE}) +endif() + +find_library(XPU_SDK_TVM_FILE NAMES tvm + PATHS ${XPU_SDK_ROOT}/XTCL/so) + +if(NOT XPU_SDK_TVM_FILE) + message(FATAL_ERROR "Can not find XPU TVM Library in ${XPU_SDK_ROOT}") +else() + message(STATUS "Found XPU TVM Library: ${XPU_SDK_TVM_FILE}") + add_library(xpu_sdk_tvm SHARED IMPORTED GLOBAL) + set_property(TARGET xpu_sdk_tvm PROPERTY IMPORTED_LOCATION ${XPU_SDK_TVM_FILE}) +endif() + +find_library(XPU_SDK_XPU_API_FILE NAMES xpuapi + PATHS ${XPU_SDK_ROOT}/XTDK/shlib) + +if(NOT XPU_SDK_XPU_API_FILE) + message(FATAL_ERROR "Can not find XPU API Library in ${XPU_SDK_ROOT}") +else() + message(STATUS "Found XPU API Library: ${XPU_SDK_XPU_API_FILE}") + add_library(xpu_sdk_xpu_api SHARED IMPORTED GLOBAL) + set_property(TARGET xpu_sdk_xpu_api PROPERTY IMPORTED_LOCATION ${XPU_SDK_XPU_API_FILE}) +endif() + +find_library(XPU_SDK_XPU_RT_FILE NAMES xpurt + PATHS ${XPU_SDK_ROOT}/XTDK/shlib) + +if(NOT XPU_SDK_XPU_RT_FILE) + message(FATAL_ERROR "Can not find XPU RT Library in ${XPU_SDK_ROOT}") +else() + message(STATUS "Found XPU RT Library: ${XPU_SDK_XPU_RT_FILE}") + add_library(xpu_sdk_xpu_rt SHARED IMPORTED GLOBAL) + set_property(TARGET xpu_sdk_xpu_rt PROPERTY IMPORTED_LOCATION ${XPU_SDK_XPU_RT_FILE}) +endif() + +find_library(XPU_SDK_XPU_JITC_FILE NAMES xpujitc + PATHS ${XPU_SDK_ROOT}/XTDK/shlib) + +if(NOT XPU_SDK_XPU_JITC_FILE) + message(FATAL_ERROR "Can not find XPU JITC Library in ${XPU_SDK_ROOT}") +else() + message(STATUS "Found XPU JITC Library: ${XPU_SDK_XPU_JITC_FILE}") + add_library(xpu_sdk_xpu_jitc SHARED IMPORTED GLOBAL) + set_property(TARGET xpu_sdk_xpu_jitc PROPERTY IMPORTED_LOCATION ${XPU_SDK_XPU_JITC_FILE}) +endif() + +find_library(XPU_SDK_LLVM_FILE NAMES LLVM-8 + PATHS ${XPU_SDK_ROOT}/XTDK/shlib) + +if(NOT XPU_SDK_LLVM_FILE) + message(FATAL_ERROR "Can not find LLVM Library in ${XPU_SDK_ROOT}") +else() + message(STATUS "Found XPU LLVM Library: ${XPU_SDK_LLVM_FILE}") + add_library(xpu_sdk_llvm SHARED IMPORTED GLOBAL) + set_property(TARGET xpu_sdk_llvm PROPERTY IMPORTED_LOCATION ${XPU_SDK_LLVM_FILE}) +endif() + +set(xpu_runtime_libs xpu_sdk_xtcl xpu_sdk_tvm xpu_sdk_xpu_api xpu_sdk_xpu_rt xpu_sdk_xpu_jitc xpu_sdk_llvm CACHE INTERNAL "xpu runtime libs") +set(xpu_builder_libs xpu_sdk_xtcl xpu_sdk_tvm xpu_sdk_xpu_api xpu_sdk_xpu_rt xpu_sdk_xpu_jitc xpu_sdk_llvm CACHE INTERNAL "xpu builder libs") diff --git a/lite/CMakeLists.txt b/lite/CMakeLists.txt index f0731554df0b991c02fed2991c633f127e3249ca..e4fb8c8973f2cf62559ad9a47fe08453596be424 100644 --- a/lite/CMakeLists.txt +++ b/lite/CMakeLists.txt @@ -6,6 +6,7 @@ message(STATUS "LITE_WITH_CUDA:\t${LITE_WITH_CUDA}") message(STATUS "LITE_WITH_X86:\t${LITE_WITH_X86}") message(STATUS "LITE_WITH_ARM:\t${LITE_WITH_ARM}") message(STATUS "LITE_WITH_NPU:\t${LITE_WITH_NPU}") +message(STATUS "LITE_WITH_XPU:\t${LITE_WITH_XPU}") message(STATUS "LITE_WITH_FPGA:\t${LITE_WITH_FPGA}") message(STATUS "LITE_WITH_PROFILE:\t${LITE_WITH_PROFILE}") diff --git a/lite/api/CMakeLists.txt b/lite/api/CMakeLists.txt index 9f46cdaefdc70f1db318c07f82aab5b94aaa9863..20288d71c65ca51b6f44eed9ddb6abcbf2166558 100644 --- a/lite/api/CMakeLists.txt +++ b/lite/api/CMakeLists.txt @@ -40,7 +40,8 @@ if (WITH_TESTING) DEPS scope optimizer target_wrapper_host model_parser program ${ops} ${host_kernels} CUDA_DEPS ${cuda_kernels} - X86_DEPS ${x86_kernels}) + X86_DEPS ${x86_kernels} + XPU_DEPS ${xpu_kernels}) endif() if(LITE_WITH_FPGA) set(light_api_deps ${light_api_deps} ${fpga_deps}) @@ -52,6 +53,7 @@ message(STATUS "get X86 kernels ${x86_kernels}") message(STATUS "get Host kernels ${host_kernels}") message(STATUS "get ARM kernels ${arm_kernels}") message(STATUS "get NPU kernels ${npu_kernels}") +message(STATUS "get XPU kernels ${xpu_kernels}") message(STATUS "get FPGA kernels ${fpga_kernels}") # for full api @@ -64,6 +66,7 @@ if (NOT LITE_ON_TINY_PUBLISH) X86_DEPS ${x86_kernels} ARM_DEPS ${arm_kernels} NPU_DEPS ${npu_kernels} ${npu_bridges} npu_pass + XPU_DEPS ${xpu_kernels} ${xpu_bridges} xpu_pass CL_DEPS ${opencl_kenrels} FPGA_DEPS ${fpga_kenrels}) endif() @@ -83,6 +86,7 @@ lite_cc_library(light_api SRCS light_api.cc X86_DEPS ${x86_kernels} ARM_DEPS ${arm_kernels} NPU_DEPS ${npu_kernels} + XPU_DEPS ${xpu_kernels} CL_DEPS ${opencl_kenrels} FPGA_DEPS ${fpga_kenrels}) @@ -97,6 +101,7 @@ if(WITH_TESTING) X86_DEPS ${x86_kernels} ARM_DEPS ${arm_kernels} NPU_DEPS ${npu_kernels} + XPU_DEPS ${xpu_kernels} CL_DEPS ${opencl_kernels} FPGA_DEPS ${fpga_kernels} EXCLUDE_COMPILE_DEPS "ON" @@ -224,6 +229,7 @@ lite_cc_test(test_apis SRCS apis_test.cc DEPS cxx_api light_api ${ops} paddle_api_light CL_DEPS ${opencl_kernels} X86_DEPS ${x86_kernels} + XPU_DEPS ${xpu_kernels} FPGA_DEPS ${fpga_kernels} ARGS --model_dir=${LITE_MODEL_DIR}/lite_naive_model --optimized_model=${LITE_MODEL_DIR}/lite_naive_model_opt SERIAL) @@ -251,6 +257,7 @@ lite_cc_test(test_paddle_api SRCS paddle_api_test.cc DEPS paddle_api_full paddle ${ops} ARM_DEPS ${arm_kernels} NPU_DEPS ${npu_kernels} + XPU_DEPS ${xpu_kernels} CL_DEPS ${opencl_kernels} X86_DEPS ${x86_kernels} FPGA_DEPS ${fpga_kernels} @@ -265,6 +272,7 @@ if(NOT IOS) ${ops} ${host_kernels} ARM_DEPS ${arm_kernels} NPU_DEPS ${npu_kernels} + XPU_DEPS ${xpu_kernels} CL_DEPS ${opencl_kernels} FPGA_DEPS ${fpga_kernels} X86_DEPS ${x86_kernels}) @@ -272,6 +280,7 @@ if(NOT IOS) ${ops} ${host_kernels} ARM_DEPS ${arm_kernels} NPU_DEPS ${npu_kernels} + XPU_DEPS ${xpu_kernels} CL_DEPS ${opencl_kernels} FPGA_DEPS ${fpga_kernels} X86_DEPS ${x86_kernels}) diff --git a/lite/api/paddle_place.cc b/lite/api/paddle_place.cc index dbdf9ff269b372cd3dcd59769b15526b7631a5e5..ccacb027d682b5388e44b05075b66f436c3e2668 100644 --- a/lite/api/paddle_place.cc +++ b/lite/api/paddle_place.cc @@ -46,8 +46,16 @@ std::string Place::DebugString() const { } const std::string& TargetToStr(TargetType target) { - static const std::string target2string[] = { - "unk", "host", "x86", "cuda", "arm", "opencl", "any", "fpga", "npu"}; + static const std::string target2string[] = {"unk", + "host", + "x86", + "cuda", + "arm", + "opencl", + "any", + "fpga", + "npu", + "xpu"}; auto x = static_cast(target); CHECK_LT(x, static_cast(TARGET(NUM))); return target2string[x]; @@ -84,7 +92,8 @@ const std::string& TargetRepr(TargetType target) { "kOpenCL", "kAny", "kFPGA", - "kNPU"}; + "kNPU", + "kXPU"}; auto x = static_cast(target); CHECK_LT(x, static_cast(TARGET(NUM))); return target2string[x]; diff --git a/lite/api/paddle_place.h b/lite/api/paddle_place.h index 5e4f2ed21c8298ac15a912672e3d15633d0a3ecb..19ec5c6e8b5e39d1c68f9a20968472cbc66e89a2 100644 --- a/lite/api/paddle_place.h +++ b/lite/api/paddle_place.h @@ -50,8 +50,9 @@ enum class TargetType : int { kOpenCL = 5, kFPGA = 7, kNPU = 8, + kXPU = 9, kAny = 6, // any target - NUM = 9, // number of fields. + NUM = 10, // number of fields. }; enum class PrecisionType : int { kUnk = 0, diff --git a/lite/backends/CMakeLists.txt b/lite/backends/CMakeLists.txt index 70b4f0bbf794ed7ca537177f48fee34a5955aba5..dec63e6efa0e4c4548646ebdd6f6de24f046d6d0 100644 --- a/lite/backends/CMakeLists.txt +++ b/lite/backends/CMakeLists.txt @@ -5,3 +5,4 @@ add_subdirectory(cuda) add_subdirectory(fpga) add_subdirectory(host) add_subdirectory(npu) +add_subdirectory(xpu) diff --git a/lite/backends/xpu/CMakeLists.txt b/lite/backends/xpu/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..f911f8e0e7c61481e1d4e309bc0635718be11206 --- /dev/null +++ b/lite/backends/xpu/CMakeLists.txt @@ -0,0 +1,6 @@ +if(NOT LITE_WITH_XPU) + return() +endif() + +lite_cc_library(xpu_runtime SRCS runtime.cc DEPS ${xpu_runtime_libs}) +lite_cc_library(xpu_builder SRCS builder.cc DEPS ${xpu_builder_libs} xpu_runtime tensor op scope) diff --git a/lite/backends/xpu/builder.cc b/lite/backends/xpu/builder.cc new file mode 100644 index 0000000000000000000000000000000000000000..796eaf9c46ceb3d29f1ffdc4c86ac45509f07ba1 --- /dev/null +++ b/lite/backends/xpu/builder.cc @@ -0,0 +1,189 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "lite/backends/xpu/builder.h" +#include // NOLINT +#include +#include "lite/backends/xpu/runtime.h" + +namespace paddle { +namespace lite { +namespace xpu { + +bool HasInputArg(const OpInfo* op_info, + const Scope* scope, + const std::string& argname) { + auto iarg_names = op_info->input_argnames(); + if (std::find(iarg_names.begin(), iarg_names.end(), argname) != + iarg_names.end()) { + auto inputs = op_info->Input(argname); + if (inputs.empty()) { + return false; + } + auto var_name = inputs.front(); + auto var = scope->FindVar(var_name); + return var != nullptr; + } else { + return false; + } +} + +std::string UniqueName(const std::string& prefix) { + static std::mutex counter_mtx; + static std::unordered_map counter_map; + std::unique_lock counter_lck(counter_mtx); + int counter = 1; + auto it = counter_map.find(prefix); + if (it == counter_map.end()) { + counter_map[prefix] = counter; + } else { + counter = ++(it->second); + } + return prefix + "_" + std::to_string(counter); +} + +xtcl::DataType CvtPrecisionType(PrecisionType in_type) { + xtcl::DataType out_type = ::xtcl::Float(32); + switch (in_type) { + case PRECISION(kFloat): + out_type = ::xtcl::Float(32); + break; + case PRECISION(kInt8): + out_type = ::xtcl::Int(8); + break; + case PRECISION(kInt32): + out_type = ::xtcl::Int(32); + break; + default: + LOG(FATAL) << "Can not convert precision type(" << PrecisionToStr(in_type) + << ") from Lite to XPU"; + break; + } + return out_type; +} + +DLDataType CvtDataType(PrecisionType in_type) { + DLDataType out_type = {kDLFloat, 32, 1}; + switch (in_type) { + case PRECISION(kFloat): + out_type = {kDLFloat, 32, 1}; + break; + case PRECISION(kInt8): + out_type = {kDLInt, 8, 1}; + break; + case PRECISION(kInt32): + out_type = {kDLInt, 32, 1}; + break; + default: + LOG(FATAL) << "Can not convert data type(" << PrecisionToStr(in_type) + << ") from Lite to XPU"; + break; + } + return out_type; +} + +xtcl::Array CvtShape(const std::vector& in_shape) { + xtcl::Array out_shape; + for (auto dim : in_shape) { + out_shape.push_back(dim); + } + return out_shape; +} + +xtcl::Array CvtShape(const std::vector& in_shape) { + return CvtShape(std::vector(in_shape.begin(), in_shape.end())); +} + +xtcl::Array CvtShape(const DDim& in_dims) { + return CvtShape(in_dims.Vectorize()); +} + +std::shared_ptr CvtTensor(lite::Tensor* in_tensor, + std::vector out_shape, + PrecisionType in_ptype, + DataLayoutType in_ltype) { + uint8_t* in_data = nullptr; + auto in_size = in_tensor->dims().production(); + auto in_shape = in_tensor->dims().Vectorize(); + if (out_shape.empty()) { + out_shape = in_shape; + } + int in_bytes; + if (in_ptype == PRECISION(kFloat)) { + in_data = reinterpret_cast(in_tensor->mutable_data()); + in_bytes = in_size * sizeof(float); + } else if (in_ptype == PRECISION(kInt32)) { + in_data = reinterpret_cast(in_tensor->mutable_data()); + in_bytes = in_size * sizeof(int32_t); + } else if (in_ptype == PRECISION(kInt8)) { + in_data = reinterpret_cast(in_tensor->mutable_data()); + in_bytes = in_size * sizeof(int8_t); + } else { + LOG(FATAL) << "Unknow precision type " << PrecisionToStr(in_ptype); + } + auto out_tensor = std::make_shared( + xtcl::xNDArray::Empty(out_shape, CvtDataType(in_ptype), {kDLCPU, 0})); + auto out_data = + reinterpret_cast(out_tensor->ToDLPack()->dl_tensor.data); + std::memcpy(out_data, in_data, in_bytes); + return out_tensor; +} + +// Build the XPU subgraph to the XPU model, store the model data into the +// weight tensor of the graph op, and the model data will be loaded again +// by the graph computing kernel when the graph op is executed for inference. +// Due to the lack of XPU APIs for building and outputing the model data, +// the compiled XPU runtime object will be managed by the global variable +// 'DeviceInfo' and the key name for finding the runtime object will be +// stored in the weight tensor of graph op. +// TODO(hong19860320) Compile the XPU subgraph and output the compiled model +// data to the weight tensor of graph op. +bool BuildModel( + std::shared_ptr builder, + std::shared_ptr params, + std::vector>* outputs, + lite::Tensor* model) { + LOG(INFO) << "[XPU] Build Model."; + CHECK(builder != nullptr); + CHECK(outputs != nullptr); + CHECK_GT(outputs->size(), 0); + CHECK(model != nullptr); + + // build graph and fill all of constant params + xtcl::xNetwork network = builder->FinalizeNetwork(*((*outputs)[0])); + auto target = xtcl::Target::Create("llvm"); + auto compiler = xtcl::network::xTensorCompiler(network, target); + compiler.SetParams(*params); // set the data of constant tensors + compiler.Build(); + + // create and register runtime + auto runtime = std::make_shared( + compiler.CreateRuntimeInstance()); + if (runtime == nullptr) { + LOG(WARNING) << "[XPU] Build Model failed!"; + return false; + } + std::string name = UniqueName("xpu"); + LOG(INFO) << "[XPU] Model Name: " << name; + DeviceInfo::Global().Insert(name, runtime); + model->Resize({static_cast(name.length() + 1)}); + memcpy(model->mutable_data(), + reinterpret_cast(name.c_str()), + name.length() + 1); + return true; +} + +} // namespace xpu +} // namespace lite +} // namespace paddle diff --git a/lite/backends/xpu/builder.h b/lite/backends/xpu/builder.h new file mode 100644 index 0000000000000000000000000000000000000000..f0ac2b303aac7fa7f827e6e2f8f0fdf614b604b5 --- /dev/null +++ b/lite/backends/xpu/builder.h @@ -0,0 +1,60 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include +#include +#include +#include "lite/core/op_lite.h" +#include "lite/core/target_wrapper.h" +#include "lite/core/tensor.h" + +namespace paddle { +namespace lite { +namespace xpu { + +bool HasInputArg(const OpInfo* op_info, + const Scope* scope, + const std::string& argname); + +std::string UniqueName(const std::string& prefix); + +xtcl::DataType CvtPrecisionType(PrecisionType in_type); + +DLDataType CvtDataType(PrecisionType in_type); + +xtcl::Array CvtShape(const std::vector& in_shape); + +xtcl::Array CvtShape(const std::vector& in_shape); + +xtcl::Array CvtShape(const DDim& in_dims); + +std::shared_ptr CvtTensor( + Tensor* in_tensor, + std::vector out_shape = {}, + PrecisionType in_ptype = PRECISION(kFloat), + DataLayoutType in_ltype = DATALAYOUT(kNCHW)); + +bool BuildModel( + std::shared_ptr builder, + std::shared_ptr params, + std::vector>* outputs, + lite::Tensor* model); + +} // namespace xpu +} // namespace lite +} // namespace paddle diff --git a/lite/backends/xpu/runtime.cc b/lite/backends/xpu/runtime.cc new file mode 100644 index 0000000000000000000000000000000000000000..a2c34b95758e8abf81c8294507d0ca60aad7c021 --- /dev/null +++ b/lite/backends/xpu/runtime.cc @@ -0,0 +1,46 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "lite/backends/xpu/runtime.h" +#include +#include "lite/utils/cp_logging.h" + +namespace paddle { +namespace lite { +namespace xpu { + +// Extract the model data and recover the XPU model for inference, the function +// is called by the graph computing kernel when the graph op is executed. +// Due to the lack of XPU APIs for loading and recovering the XPU model from +// memory, the key name is obtained from the weight tensor of graph op, to get +// the runtime object for inference from the global variable 'DeviceInfo'. +// TODO(hong19860320) Recover the XPU model from the weight tensor of graph op. +bool LoadModel(const lite::Tensor &model, + std::shared_ptr *runtime) { + LOG(INFO) << "[XPU] Load Model."; + CHECK_GT(model.dims().production(), 0); + std::string name(reinterpret_cast(model.data())); + LOG(INFO) << "[XPU] Model Name: " << name; + CHECK(runtime != nullptr); + *runtime = DeviceInfo::Global().Find(name); + if (*runtime == nullptr) { + LOG(WARNING) << "[XPU] Load Model failed!"; + return false; + } + return true; +} + +} // namespace xpu +} // namespace lite +} // namespace paddle diff --git a/lite/backends/xpu/runtime.h b/lite/backends/xpu/runtime.h new file mode 100644 index 0000000000000000000000000000000000000000..4ff8d75bce6156d51a4988d427058da34460443f --- /dev/null +++ b/lite/backends/xpu/runtime.h @@ -0,0 +1,69 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include +#include +#include +#include "lite/core/tensor.h" + +namespace paddle { +namespace lite { +namespace xpu { + +class DeviceInfo { + public: + static DeviceInfo& Global() { + static DeviceInfo x; + return x; + } + DeviceInfo() {} + + void Insert(const std::string& name, + std::shared_ptr runtime) { + if (runtimes_.find(name) != runtimes_.end()) { + LOG(WARNING) << "[XPU] Model " << name << " already exists."; + return; + } + runtimes_.emplace(std::make_pair(name, runtime)); + } + + void Clear() { runtimes_.clear(); } + + std::shared_ptr Find( + const std::string& name) const { + if (runtimes_.find(name) != runtimes_.end()) { + return runtimes_.at(name); + } else { + return nullptr; + } + } + + private: + int device_id_{0}; + std::string device_name_{"default"}; + std::unordered_map> + runtimes_; +}; + +bool LoadModel(const lite::Tensor& model, + std::shared_ptr* runtime); + +} // namespace xpu +} // namespace lite +} // namespace paddle diff --git a/lite/core/CMakeLists.txt b/lite/core/CMakeLists.txt index a5b581335047ff18c31ea9d1c03a9785e4ddf2ed..5eecf1d815d30fe0ef10a55c6b6b351795fe63ae 100644 --- a/lite/core/CMakeLists.txt +++ b/lite/core/CMakeLists.txt @@ -35,7 +35,7 @@ lite_cc_library(device_info SRCS device_info.cc DEPS tensor) if (LITE_WITH_ARM) lite_cc_library(context SRCS context.cc DEPS tensor any device_info CL_DEPS cl_context gflags NPU_DEPS npu_runtime) else() -lite_cc_library(context SRCS context.cc DEPS tensor any device_info eigen3 CL_DEPS cl_context gflags) +lite_cc_library(context SRCS context.cc DEPS tensor any device_info eigen3 CL_DEPS cl_context gflags XPU_DEPS xpu_runtime) endif() #-------------------------------------------- GET CODE META INFO ------------------------------------------ diff --git a/lite/core/arena/CMakeLists.txt b/lite/core/arena/CMakeLists.txt index 127e2ea11c159217e6d943d852af5849d85a74b3..bc77afd81e0859b9492b2068ce681098a9393923 100644 --- a/lite/core/arena/CMakeLists.txt +++ b/lite/core/arena/CMakeLists.txt @@ -5,6 +5,6 @@ endif() lite_cc_library(arena_framework SRCS framework.cc DEPS program gtest) -if(NOT LITE_WITH_OPENCL AND (LITE_WITH_X86 OR LITE_WITH_ARM)) +if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_XPU) AND (LITE_WITH_X86 OR LITE_WITH_ARM)) lite_cc_test(test_arena_framework SRCS framework_test.cc DEPS arena_framework ${x86_kernels} ${fpga_kernels} ${arm_kernels} ${lite_ops} ${host_kernels}) endif() diff --git a/lite/core/context.h b/lite/core/context.h index 281a9e0d267b43b3c7a50f3172908909b362811a..f798dc3a60705828c3ea1606e76145d91216ae95 100644 --- a/lite/core/context.h +++ b/lite/core/context.h @@ -28,6 +28,9 @@ #ifdef LITE_WITH_NPU #include "lite/backends/npu/runtime.h" #endif +#ifdef LITE_WITH_XPU +#include "lite/backends/xpu/runtime.h" +#endif #include #include @@ -55,6 +58,7 @@ using X86Context = Context; using CUDAContext = Context; using ARMContext = Context; using NPUContext = Context; +using XPUContext = Context; using OpenCLContext = Context; using FPGAContext = Context; @@ -84,6 +88,20 @@ class Context { }; #endif +#ifdef LITE_WITH_XPU +template <> +class Context { + public: + Context() {} + explicit Context(const NPUContext& ctx); + // NOTE: InitOnce should only be used by ContextScheduler + void InitOnce() {} + void CopySharedTo(XPUContext* ctx) {} + + std::string name() const { return "XPUContext"; } +}; +#endif + #ifdef LITE_WITH_ARM template <> class Context { @@ -340,6 +358,12 @@ class ContextScheduler { &ctx->As()); break; #endif +#ifdef LITE_WITH_XPU + case TARGET(kXPU): + kernel_contexts_[TargetType::kXPU].As().CopySharedTo( + &ctx->As()); + break; +#endif #ifdef LITE_WITH_OPENCL case TARGET(kOpenCL): kernel_contexts_[TargetType::kOpenCL].As().CopySharedTo( @@ -386,6 +410,9 @@ class ContextScheduler { #endif #ifdef LITE_WITH_NPU InitContext(); +#endif +#ifdef LITE_WITH_XPU + InitContext(); #endif } diff --git a/lite/core/mir/pass_utils.cc b/lite/core/mir/pass_utils.cc index 804d4e1b5bc94f0e7804fa588e107a298210143b..cfa43f8d6e9dc4585a4618a003cb8e0bd9709642 100644 --- a/lite/core/mir/pass_utils.cc +++ b/lite/core/mir/pass_utils.cc @@ -53,6 +53,7 @@ void ExpandPlaces(std::set* places, const Place& place) { TARGET(kARM), TARGET(kOpenCL), TARGET(kNPU), + TARGET(kXPU), TARGET(kFPGA)}); static const Types precision_set( {PRECISION(kFloat), PRECISION(kInt8), PRECISION(kFP16), PRECISION(kAny)}); diff --git a/lite/core/mir/subgraph/CMakeLists.txt b/lite/core/mir/subgraph/CMakeLists.txt index 76588b7027764a6afd54c33158a37589525ba8c0..49873293f3e69f37e4ffbbb2816fccbbab2316ba 100644 --- a/lite/core/mir/subgraph/CMakeLists.txt +++ b/lite/core/mir/subgraph/CMakeLists.txt @@ -30,5 +30,21 @@ if(LITE_WITH_NPU) endif() endif() +if(LITE_WITH_XPU) + lite_cc_library(xpu_pass SRCS generate_xpu_program_pass.cc + DEPS mir_pass types context ${mir_fusers} ${xpu_bridges} ${xpu_builder_libs} graph_op subgraph_pass) + list(APPEND subgraph_passes xpu_pass) + lite_cc_test(test_xpu_pass SRCS generate_xpu_program_pass_test.cc + DEPS xpu_pass mir_passes paddle_api_full gflags + ARGS --model_dir=${LITE_MODEL_DIR}/mobilenet_v1 + --optimized_model=${LITE_MODEL_DIR}/lite_npu_model_opt SERIAL) + if (WITH_TESTING) + add_dependencies(test_xpu_pass extern_lite_download_mobilenet_v1_tar_gz) + add_dependencies(test_subgraph_pass extern_lite_download_mobilenet_v2_relu_tar_gz) + set(LINK_FLAGS "-Wl,--version-script ${PADDLE_SOURCE_DIR}/lite/core/lite.map") + set_target_properties(test_xpu_pass PROPERTIES LINK_FLAGS "${LINK_FLAGS}") + endif() +endif() + set(subgraph_passes ${subgraph_passes} CACHE INTERNAL "subgraph_passes") message(STATUS "----> subgraph_passes: ${subgraph_passes}") diff --git a/lite/core/mir/subgraph/generate_xpu_program_pass.cc b/lite/core/mir/subgraph/generate_xpu_program_pass.cc new file mode 100644 index 0000000000000000000000000000000000000000..319e1e51feb917b803753807ddbb1f72c2cb7084 --- /dev/null +++ b/lite/core/mir/subgraph/generate_xpu_program_pass.cc @@ -0,0 +1,206 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "lite/core/mir/subgraph/generate_xpu_program_pass.h" +#include +#include +#include +#include +#include +#include "lite/core/mir/graph_visualize_pass.h" +#include "lite/core/mir/pass_registry.h" +#include "lite/core/mir/pattern_matcher.h" + +#include "lite/backends/xpu/builder.h" +#include "lite/kernels/xpu/bridges/paddle_use_xpu_bridges.h" +#include "lite/kernels/xpu/bridges/registry.h" + +namespace paddle { +namespace lite { +namespace mir { +namespace subgraph { + +std::shared_ptr GenerateXPUProgramPass::CvtVarNode( + lite::kernels::xpu::bridges::graph_ctx_type* graph_ctx, + lite::mir::Node* var_node, + const Scope* scope) { + CHECK(var_node->IsArg()); + const auto& arg = var_node->AsArg(); + auto var_name = arg.name; + VLOG(4) << "[XPU] Convert var node " << var_name; + + auto* var = scope->FindVar(var_name); + CHECK(var); + auto* tensor = var->GetMutable(); + CHECK(tensor); + auto dims = tensor->dims(); + auto cvted_var_node = + std::make_shared(graph_ctx->builder->CreateTensor( + var_name, lite::xpu::CvtShape(dims), ::xtcl::Float(32))); + if (arg.is_weight) { + auto cvted_var_tensor = lite::xpu::CvtTensor(tensor); + graph_ctx->params->emplace(std::make_pair(var_name, *cvted_var_tensor)); + } + return cvted_var_node; +} + +void GenerateXPUProgramPass::CvtAllOpNodes( + const std::vector& op_nodes, + lite::kernels::xpu::bridges::graph_ctx_type* graph_ctx, + lite::kernels::xpu::bridges::node_map_type* cvted_var_nodes) { + const auto& bridges = lite::kernels::xpu::bridges::Factory::Instance(); + const auto& supported_lists = bridges.AllFunctions(); + // return record all converted vars + // op node's inputs must be found in converted_vars + for (auto& node : op_nodes) { + lite::kernels::xpu::bridges::node_map_type input_nodes; + auto& stmt = node->AsStmt(); + for (auto& var_node : node->inlinks) { + auto& arg = var_node->AsArg(); + // weight should be handled in the converter, so skip here + if (arg.is_weight) { + continue; + } + auto var_name = arg.name; + if (!cvted_var_nodes->count(var_name)) { + cvted_var_nodes->insert(std::make_pair( + var_name, CvtVarNode(graph_ctx, var_node, stmt.op()->scope()))); + } + input_nodes.insert(*cvted_var_nodes->find(var_name)); + } + auto output_nodes = + supported_lists.at(stmt.op_type())(stmt.op(), graph_ctx, input_nodes); + cvted_var_nodes->insert(output_nodes.begin(), output_nodes.end()); + } +} + +std::string GenerateXPUProgramPass::BuildXPUGraph( + const std::unordered_set& op_nodes, + const std::unordered_set& in_data_vars, + const std::unordered_set& out_data_vars, + int sub_id) { + auto ordered_op_nodes = GetTopologicalOrder(op_nodes); + lite::kernels::xpu::bridges::graph_ctx_type graph_ctx; + graph_ctx.builder = std::make_shared(); + graph_ctx.params = + std::make_shared(); + lite::kernels::xpu::bridges::node_map_type cvted_var_nodes; + CvtAllOpNodes(ordered_op_nodes, &graph_ctx, &cvted_var_nodes); + + std::string weight_var_name = "graph" + std::to_string(sub_id) + "_weights"; + auto any_op = (*op_nodes.begin())->AsStmt().op(); + auto weight = any_op->scope()->Var(weight_var_name)->GetMutable(); + weight->set_persistable(true); + weight->set_precision(PRECISION(kInt8)); + // Compiling graph to XPU model and store mode data into weight tensor with + // persistable=true, Sothat the model parser can recognize it and save it to + // param files + std::vector> ordered_cvted_var_nodes; + for (auto out_data_var : out_data_vars) { + auto var_name = out_data_var->AsArg().name; + ordered_cvted_var_nodes.push_back(cvted_var_nodes[var_name]); + } + if (!lite::xpu::BuildModel(graph_ctx.builder, + graph_ctx.params, + &ordered_cvted_var_nodes, + weight)) { + LOG(WARNING) << "[XPU] Build XPU graph failed (subgraph=" << sub_id << ")"; + throw std::runtime_error("[XPU] Build XPU graph failed."); + } + LOG(INFO) << "[XPU] Build XPU graph success (subgraph=" << sub_id << ")"; + return weight_var_name; +} + +void GenerateXPUProgramPass::GenXPUSubgraph( + const std::unique_ptr& graph, + const std::unordered_set& op_nodes, + int sub_id) { + std::unordered_set in_data_vars; + std::unordered_set in_wgt_vars; + std::unordered_set out_data_vars; + std::unordered_set out_unused_vars; + FindInputOutputVars( + op_nodes, &in_data_vars, &in_wgt_vars, &out_data_vars, &out_unused_vars); + + auto weight_var_name = + BuildXPUGraph(op_nodes, in_data_vars, out_data_vars, sub_id); + + auto any_op = (*op_nodes.begin())->AsStmt().op(); + InsertNewNode(graph, + weight_var_name, + any_op->scope(), + any_op->valid_places(), + in_data_vars, + in_wgt_vars, + out_data_vars, + out_unused_vars); + + auto nodes2rm = GetNode2rm( + op_nodes, {in_data_vars, in_wgt_vars, out_data_vars, out_unused_vars}); + + GraphSafeRemoveNodes(graph.get(), nodes2rm); +} + +void GenerateXPUProgramPass::Apply(const std::unique_ptr& graph) { + LOG(INFO) << "[XPU] Before XPU Pass \n" << Visualize(graph.get()); + const auto& bridges = lite::kernels::xpu::bridges::Factory::Instance(); + const auto& op_map = bridges.AllFunctions(); + std::vector supported_op_types; + for (auto& i : op_map) { + LOG(INFO) << "[XPU] Supported type: " << i.first; + supported_op_types.push_back(i.first); + } + + try { + int num_subgraph = FuseSubgraph(graph, supported_op_types); + InferOnce(graph); + auto op_nodes_all = ClassifySubgraph(graph); + CHECK_EQ(op_nodes_all.size(), num_subgraph); + int id = 1; + for (auto& op_nodes : op_nodes_all) { + LOG(INFO) << "[XPU] Converting Subgraph " << id; + GenXPUSubgraph(graph, op_nodes.second, id); + LOG(INFO) << "[XPU] After XPU Pass Subgraph " << id << "\n" + << Visualize(graph.get()); + id++; + } + } catch (...) { + LOG(WARNING) << "[XPU] Build XPU graph failed."; + throw std::runtime_error("[XPU] Build XPU graph failed."); + } + + for (auto& item : graph->StmtTopologicalOrder()) { + if (item->IsStmt()) { + auto& stmt = item->AsStmt(); + LOG(INFO) << stmt; + insts_.emplace_back(stmt.op(), std::move(stmt.kernels().front())); + } + } +} + +std::unique_ptr GenerateXPUProgramPass::GenProgram() { + LOG(INFO) << "[XPU] program insts.size=" << insts_.size(); + std::unique_ptr program( + new RuntimeProgram(std::move(insts_))); + return program; +} + +} // namespace subgraph +} // namespace mir +} // namespace lite +} // namespace paddle + +REGISTER_MIR_PASS(generate_xpu_program_pass, + paddle::lite::mir::subgraph::GenerateXPUProgramPass) + .BindTargets({TARGET(kXPU)}); diff --git a/lite/core/mir/subgraph/generate_xpu_program_pass.h b/lite/core/mir/subgraph/generate_xpu_program_pass.h new file mode 100644 index 0000000000000000000000000000000000000000..cf121ae9503201e8cf6be40fe9054ccaf6e4b172 --- /dev/null +++ b/lite/core/mir/subgraph/generate_xpu_program_pass.h @@ -0,0 +1,69 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include +#include +#include +#include +#include "lite/backends/xpu/builder.h" +#include "lite/core/mir/pass.h" +#include "lite/core/mir/subgraph/subgraph_program_pass.h" +#include "lite/kernels/xpu/bridges/registry.h" + +namespace paddle { +namespace lite { +namespace mir { +namespace subgraph { + +class GenerateXPUProgramPass : public SubgraphProgramPass { + public: + using key2nodes_t = std::map; + + void Apply(const std::unique_ptr& graph) override; + std::unique_ptr GenProgram(); + + protected: + // nodes2cvt: op nodes to convert + // return cvted_vars: converted var nodes + void CvtAllOpNodes( + const std::vector& op_nodes, + lite::kernels::xpu::bridges::graph_ctx_type* graph_ctx, + lite::kernels::xpu::bridges::node_map_type* cvted_var_nodes); + + std::shared_ptr CvtVarNode( + lite::kernels::xpu::bridges::graph_ctx_type* graph_ctx, + lite::mir::Node* var_node, + const Scope* scope); + + std::string BuildXPUGraph(const std::unordered_set& op_nodes, + const std::unordered_set& in_data_vars, + const std::unordered_set& out_data_vars, + int sub_id); + + void GenXPUSubgraph(const std::unique_ptr& graph, + const std::unordered_set& op_nodes, + int sub_id); + + private: + std::vector insts_; +}; + +} // namespace subgraph +} // namespace mir +} // namespace lite +} // namespace paddle diff --git a/lite/core/mir/subgraph/generate_xpu_program_pass_test.cc b/lite/core/mir/subgraph/generate_xpu_program_pass_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..728ecbc6b77666accd432b1ad82a03860588ab40 --- /dev/null +++ b/lite/core/mir/subgraph/generate_xpu_program_pass_test.cc @@ -0,0 +1,172 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include +#include +#include "lite/api/paddle_api.h" +#include "lite/api/paddle_use_kernels.h" +#include "lite/api/paddle_use_ops.h" +#include "lite/api/paddle_use_passes.h" +#include "lite/api/test_helper.h" +#include "lite/utils/cp_logging.h" + +DEFINE_string(model_file, "", "model file path of combined protobuf model"); +DEFINE_string(params_file, "", "params file path of combined protobuf model"); +DEFINE_string(optimized_model_dir, "", "path of optimized naive buffer model"); +DEFINE_string(input_tensor_shape, "1,3,224,224", "shapes of input tensors"); +DEFINE_int32(output_tensor_num, 1, "number of output tensors"); + +namespace paddle { +namespace lite { + +std::vector> ParseShape(std::string txt) { + std::vector> shape; + while (!txt.empty()) { + size_t idx = txt.find_first_of(":"); + std::string dims = txt.substr(0, idx); + std::vector s; + while (!dims.empty()) { + size_t idx = dims.find_first_of(","); + int d = atoi(dims.substr(0, idx).c_str()); + VLOG(3) << d; + s.push_back(d); + if (idx == std::string::npos) { + break; + } else { + dims = dims.substr(idx + 1); + } + } + shape.push_back(s); + if (idx == std::string::npos) { + break; + } else { + txt = txt.substr(idx + 1); + } + } + return shape; +} + +int64_t ShapeProduction(std::vector shape) { + int64_t s = 1; + for (int64_t dim : shape) { + s *= dim; + } + return s; +} + +void FillInputTensor( + const std::shared_ptr& predictor, + const std::vector>& input_tensor_shape, + const float value) { + for (int i = 0; i < input_tensor_shape.size(); i++) { + auto input_tensor = predictor->GetInput(i); + input_tensor->Resize(input_tensor_shape[i]); + auto input_tensor_data = input_tensor->mutable_data(); + auto input_tensor_size = ShapeProduction(input_tensor->shape()); + for (int j = 0; j < input_tensor_size; j++) { + input_tensor_data[j] = value; + } + } +} + +void CompareOutputTensor( + const std::shared_ptr& tar_predictor, + const std::shared_ptr& ref_predictor, + const int output_tensor_num) { + for (int i = 0; i < output_tensor_num; i++) { + auto tar_output_tensor = tar_predictor->GetOutput(i); + auto ref_output_tensor = ref_predictor->GetOutput(i); + auto tar_output_tensor_data = tar_output_tensor->data(); + auto ref_output_tensor_data = ref_output_tensor->data(); + auto tar_output_tensor_size = ShapeProduction(tar_output_tensor->shape()); + auto ref_output_tensor_size = ShapeProduction(ref_output_tensor->shape()); + EXPECT_EQ(tar_output_tensor_size, ref_output_tensor_size); + for (size_t j = 0; j < ref_output_tensor_size; j++) { + auto diff = + std::fabs(tar_output_tensor_data[j] - ref_output_tensor_data[j]) / + (std::fabs(ref_output_tensor_data[j]) + 1e-6); + VLOG(3) << diff; + EXPECT_LT(diff, 0.1); + } + } +} + +std::shared_ptr TestModel( + const std::string& model_dir, + const std::string& model_file, + const std::string& params_file, + const std::vector& valid_places, + const std::vector>& input_tensor_shape, + const std::string& optimized_model_dir) { + // generate optimized model + lite_api::CxxConfig cxx_config; + cxx_config.set_model_dir(model_dir); + cxx_config.set_model_file(model_file); + cxx_config.set_param_file(params_file); + cxx_config.set_valid_places(valid_places); + auto predictor = lite_api::CreatePaddlePredictor(cxx_config); + FillInputTensor(predictor, input_tensor_shape, -1); + predictor->SaveOptimizedModel(optimized_model_dir, + lite_api::LiteModelType::kNaiveBuffer); +#if 0 // TODO(hong19860320) supports light api for XPU + // load optimized model + lite_api::MobileConfig mobile_config; + mobile_config.set_model_dir(optimized_model_dir); + mobile_config.set_power_mode(lite_api::PowerMode::LITE_POWER_HIGH); + mobile_config.set_threads(1); + predictor = lite_api::CreatePaddlePredictor(mobile_config); + FillInputTensor(predictor, input_tensor_shape, 1); +#endif + // run optimized model + for (int i = 0; i < FLAGS_warmup; i++) { + predictor->Run(); + } + for (int i = 0; i < FLAGS_repeats; i++) { + auto start = GetCurrentUS(); + predictor->Run(); + LOG(INFO) << i << ", " << GetCurrentUS() - start << "us"; + } + return predictor; +} + +TEST(XPUSubgraph, compare) { + // parsing input tensor shape, supported formats: "1,3,224,224" + // "1,3,224,224:1,80" + std::vector> input_tensor_shape = + ParseShape(FLAGS_input_tensor_shape); + // generate and run optimized CPU model + LOG(INFO) << " ================ CPU ================== "; + auto cpu_predictor = + TestModel(FLAGS_model_dir, + FLAGS_model_file, + FLAGS_params_file, + {lite_api::Place{TARGET(kX86), PRECISION(kFloat)}}, + input_tensor_shape, + FLAGS_optimized_model_dir + "/CPU"); + // generate and run optimized XPU model + LOG(INFO) << " ================ XPU ================== "; + auto xpu_predictor = + TestModel(FLAGS_model_dir, + FLAGS_model_file, + FLAGS_params_file, + {lite_api::Place{TARGET(kXPU), PRECISION(kFloat)}, + lite_api::Place{TARGET(kX86), PRECISION(kFloat)}}, + input_tensor_shape, + FLAGS_optimized_model_dir + "/XPU"); + // verify results + CompareOutputTensor(xpu_predictor, cpu_predictor, FLAGS_output_tensor_num); +} + +} // namespace lite +} // namespace paddle diff --git a/lite/core/mir/subgraph/subgraph_program_pass.cc b/lite/core/mir/subgraph/subgraph_program_pass.cc index 31c28ad89cd419090fd14bfc367a9ef5eeaf9b15..0cb2261a3fca7aa47119b18900d38ecfd8229299 100644 --- a/lite/core/mir/subgraph/subgraph_program_pass.cc +++ b/lite/core/mir/subgraph/subgraph_program_pass.cc @@ -207,8 +207,26 @@ void SubgraphProgramPass::InferOnce(const std::unique_ptr& graph) { if (!item->IsStmt()) continue; auto& stmt = item->AsStmt(); auto& op = stmt.op(); + auto scope = op->scope(); std::string op_type = op->op_info()->Type(); - if (op_type == "feed" || op_type == "fetch") continue; + // check the dimension of input variables in the scope, must not be empty ! + if (op_type == "feed") { + auto input_var_names = op->op_info()->output_names(); + CHECK_GE(input_var_names.size(), 1); + for (auto input_var_name : input_var_names) { + auto input_var = scope->FindVar(input_var_name); + CHECK(input_var) << "No input variable '" << input_var_name + << "' found in scope " << scope; + auto input = input_var->GetMutable(); + CHECK(!input->dims().empty()) << "The dimension of input variable '" + << input_var_name + << "' can not be empty."; + } + continue; + } + if (op_type == "fetch") { + continue; + } op->CheckShape(); op->InferShape(); // TOOD(xxx): remove Launch() at last diff --git a/lite/core/mir/subgraph/subgraph_program_pass_test.cc b/lite/core/mir/subgraph/subgraph_program_pass_test.cc index 625c9ac92435296ddb9a9ad2b116aef7fe6ea3f8..22e20b81d831ff25df090a7565e671b9139122f7 100644 --- a/lite/core/mir/subgraph/subgraph_program_pass_test.cc +++ b/lite/core/mir/subgraph/subgraph_program_pass_test.cc @@ -46,6 +46,9 @@ TEST(SubgraphTest, models) { #endif #ifdef LITE_WITH_NPU Place{TARGET(kNPU), PRECISION(kFloat)}, +#endif +#ifdef LITE_WITH_XPU + Place{TARGET(kXPU), PRECISION(kFloat)}, #endif }); lite::Program program(program_desc, scope, valid_places); diff --git a/lite/core/op_registry.cc b/lite/core/op_registry.cc index 0fdce27e3b5381cb455a346800a47e2a42e9f4ba..ad974a781c7c899428015907a4166d8d0c351c76 100644 --- a/lite/core/op_registry.cc +++ b/lite/core/op_registry.cc @@ -78,6 +78,9 @@ std::list> KernelRegistry::Create( case TARGET(kNPU): { CREATE_KERNEL(kNPU); } break; + case TARGET(kXPU): { + CREATE_KERNEL(kXPU); + } break; case TARGET(kFPGA): { CREATE_KERNEL(kFPGA); } break; @@ -142,6 +145,11 @@ KernelRegistry::KernelRegistry() INIT_FOR(kNPU, kAny, kNCHW); INIT_FOR(kNPU, kAny, kAny); + INIT_FOR(kXPU, kFloat, kNCHW); + INIT_FOR(kXPU, kInt8, kNCHW); + INIT_FOR(kXPU, kAny, kNCHW); + INIT_FOR(kXPU, kAny, kAny); + INIT_FOR(kFPGA, kFP16, kNHWC); INIT_FOR(kFPGA, kFP16, kAny); INIT_FOR(kFPGA, kFloat, kNHWC); diff --git a/lite/core/op_registry.h b/lite/core/op_registry.h index 25375b8a8f795e58194d6223f617273beac3b78e..1c67ee8f3dcafe30d9bda587d62233d0e715071e 100644 --- a/lite/core/op_registry.h +++ b/lite/core/op_registry.h @@ -178,6 +178,16 @@ class KernelRegistry final { PRECISION(kInt8), DATALAYOUT(kNCHW)> *, // + KernelRegistryForTarget *, // + KernelRegistryForTarget *, // + KernelRegistryForTarget *, // + KernelRegistryForTarget *, // diff --git a/lite/core/optimizer.h b/lite/core/optimizer.h index 93d8a148c909c1d4682664eca2fe7dc172f4f280..739615e2763f509f2dec97f5ab3e536aca7acc4f 100644 --- a/lite/core/optimizer.h +++ b/lite/core/optimizer.h @@ -28,6 +28,9 @@ #ifdef LITE_WITH_NPU #include "lite/core/mir/subgraph/generate_npu_program_pass.h" #endif +#ifdef LITE_WITH_XPU +#include "lite/core/mir/subgraph/generate_xpu_program_pass.h" +#endif namespace paddle { namespace lite { @@ -106,7 +109,8 @@ class Optimizer { "runtime_context_assign_pass", "argument_type_display_pass", // -#if !defined(LITE_WITH_OPENCL) && !defined(LITE_WITH_NPU) +#if !defined(LITE_WITH_OPENCL) && !defined(LITE_WITH_NPU) && \ + !defined(LITE_WITH_XPU) // TODO(ysh329): cause CL_INVALID_MEM_OBJECT when setArg in kernel "memory_optimize_pass", #endif @@ -121,14 +125,27 @@ class Optimizer { // Generate a new program based on the mir graph. std::unique_ptr GenRuntimeProgram() { +#if defined(LITE_WITH_NPU) || defined(LITE_WITH_XPU) + auto target_place = Place{ #ifdef LITE_WITH_NPU - if (std::find(valid_places_.begin(), - valid_places_.end(), - Place{TARGET(kNPU), PRECISION(kFloat)}) != + TARGET(kNPU), +#endif +#ifdef LITE_WITH_XPU + TARGET(kXPU), +#endif + PRECISION(kFloat)}; + if (std::find(valid_places_.begin(), valid_places_.end(), target_place) != valid_places_.end()) { +#ifdef LITE_WITH_NPU auto pass = mir::PassManager::Global() .LookUp( "generate_npu_program_pass"); +#endif +#ifdef LITE_WITH_XPU + auto pass = mir::PassManager::Global() + .LookUp( + "generate_xpu_program_pass"); +#endif try { pass->Apply(graph_); auto program = pass->GenProgram(); @@ -136,7 +153,8 @@ class Optimizer { program->set_exec_scope(exec_scope_); return program; } catch (...) { - LOG(WARNING) << "Build NPU graph failed"; + LOG(WARNING) << "Build " << TargetToStr(target_place.target) + << " program failed!"; } } #endif diff --git a/lite/gen_code/CMakeLists.txt b/lite/gen_code/CMakeLists.txt index d83657ad3e24eb5661225a4a0684c141e40a6163..40c95415546d99a66abf2d6f3595ae8695c4df86 100644 --- a/lite/gen_code/CMakeLists.txt +++ b/lite/gen_code/CMakeLists.txt @@ -15,6 +15,7 @@ lite_cc_test(test_gen_code SRCS gen_code_test.cc X86_DEPS ${x86_kernels} ARM_DEPS ${arm_kernels} NPU_DEPS ${npu_kernels} + XPU_DEPS ${xpu_kernels} CL_DEPS ${opencl_kernels} FPGA_DEPS ${fpga_kernels} EXCLUDE_COMPILE_DEPS "ON" @@ -42,6 +43,7 @@ lite_cc_test(test_generated_code SRCS generated_code_test.cc DEPS __generated_co X86_DEPS ${x86_kernels} ARM_DEPS ${arm_kernels} NPU_DEPS ${npu_kernels} + XPU_DEPS ${xpu_kernels} CL_DEPS ${opencl_kernels} FPGA_DEPS ${fpga_kernels} EXCLUDE_COMPILE_DEPS "ON" diff --git a/lite/kernels/CMakeLists.txt b/lite/kernels/CMakeLists.txt index 1996f50133acc6f3bdf651e8c0daae5b68c96832..0bfd39ae9a0bdf6e8af606711fd4dcc6011994b5 100644 --- a/lite/kernels/CMakeLists.txt +++ b/lite/kernels/CMakeLists.txt @@ -9,3 +9,4 @@ add_subdirectory(x86) add_subdirectory(opencl) add_subdirectory(fpga) add_subdirectory(npu) +add_subdirectory(xpu) diff --git a/lite/kernels/xpu/CMakeLists.txt b/lite/kernels/xpu/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..72c48ceab079bc65e4f2363a1702de52586733d6 --- /dev/null +++ b/lite/kernels/xpu/CMakeLists.txt @@ -0,0 +1,9 @@ + +if(NOT LITE_WITH_XPU) + return () +endif() + +add_kernel(graph_compute_xpu XPU basic SRCS graph_compute.cc DEPS ${lite_kernel_deps} xpu_runtime) +# lite_cc_test(test_graph_compute_xpu SRCS graph_compute_test.cc DEPS graph_compute_xpu) + +add_subdirectory(bridges) diff --git a/lite/kernels/xpu/bridges/CMakeLists.txt b/lite/kernels/xpu/bridges/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..8cff79f23fd97d5dd5590da9ea576f3d2b293925 --- /dev/null +++ b/lite/kernels/xpu/bridges/CMakeLists.txt @@ -0,0 +1,17 @@ +lite_cc_library(xpu_bridge_registry SRCS registry.cc) + +set(xpu_bridge_deps xpu_bridge_registry xpu_builder op) + +lite_cc_library(xpu_bridge_act_op SRCS act_op.cc DEPS ${xpu_bridge_deps}) +lite_cc_library(xpu_bridge_conv_op SRCS conv_op.cc DEPS ${xpu_bridge_deps}) + +set(xpu_bridges + xpu_bridge_registry + xpu_bridge_act_op + xpu_bridge_conv_op + CACHE INTERNAL "xpu_bridges") + +set(xpu_bridge_test_deps ${xpu_bridges} ${xpu_kernels} ${ops}) + +lite_cc_test(test_xpu_bridge_act_op SRCS act_op_test.cc test_helper.cc DEPS ${xpu_bridge_test_deps}) +lite_cc_test(test_xpu_bridge_conv_op SRCS conv_op_test.cc test_helper.cc DEPS ${xpu_bridge_test_deps}) diff --git a/lite/kernels/xpu/bridges/act_op.cc b/lite/kernels/xpu/bridges/act_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..d8e11caa96fdbff3a853a192a8d16f2eccd96337 --- /dev/null +++ b/lite/kernels/xpu/bridges/act_op.cc @@ -0,0 +1,62 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "lite/backends/xpu/builder.h" +#include "lite/kernels/xpu/bridges/registry.h" + +namespace paddle { +namespace lite { +namespace kernels { +namespace xpu { +namespace bridges { + +node_map_type ActConverter(const std::shared_ptr op, + graph_ctx_type* graph_ctx, + const node_map_type& input_nodes) { + auto op_info = op->op_info(); + auto op_type = op_info->Type(); + auto unique_op_type = lite::xpu::UniqueName(op_type); + LOG(INFO) << "[XPU] Converting " + op_type + "..."; + + // check context + CHECK(graph_ctx != nullptr); + CHECK(graph_ctx->builder != nullptr); + CHECK(graph_ctx->params != nullptr); + + // create act node and set params from op + auto x_var_name = op_info->Input("X").front(); + CHECK(input_nodes.count(x_var_name)); + std::shared_ptr act_node = nullptr; + if (op_type == "relu") { + act_node = std::make_shared( + graph_ctx->builder->CreateRelu(*input_nodes.at(x_var_name))); + } else { + // TODO(hong19860320) supports more activation ops + LOG(FATAL) << "[XPU] Unsupported activation type " << op_type; + } + graph_ctx->builder->SetLayer(unique_op_type); + + // output converted nodes + node_map_type output_nodes; + output_nodes[op_info->Output("Out").front()] = act_node; + return output_nodes; +} + +} // namespace bridges +} // namespace xpu +} // namespace kernels +} // namespace lite +} // namespace paddle + +REGISTER_XPU_BRIDGE(relu, paddle::lite::kernels::xpu::bridges::ActConverter); diff --git a/lite/kernels/xpu/bridges/act_op_test.cc b/lite/kernels/xpu/bridges/act_op_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..1a3efab46e3c7caee08bf646a560a0ab9abcf5c7 --- /dev/null +++ b/lite/kernels/xpu/bridges/act_op_test.cc @@ -0,0 +1,102 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include +#include +#include "lite/core/op_registry.h" +#include "lite/kernels/xpu/bridges/registry.h" +#include "lite/kernels/xpu/bridges/test_helper.h" +#include "lite/operators/activation_ops.h" + +namespace paddle { +namespace lite { +namespace kernels { +namespace xpu { +namespace bridges { + +void relu_ref(const std::shared_ptr op) { + Scope* scope = op->scope(); + const OpInfo* op_info = op->op_info(); + auto x = scope->FindVar(op_info->Input("X").front())->GetMutable(); + auto out = + scope->FindVar(op_info->Output("Out").front())->GetMutable(); + auto x_data = x->data(); + auto out_data = out->mutable_data(); + DDim x_dims = x->dims(); + DDim out_dims = out->dims(); + CHECK_EQ(x_dims.production(), out_dims.production()); + for (int i = 0; i < out_dims.production(); i++) { + out_data[i] = std::max(0.f, x_data[i]); + } +} + +void test_relu(int bs, int ic, int ih, int iw) { + // prepare input&output variables + Scope scope; + std::string x_var_name("x"); + std::string out_var_name("out"); + std::string out_ref_var_name("out_ref"); + auto* x = scope.Var(x_var_name)->GetMutable(); + auto* out = scope.Var(out_var_name)->GetMutable(); + auto* out_ref = scope.Var(out_ref_var_name)->GetMutable(); + x->Resize({bs, ic, ih, iw}); + + // initialize input&output data + FillTensor(x); + + // initialize op desc + cpp::OpDesc opdesc; + opdesc.SetType("relu"); + opdesc.SetInput("X", {x_var_name}); + opdesc.SetOutput("Out", {out_var_name}); + + // create and convert op to XPU model, and run it on XPU + auto op = CreateOp(opdesc, &scope); + LauchOp(op, {x_var_name}, {out_var_name}); + out_ref->CopyDataFrom(*out); + + // execute reference implementation and save to output tensor + relu_ref(op); + + // compare results + auto* out_data = out->mutable_data(); + auto* out_ref_data = out_ref->mutable_data(); + for (int i = 0; i < out->dims().production(); i++) { + VLOG(5) << i; + EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-5); + } +} + +TEST(NPUBridges, relu) { + for (auto bs : {1, 3}) { + for (auto ic : {3, 4}) { + for (auto ih : {2, 5}) { + for (auto iw : {5, 9}) { + VLOG(3) << "bs: " << bs << " ic: " << ic << " ih: " << ih + << " iw: " << iw; + test_relu(bs, ic, ih, iw); + } + } + } + } +} + +} // namespace bridges +} // namespace xpu +} // namespace kernels +} // namespace lite +} // namespace paddle + +USE_LITE_OP(relu); +USE_XPU_BRIDGE(relu); diff --git a/lite/kernels/xpu/bridges/conv_op.cc b/lite/kernels/xpu/bridges/conv_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..c7c2f0ca5f303555eaa74ea04dad27c9de70d89a --- /dev/null +++ b/lite/kernels/xpu/bridges/conv_op.cc @@ -0,0 +1,170 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "lite/backends/xpu/builder.h" +#include "lite/kernels/xpu/bridges/registry.h" + +namespace paddle { +namespace lite { +namespace kernels { +namespace xpu { +namespace bridges { + +node_map_type ConvConverter(const std::shared_ptr op, + graph_ctx_type* graph_ctx, + const node_map_type& input_nodes) { + auto scope = op->scope(); + auto op_info = op->op_info(); + auto op_type = op_info->Type(); + auto unique_op_type = lite::xpu::UniqueName(op_type); + LOG(INFO) << "[XPU] Converting " << op_type << "... "; + + // get input, filter and op attributes + auto input_var_name = op_info->Input("Input").front(); + auto input = scope->FindVar(input_var_name)->GetMutable(); + auto input_dims = input->dims(); + auto filter_var_name = op_info->Input("Filter").front(); + auto filter = scope->FindVar(filter_var_name)->GetMutable(); + auto filter_dims = filter->dims(); + auto bs = input_dims[0]; + auto oc = filter_dims[0]; + CHECK_EQ(input_dims.size(), 4); + CHECK_EQ(filter_dims.size(), 4); + auto strides = op_info->GetAttr>("strides"); + auto paddings = op_info->GetAttr>("paddings"); + auto groups = op_info->GetAttr("groups"); + auto dilations = op_info->GetAttr>("dilations"); + auto fuse_relu = op_info->GetAttr("fuse_relu"); + CHECK_EQ(strides.size(), 2); + CHECK_EQ(paddings.size(), 2); + CHECK_EQ(dilations.size(), 2); + std::vector output_shape({bs, oc}); + for (size_t i = 0; i < 2; i++) { + const int dkernel = dilations[i] * (filter_dims[2 + i] - 1) + 1; + output_shape.push_back( + (input_dims[i + 2] + 2 * paddings[i] - dkernel) / strides[i] + 1); + } + DDim output_dims(output_shape); + + // check context + CHECK(graph_ctx != nullptr); + CHECK(graph_ctx->builder != nullptr); + CHECK(graph_ctx->params != nullptr); + + // create filter node + CHECK(!input_nodes.count(filter_var_name)); + auto filter_const_node = std::make_shared( + graph_ctx->builder->CreateTensor(filter_var_name, + lite::xpu::CvtShape(filter_dims), + ::xtcl::Float(32))); + auto filter_const_tensor = lite::xpu::CvtTensor(filter); + graph_ctx->params->emplace( + std::make_pair(filter_var_name, *filter_const_tensor)); + + // create conv node and set input, filter, bias nodes and attributes + auto conv_attrs = xtcl::make_node(); + conv_attrs->strides = std::move(lite::xpu::CvtShape(strides)); + conv_attrs->padding = std::move(lite::xpu::CvtShape(paddings)); + conv_attrs->dilation = std::move(lite::xpu::CvtShape(dilations)); + conv_attrs->groups = groups; + // conv_attrs->channels = nullptr; + conv_attrs->kernel_size = std::move(xtcl::Array(nullptr)); + conv_attrs->data_layout = "NCHW"; + conv_attrs->kernel_layout = "OIHW"; + conv_attrs->out_layout = ""; + // conv_attrs->out_dtype = ""; + CHECK(input_nodes.count(input_var_name)); + auto conv_node = + std::make_shared(graph_ctx->builder->CreateConv2D( + *input_nodes.at(input_var_name), *filter_const_node, conv_attrs)); + graph_ctx->builder->SetLayer(unique_op_type); + + // create bias node if has bias + // supports the bias nodes with the following dimensions + // 0: {oc} + // 1: {1, oc, oh, ow} + // 2: {n, oc, oh, ow} + if (lite::xpu::HasInputArg(op_info, scope, "Bias")) { + auto bias_var_name = op_info->Input("Bias").front(); + auto* bias = scope->FindVar(bias_var_name)->GetMutable(); + auto bias_dims = bias->dims(); + auto bias_data_size = bias_dims.production(); + auto output_data_size = output_dims.production(); + std::vector bias_shape; + bool is_channel_bias = false; + if (bias_data_size == oc) { + // 0: {oc} + bias_shape = {oc}; + is_channel_bias = true; + } else if (bias_data_size == output_data_size / bs) { + // 1: {1, oc, oh, ow} + bias_shape = {1, output_dims[1], output_dims[2], output_dims[3]}; + } else if (bias_data_size == output_data_size) { + // 2: {n, oc, oh, ow} + bias_shape = output_dims.Vectorize(); + } else { + LOG(ERROR) << "bias dimension " << bias_dims + << " isn't supported in conv2d Op when output dimension is " + << output_dims; + } + std::shared_ptr bias_node = nullptr; + if (input_nodes.count(bias_var_name)) { + // bias node from input node + bias_node = input_nodes.at(bias_var_name); + } else { + // bias node with const tensor + auto bias_const_node = std::make_shared( + graph_ctx->builder->CreateTensor(bias_var_name, + lite::xpu::CvtShape(bias_shape), + ::xtcl::Float(32))); + auto bias_const_tensor = lite::xpu::CvtTensor(bias, bias_shape); + graph_ctx->params->emplace( + std::make_pair(bias_var_name, *bias_const_tensor)); + bias_node = bias_const_node; + } + std::shared_ptr add_node = nullptr; + if (is_channel_bias) { + add_node = std::make_shared( + graph_ctx->builder->CreateBiasAdd(*conv_node, *bias_node, 1)); + } else { + add_node = std::make_shared( + graph_ctx->builder->CreateBinaryOp("add", *conv_node, *bias_node)); + } + graph_ctx->builder->SetLayer(unique_op_type + "/add"); + conv_node = add_node; + } + + // output converted nodes + node_map_type output_nodes; + if (fuse_relu) { + // append relu node if fuse_relu is true + auto relu_node = std::make_shared( + graph_ctx->builder->CreateRelu(*conv_node)); + graph_ctx->builder->SetLayer(unique_op_type + "/relu"); + output_nodes[op_info->Output("Output").front()] = relu_node; + } else { + output_nodes[op_info->Output("Output").front()] = conv_node; + } + return output_nodes; +} + +} // namespace bridges +} // namespace xpu +} // namespace kernels +} // namespace lite +} // namespace paddle + +REGISTER_XPU_BRIDGE(conv2d, paddle::lite::kernels::xpu::bridges::ConvConverter); +REGISTER_XPU_BRIDGE(depthwise_conv2d, + paddle::lite::kernels::xpu::bridges::ConvConverter); diff --git a/lite/kernels/xpu/bridges/conv_op_test.cc b/lite/kernels/xpu/bridges/conv_op_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..ebdb67bd0d2801a9036696f52790f7104279b0cb --- /dev/null +++ b/lite/kernels/xpu/bridges/conv_op_test.cc @@ -0,0 +1,281 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "lite/operators/conv_op.h" +#include +#include +#include "lite/core/op_registry.h" +#include "lite/kernels/xpu/bridges/registry.h" +#include "lite/kernels/xpu/bridges/test_helper.h" + +namespace paddle { +namespace lite { +namespace kernels { +namespace xpu { +namespace bridges { + +void conv_ref(const std::shared_ptr op) { + Scope* scope = op->scope(); + const OpInfo* op_info = op->op_info(); + auto input = + scope->FindVar(op_info->Input("Input").front())->GetMutable(); + auto filter = + scope->FindVar(op_info->Input("Filter").front())->GetMutable(); + auto output = + scope->FindVar(op_info->Output("Output").front())->GetMutable(); + std::vector strides = + op_info->GetAttr>("strides"); + std::vector paddings = + op_info->GetAttr>("paddings"); + int32_t groups = op_info->GetAttr("groups"); + std::vector dilations = + op_info->GetAttr>("dilations"); + bool fuse_relu = op_info->GetAttr("fuse_relu"); + auto input_dims = input->dims(); + auto filter_dims = filter->dims(); + auto output_dims = output->dims(); + auto input_data = input->mutable_data(); + auto filter_data = filter->mutable_data(); + auto output_data = output->mutable_data(); + int kernel_w = filter_dims[3]; + int kernel_h = filter_dims[2]; + int stride_w = strides[1]; + int stride_h = strides[0]; + int dila_w = dilations[1]; + int dila_h = dilations[0]; + int pad_w = paddings[1]; + int pad_h = paddings[0]; + int batch_size = input_dims[0]; + int in_ch_size = input_dims[1]; + int in_h = input_dims[2]; + int in_w = input_dims[3]; + int out_ch_size = output_dims[1]; + int out_h = output_dims[2]; + int out_w = output_dims[3]; + int out_c_group = out_ch_size / groups; + int in_c_group = in_ch_size / groups; + Tensor* bias = nullptr; + float* bias_data = nullptr; + bool is_channel_bias = false; + if (op_info->HasInput("Bias")) { + auto bias_var_names = op_info->Input("Bias"); + if (bias_var_names.size() > 0) { + auto bias_var_name = bias_var_names.front(); + bias = scope->FindVar(bias_var_name)->GetMutable(); + auto bias_dims = bias->dims(); + is_channel_bias = bias_dims.production() == out_ch_size; + bias_data = bias->mutable_data(); + } + } + for (int n = 0; n < batch_size; ++n) { + for (int g = 0; g < groups; ++g) { + for (int oc = 0; oc < out_c_group; ++oc) { + for (int oh = 0; oh < out_h; ++oh) { + for (int ow = 0; ow < out_w; ++ow) { + int out_idx = n * groups * out_c_group * out_h * out_w + + g * out_c_group * out_h * out_w + oc * out_h * out_w + + oh * out_w + ow; + float out_value = + bias_data != nullptr + ? (is_channel_bias ? bias_data[g * out_c_group + oc] + : bias_data[out_idx]) + : 0; + // + out_value *= beta; + for (int ic = 0; ic < in_c_group; ++ic) { + for (int kh = 0; kh < kernel_h; ++kh) { + for (int kw = 0; kw < kernel_w; ++kw) { + int iw = ow * stride_w - pad_w + kw * (dila_w); + int ih = oh * stride_h - pad_h + kh * (dila_h); + if (iw < 0 || iw >= in_w) continue; + if (ih < 0 || ih >= in_h) continue; + int in_idx = n * in_ch_size * in_h * in_w + + g * in_c_group * in_h * in_w + ic * in_h * in_w + + ih * in_w + iw; + int filter_idx = + g * out_c_group * in_c_group * kernel_h * kernel_w + + oc * in_c_group * kernel_h * kernel_w + + ic * kernel_h * kernel_w + kh * kernel_w + kw; + out_value += input_data[in_idx] * filter_data[filter_idx]; + } + } + } + if (fuse_relu) { + out_value = out_value > 0 ? out_value : 0; + } + output_data[out_idx] = out_value; + } + } + } + } + } +} + +void test_conv(int bs, + int ic, + int oc, + int ih, + int iw, + bool has_bias, + bool is_channel_bias, + bool fuse_relu, + bool depthwise, + int dilation, + int stride, + int padding, + int kernel) { + // prepare input&output variables + Scope scope; + std::string input_var_name("input"); + std::string filter_var_name("filter"); + std::string bias_var_name("bias"); + std::string output_var_name("output"); + std::string output_ref_var_name("output_ref"); + auto* input = scope.Var(input_var_name)->GetMutable(); + auto* filter = scope.Var(filter_var_name)->GetMutable(); + auto* bias = scope.Var(bias_var_name)->GetMutable(); + auto* output = scope.Var(output_var_name)->GetMutable(); + auto* output_ref = scope.Var(output_ref_var_name)->GetMutable(); + + // get group size and input&filter shape + int groups = 1; + if (depthwise) { // depthwise convolution ? + groups = oc = ic; + } + std::vector input_shape = {bs, ic, ih, iw}; + std::vector filter_shape = {oc, ic / groups, kernel, kernel}; + std::vector output_shape({bs, oc}); + for (size_t i = 0; i < 2; i++) { + const int dkernel = dilation * (kernel - 1) + 1; + int output_size = (input_shape[i + 2] + 2 * padding - dkernel) / stride + 1; + output_shape.push_back(output_size); + } + input->Resize(input_shape); + filter->Resize(filter_shape); + + // initialize input&output data + FillTensor(input); + FillTensor(filter); + + // initialize op desc + cpp::OpDesc opdesc; + opdesc.SetType(depthwise ? "depthwise_conv2d" : "conv2d"); + opdesc.SetInput("Input", {input_var_name}); + opdesc.SetInput("Filter", {filter_var_name}); + opdesc.SetOutput("Output", {output_var_name}); + opdesc.SetAttr("dilations", std::vector({dilation, dilation})); + opdesc.SetAttr("strides", std::vector({stride, stride})); + opdesc.SetAttr("paddings", std::vector({padding, padding})); + opdesc.SetAttr("groups", groups); + opdesc.SetAttr("fuse_relu", static_cast(fuse_relu)); + if (has_bias) { + if (is_channel_bias) { + bias->Resize({1, oc, 1, 1}); + } else { + bias->Resize({1, output_shape[1], output_shape[2], output_shape[3]}); + } + FillTensor(bias); + opdesc.SetInput("Bias", {bias_var_name}); + } + + // create and convert op to NPU model, then run it on NPU + auto op = CreateOp(opdesc, &scope); + LauchOp(op, {input_var_name}, {output_var_name}); + output_ref->CopyDataFrom(*output); + + // execute reference implementation and save to output tensor('out') + conv_ref(op); + + // compare results + auto* output_data = output->mutable_data(); + auto* output_ref_data = output_ref->mutable_data(); + for (int i = 0; i < output->dims().production(); i++) { + VLOG(5) << i; + EXPECT_NEAR(output_data[i], output_ref_data[i], 1e-5); + } +} + +TEST(NPUBridges, conv) { +#if 0 + for (auto bs : {1, 2}) { + for (auto ic : {3, 6}) { + for (auto oc : {6, 9}) { + for (auto ih : {14, 28}) { + for (auto iw : {14, 28}) { + for (auto has_bias : {false, true}) { + for (auto is_channel_bias : {false, true}) { + for (auto fuse_relu : {false, true}) { + for (auto depthwise : {false, true}) { + for (auto dilation : {1, 2}) { + for (auto stride : {1, 2}) { + for (auto kernel : {1, 3, 5}) { + std::vector paddings = {kernel / 2}; + if (kernel / 2 != 0) { + paddings.push_back(0); + } + for (auto padding : paddings) { + VLOG(3) << "bs: " << bs << " ic: " << ic + << " oc: " << oc << " ih: " << ih + << " iw: " << iw + << " has_bias: " << has_bias + << " is_channel_bias: " << is_channel_bias + << " fuse_relu: " << fuse_relu + << " depthwise: " << depthwise + << " dilation: " << dilation + << " stride: " << stride + << " padding: " << padding + << " kernel: " << kernel; + test_conv(bs, + ic, + oc, + ih, + iw, + has_bias, + is_channel_bias, + fuse_relu, + depthwise, + dilation, + stride, + padding, + kernel); + } + } + } + } + } + } + } + } + } + } + } + } + } +#else + test_conv(1, 1, 1, 4, 4, false, false, false, false, 1, 1, 1, 3); + test_conv(1, 1, 1, 4, 4, true, true, false, false, 1, 1, 1, 3); + test_conv(1, 1, 1, 4, 4, true, false, false, false, 1, 1, 1, 3); +#endif +} + +} // namespace bridges +} // namespace xpu +} // namespace kernels +} // namespace lite +} // namespace paddle + +USE_LITE_OP(conv2d); +USE_XPU_BRIDGE(conv2d); + +USE_LITE_OP(depthwise_conv2d); +USE_XPU_BRIDGE(depthwise_conv2d); diff --git a/lite/kernels/xpu/bridges/paddle_use_xpu_bridges.h b/lite/kernels/xpu/bridges/paddle_use_xpu_bridges.h new file mode 100644 index 0000000000000000000000000000000000000000..ee48fee626b9459bb24780e9241dab3071307774 --- /dev/null +++ b/lite/kernels/xpu/bridges/paddle_use_xpu_bridges.h @@ -0,0 +1,21 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "lite/kernels/xpu/bridges/registry.h" + +USE_XPU_BRIDGE(relu); +USE_XPU_BRIDGE(conv2d); +USE_XPU_BRIDGE(depthwise_conv2d); diff --git a/lite/kernels/xpu/bridges/registry.cc b/lite/kernels/xpu/bridges/registry.cc new file mode 100644 index 0000000000000000000000000000000000000000..4ab1b69a25a29aeb1c1ceaff25525459ef2e94cd --- /dev/null +++ b/lite/kernels/xpu/bridges/registry.cc @@ -0,0 +1,41 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "lite/kernels/xpu/bridges/registry.h" +#include + +namespace paddle { +namespace lite { +namespace kernels { +namespace xpu { +namespace bridges { + +Factory& Factory::Instance() { + static Factory g_xpu_bridge; + return g_xpu_bridge; +} + +bool Factory::HasType(const std::string& op_type) const { + return map_.count(op_type); +} + +void Factory::Insert(const std::string& op_type, const func_type& func_name) { + map_.insert(std::make_pair(op_type, func_name)); +} + +} // namespace bridges +} // namespace xpu +} // namespace kernels +} // namespace lite +} // namespace paddle diff --git a/lite/kernels/xpu/bridges/registry.h b/lite/kernels/xpu/bridges/registry.h new file mode 100644 index 0000000000000000000000000000000000000000..c990399c1cdeb865dc214d2f1c6d1970b6d27b85 --- /dev/null +++ b/lite/kernels/xpu/bridges/registry.h @@ -0,0 +1,93 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include +#include +#include +#include +#include "lite/core/op_lite.h" +#include "lite/utils/macros.h" + +namespace paddle { +namespace lite { +namespace kernels { +namespace xpu { +namespace bridges { + +// xpu network builder and constant tensors +class graph_ctx_type { + public: + std::shared_ptr builder; + std::shared_ptr params; +}; + +// var_name, xpu node pointer +using node_map_type = + std::unordered_map>; + +using func_type = std::function, graph_ctx_type*, const node_map_type&)>; +using cvt_map_type = std::unordered_map; +class Factory { + public: + static Factory& Instance(); + + const cvt_map_type& AllFunctions() const { return map_; } + bool HasType(const std::string& op_type) const; + void Insert(const std::string& op_type, const func_type& func_name); + Factory() = default; + + private: + cvt_map_type map_; + DISALLOW_COPY_AND_ASSIGN(Factory); +}; + +} // namespace bridges +} // namespace xpu +} // namespace kernels +} // namespace lite +} // namespace paddle + +// some platform-independent defintion +#if defined(_WIN32) +#define UNUSED +#define __builtin_expect(EXP, C) (EXP) +#else +#define UNUSED __attribute__((unused)) +#endif + +#define STATIC_ASSERT_JITKERNEL_GLOBAL_NAMESPACE(uniq_name, msg) \ + struct __test_global_namespace_##uniq_name##__ {}; \ + static_assert(std::is_same<::__test_global_namespace_##uniq_name##__, \ + __test_global_namespace_##uniq_name##__>::value, \ + msg) + +#define REGISTER_XPU_BRIDGE(op_type, cvt_func_name) \ + STATIC_ASSERT_JITKERNEL_GLOBAL_NAMESPACE( \ + __reg_xpu_bridge_##op_type##__, \ + "REGISTER_XPU_BRIDGE must be called in global namespace only once!"); \ + int __reg_xpu_bridge_##op_type##_Insert() { \ + paddle::lite::kernels::xpu::bridges::Factory::Instance().Insert( \ + #op_type, cvt_func_name); \ + return 0; \ + } + +#define USE_XPU_BRIDGE(op_type) \ + extern int __reg_xpu_bridge_##op_type##_Insert(); \ + static int __reg_xpu_bridge_##op_type##_Insert_return UNUSED = \ + __reg_xpu_bridge_##op_type##_Insert(); diff --git a/lite/kernels/xpu/bridges/test_helper.cc b/lite/kernels/xpu/bridges/test_helper.cc new file mode 100644 index 0000000000000000000000000000000000000000..1a19324b946203c008093136d7a207ffaf23fbd6 --- /dev/null +++ b/lite/kernels/xpu/bridges/test_helper.cc @@ -0,0 +1,104 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "lite/kernels/xpu/bridges/test_helper.h" +#include +#include "lite/backends/xpu/builder.h" +#include "lite/core/op_registry.h" +#include "lite/kernels/xpu/bridges/registry.h" +#include "lite/operators/graph_op.h" + +namespace paddle { +namespace lite { +namespace kernels { +namespace xpu { +namespace bridges { + +void LauchOp(const std::shared_ptr op, + const std::vector& input_var_names, + const std::vector& output_var_names) { + auto scope = op->scope(); + auto op_type = op->op_info()->Type(); + + // convert lite op to XPU op + const auto& bridges = lite::kernels::xpu::bridges::Factory::Instance(); + const auto& supported_lists = bridges.AllFunctions(); + CHECK(bridges.HasType(op_type)); + graph_ctx_type graph_ctx; + graph_ctx.builder = std::make_shared(); + graph_ctx.params = + std::make_shared(); + node_map_type input_nodes; + for (auto input_var_name : input_var_names) { + auto input = scope->FindVar(input_var_name)->GetMutable(); + auto input_node = std::make_shared( + graph_ctx.builder->CreateTensor(input_var_name, + lite::xpu::CvtShape(input->dims()), + ::xtcl::Float(32))); + input_nodes[input_var_name] = input_node; + } + auto output_nodes = supported_lists.at(op_type)(op, &graph_ctx, input_nodes); + CHECK_GT(output_nodes.size(), 0); + + // build network graph and output model data + std::vector> ordered_output_nodes; + for (auto output_var_name : output_var_names) { + ordered_output_nodes.push_back(output_nodes.at(output_var_name)); + } + std::string weight_var_name = "weight"; + auto weight = scope->Var(weight_var_name)->GetMutable(); + weight->set_persistable(true); + weight->set_precision(PRECISION(kInt8)); + CHECK(lite::xpu::BuildModel( + graph_ctx.builder, graph_ctx.params, &ordered_output_nodes, weight)); + CHECK_GT(weight->numel(), 0); + CHECK(weight->data() != nullptr); + + // create graph op and set inputs and outputs + cpp::OpDesc graph_op_desc; + graph_op_desc.SetType("graph_op"); + graph_op_desc.SetInput("Inputs", input_var_names); + graph_op_desc.SetInput("Weight", {weight_var_name}); + graph_op_desc.SetOutput("Outputs", output_var_names); + + auto graph_op = + std::make_shared(graph_op_desc.Type()); + graph_op->SetValidPlaces({Place{TARGET(kXPU), PRECISION(kFloat)}}); + CHECK(graph_op->Attach(graph_op_desc, scope)); + CHECK(graph_op->CheckShape()); + CHECK(graph_op->InferShape()); + + // create graph op kernel and set XPU context + auto graph_kernels = + graph_op->CreateKernels({Place{TARGET(kXPU), PRECISION(kFloat)}}); + CHECK(!graph_kernels.empty()); + auto graph_kernel = + std::move(graph_kernels.front()); // use the first kernel by default + auto graph_device = ContextScheduler::Global().NewContext(TARGET(kXPU)); + graph_kernel->SetContext(std::move(graph_device)); + + // perform graph op kernel and store to output variables + graph_kernel->Launch(); + + lite::xpu::DeviceInfo::Global().Clear(); +} + +} // namespace bridges +} // namespace xpu +} // namespace kernels +} // namespace lite +} // namespace paddle + +USE_LITE_OP(graph_op); +USE_LITE_KERNEL(graph_op, kXPU, kFloat, kNCHW, def); diff --git a/lite/kernels/xpu/bridges/test_helper.h b/lite/kernels/xpu/bridges/test_helper.h new file mode 100644 index 0000000000000000000000000000000000000000..c8bba5da66550a9eccaefa8b2d9a31a233f5f706 --- /dev/null +++ b/lite/kernels/xpu/bridges/test_helper.h @@ -0,0 +1,66 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include +#include +#include "lite/core/op_lite.h" + +namespace paddle { +namespace lite { +namespace kernels { +namespace xpu { +namespace bridges { + +template +std::shared_ptr CreateOp(const cpp::OpDesc& opdesc, lite::Scope* scope) { + auto op = std::make_shared(opdesc.Type()); + op->SetValidPlaces({Place{TARGET(kHost), PRECISION(kFloat)}, + Place{TARGET(kARM), PRECISION(kFloat)}, + Place{TARGET(kXPU), PRECISION(kFloat)}}); + CHECK(op->Attach(opdesc, scope)); + CHECK(op->CheckShape()); + CHECK(op->InferShape()); + return op; +} + +// T is the target data type +// R is the range data type, e.g. int, half +template +void FillTensor(Tensor* x, + T lower = static_cast(-2), + T upper = static_cast(2)) { + static unsigned int seed = 100; + std::mt19937 rng(seed++); + std::uniform_real_distribution uniform_dist(0, 1); + + T* x_data = x->mutable_data(); + for (int i = 0; i < x->dims().production(); ++i) { + auto r = uniform_dist(rng) * (upper - lower) + lower; + x_data[i] = static_cast(static_cast(r)); + } +} + +void LauchOp(const std::shared_ptr op, + const std::vector& input_var_names, + const std::vector& output_var_names); + +} // namespace bridges +} // namespace xpu +} // namespace kernels +} // namespace lite +} // namespace paddle diff --git a/lite/kernels/xpu/graph_compute.cc b/lite/kernels/xpu/graph_compute.cc new file mode 100644 index 0000000000000000000000000000000000000000..b9e5be1a1d5c764c378f3fdf29d73148743962a4 --- /dev/null +++ b/lite/kernels/xpu/graph_compute.cc @@ -0,0 +1,99 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "lite/kernels/xpu/graph_compute.h" +#include +#include +#include +#include +#include "lite/backends/xpu/runtime.h" +#include "lite/core/op_registry.h" +#include "lite/core/type_system.h" + +namespace paddle { +namespace lite { +namespace kernels { +namespace xpu { + +void GraphCompute::PrepareForRun() { + // auto& ctx = this->ctx_->template As(); + auto& param = this->Param(); + CHECK(param.weight); + CHECK(lite::xpu::LoadModel(*param.weight, &runtime_)); + CHECK(runtime_ != nullptr); +} + +void GraphCompute::Run() { + auto& param = this->Param(); + auto GetCurrentUS = []() -> double { + struct timeval time; + gettimeofday(&time, NULL); + return 1e+6 * time.tv_sec + time.tv_usec; + }; + auto start_time = GetCurrentUS(); + for (int i = 0; i < param.inputs.size(); i++) { + auto input_var_name = param.inputs[i].first; + auto input_tensor = param.inputs[i].second; + LOG(INFO) << "input dims[" << i << ":" << input_var_name + << "]: " << input_tensor->dims(); + auto input_tensor_data = input_tensor->data(); + for (int j = 0; j < input_tensor->dims().production(); j++) { + VLOG(3) << input_tensor_data[j]; + } + auto input_ndarray = xtcl::xNDArray::Empty( + input_tensor->dims().Vectorize(), {kDLFloat, 32, 1}, {kDLCPU, 0}); + auto input_ndarray_data = + static_cast(input_ndarray.ToDLPack()->dl_tensor.data); + std::memcpy(input_ndarray_data, + input_tensor_data, + sizeof(float) * input_tensor->dims().production()); + runtime_->SetInputZeroCopy(input_var_name, + &input_ndarray.ToDLPack()->dl_tensor); + } + runtime_->Run(); + for (int i = 0; i < param.outputs.size(); i++) { + auto output_ndarray = runtime_->GetOutput(i); + auto output_var_name = param.outputs[i].first; + auto output_tensor = param.outputs[i].second; + output_tensor->Resize(output_ndarray.Shape()); + LOG(INFO) << "output dims[" << i << ":" << output_var_name + << "]: " << output_tensor->dims(); + auto output_ndarray_data = + static_cast(output_ndarray.ToDLPack()->dl_tensor.data); + auto output_tensor_data = output_tensor->mutable_data(); + std::memcpy(output_tensor_data, + output_ndarray_data, + sizeof(float) * output_tensor->dims().production()); + for (int j = 0; j < output_tensor->dims().production(); j++) { + VLOG(3) << output_tensor_data[j]; + } + } + LOG(INFO) << "[XPU] Process cost " << GetCurrentUS() - start_time << " us"; +} + +} // namespace xpu +} // namespace kernels +} // namespace lite +} // namespace paddle + +REGISTER_LITE_KERNEL(graph_op, + kXPU, + kFloat, + kNCHW, + paddle::lite::kernels::xpu::GraphCompute, + def) + .BindInput("Inputs", {LiteType::GetTensorTy(TARGET(kHost))}) + .BindInput("Weight", {LiteType::GetTensorTy(TARGET(kHost))}) + .BindOutput("Outputs", {LiteType::GetTensorTy(TARGET(kHost))}) + .Finalize(); diff --git a/lite/kernels/xpu/graph_compute.h b/lite/kernels/xpu/graph_compute.h new file mode 100644 index 0000000000000000000000000000000000000000..5406daa8a1b757989d006f4e0ea09baedc809e33 --- /dev/null +++ b/lite/kernels/xpu/graph_compute.h @@ -0,0 +1,47 @@ +// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include +#include +#include "lite/core/kernel.h" +#include "lite/core/op_registry.h" +#include "lite/core/types.h" + +namespace paddle { +namespace lite { +namespace kernels { +namespace xpu { + +class GraphCompute : public KernelLite { + public: + using param_t = operators::GraphParam; + + void PrepareForRun() override; + + void Run() override; + + virtual ~GraphCompute() = default; + + private: + std::shared_ptr runtime_{nullptr}; +}; + +} // namespace xpu +} // namespace kernels +} // namespace lite +} // namespace paddle diff --git a/lite/operators/graph_op.cc b/lite/operators/graph_op.cc index 8fd3fe8e6dc07a677d48dc54d330fd6568698de2..018ce264e2f18862549a4abc0444d02dcbb573ee 100644 --- a/lite/operators/graph_op.cc +++ b/lite/operators/graph_op.cc @@ -13,6 +13,7 @@ // limitations under the License. #include "lite/operators/graph_op.h" +#include #include "lite/core/op_registry.h" namespace paddle { @@ -34,7 +35,8 @@ bool GraphOpLite::AttachImpl(const cpp::OpDesc &op_desc, lite::Scope *scope) { for (auto var : inputs) { CHECK(scope->FindVar(var)); - param_.inputs.push_back(scope->FindVar(var)->GetMutable()); + param_.inputs.push_back( + std::make_pair(var, scope->FindVar(var)->GetMutable())); } param_.weight = scope->FindVar(weight.front())->GetMutable(); @@ -42,7 +44,8 @@ bool GraphOpLite::AttachImpl(const cpp::OpDesc &op_desc, lite::Scope *scope) { for (auto var : outputs) { CHECK(scope->FindVar(var)); - param_.outputs.push_back(scope->FindVar(var)->GetMutable()); + param_.outputs.push_back( + std::make_pair(var, scope->FindVar(var)->GetMutable())); } return true; diff --git a/lite/operators/op_params.h b/lite/operators/op_params.h index 45d53f17f91ce5a7b42e9e54829640b9c94005db..097dd91163357d9fa43818c68687a48de06fe8aa 100644 --- a/lite/operators/op_params.h +++ b/lite/operators/op_params.h @@ -14,6 +14,7 @@ #pragma once #include +#include #include #include "lite/api/paddle_place.h" #include "lite/core/scope.h" @@ -69,9 +70,9 @@ struct CalibParam { }; struct GraphParam { - std::vector inputs{}; + std::vector> inputs{}; lite::Tensor* weight{}; - std::vector outputs{}; + std::vector> outputs{}; }; /// -------------------------- NN operators ------------------------------------ diff --git a/lite/tests/kernels/CMakeLists.txt b/lite/tests/kernels/CMakeLists.txt index 1e5fdbb34de3fd0b986e6ec635545fd114f42e5f..f2c2c9a71666b539248c955c6e75470c5933b5c9 100644 --- a/lite/tests/kernels/CMakeLists.txt +++ b/lite/tests/kernels/CMakeLists.txt @@ -1,4 +1,4 @@ -if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA) AND (LITE_WITH_X86 OR LITE_WITH_ARM)) +if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA AND NOT LITE_WITH_XPU) AND (LITE_WITH_X86 OR LITE_WITH_ARM)) lite_cc_test(test_kernel_scale_compute SRCS scale_compute_test.cc DEPS arena_framework ${x86_kernels} ${arm_kernels} ${lite_ops} ${host_kernels}) lite_cc_test(test_kernel_power_compute SRCS power_compute_test.cc DEPS arena_framework ${x86_kernels} ${arm_kernels} ${lite_ops} ${host_kernels}) lite_cc_test(test_kernel_shuffle_channel_compute SRCS shuffle_channel_compute_test.cc DEPS arena_framework ${x86_kernels} ${arm_kernels} ${lite_ops} ${host_kernels}) diff --git a/lite/tools/build_xpu.sh b/lite/tools/build_xpu.sh new file mode 100755 index 0000000000000000000000000000000000000000..62a123c82b2945147fa8616ad8faf0af33a32302 --- /dev/null +++ b/lite/tools/build_xpu.sh @@ -0,0 +1,116 @@ +#!/bin/bash +set -ex + +# global variables with default value +XPU_SDK_ROOT="$(pwd)/../XPU_SDK" # XPU SDK +TARGET_NAME="lite_compile_deps" # default target +BUILD_EXTRA=ON # ON(with sequence ops)/OFF +WITH_TESTING=ON # ON/OFF + +function print_usage { + echo -e "\nUSAGE:" + echo + echo "----------------------------------------" + echo -e "--xpu_sdk_root=" + echo -e "--target_name=" + echo "----------------------------------------" + echo +} + +# readonly variables with default value +readonly CMAKE_COMMON_OPTIONS="-DWITH_LITE=ON \ + -DLITE_WITH_LIGHT_WEIGHT_FRAMEWORK=OFF \ + -DWITH_PYTHON=OFF \ + -DLITE_WITH_ARM=OFF" + +readonly NUM_CORES_FOR_COMPILE=${LITE_BUILD_THREADS:-1} + +readonly THIRDPARTY_TAR=https://paddle-inference-dist.bj.bcebos.com/PaddleLite/third-party-05b862.tar.gz +readonly workspace=$(pwd) + +function prepare_thirdparty { + if [ ! -d $workspace/third-party -o -f $workspace/third-party-05b862.tar.gz ]; then + rm -rf $workspace/third-party + + if [ ! -f $workspace/third-party-05b862.tar.gz ]; then + wget $THIRDPARTY_TAR + fi + tar xzf third-party-05b862.tar.gz + else + git submodule update --init --recursive + fi +} + +# for code gen, a source file is generated after a test, but is dependended by some targets in cmake. +# here we fake an empty file to make cmake works. +function prepare_workspace { + # in build directory + # 1. Prepare gen_code file + GEN_CODE_PATH_PREFIX=lite/gen_code + mkdir -p ./${GEN_CODE_PATH_PREFIX} + touch ./${GEN_CODE_PATH_PREFIX}/__generated_code__.cc + + # 2.Prepare debug tool + DEBUG_TOOL_PATH_PREFIX=lite/tools/debug + mkdir -p ./${DEBUG_TOOL_PATH_PREFIX} + cp ../${DEBUG_TOOL_PATH_PREFIX}/analysis_tool.py ./${DEBUG_TOOL_PATH_PREFIX}/ + + # clone submodule + # git submodule update --init --recursive + prepare_thirdparty +} + +function build_xpu { + build_dir=${workspace}/build.lite.xpu + mkdir -p $build_dir + cd $build_dir + + export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$PWD/third_party/install/mklml/lib" + prepare_workspace + cmake .. \ + ${CMAKE_COMMON_OPTIONS} \ + -DWITH_GPU=OFF \ + -DWITH_MKLDNN=OFF \ + -DLITE_WITH_X86=ON \ + -DWITH_MKL=ON \ + -DLITE_BUILD_EXTRA=ON \ + -DLITE_WITH_XPU=ON \ + -DWITH_TESTING=${WITH_TESTING} \ + -DXPU_SDK_ROOT=${XPU_SDK_ROOT} + + make $TARGET_NAME -j$NUM_CORES_FOR_COMPILE + + cd - + echo "Done" +} + +function main { + # Parse command line. + for i in "$@"; do + case $i in + --target_name=*) + TARGET_NAME="${i#*=}" + shift + ;; + --build_extra=*) + BUILD_EXTRA="${i#*=}" + shift + ;; + --xpu_sdk_root=*) + XPU_SDK_ROOT="${i#*=}" + shift + ;; + build) + build_xpu + shift + ;; + *) + # unknown option + print_usage + exit 1 + ;; + esac + done +} + +main $@ diff --git a/lite/tools/ci_build.sh b/lite/tools/ci_build.sh index 0e8f75f10ace88a1fa57ebce8f158ab3416546b6..8be8e6e6b6da1e2aa38b6fcbcf95b23a8543a5be 100755 --- a/lite/tools/ci_build.sh +++ b/lite/tools/ci_build.sh @@ -248,6 +248,63 @@ function build_test_train { } +function cmake_xpu { + export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$PWD/third_party/install/mklml/lib" + prepare_workspace + cmake .. \ + ${common_flags} \ + -DWITH_GPU=OFF \ + -DWITH_MKLDNN=OFF \ + -DLITE_WITH_X86=ON \ + -DWITH_MKL=ON \ + -DLITE_BUILD_EXTRA=ON \ + -DLITE_WITH_XPU=ON \ + -DXPU_SDK_ROOT="$(pwd)/../../XPU_SDK" +} + +function build_xpu { + make lite_compile_deps -j$NUM_CORES_FOR_COMPILE +} + +# It will eagerly test all lite related unittests. +function test_xpu { + # Due to the missing of xpu kernels, we skip the following tests temporarily. + # TODO(xxx) clear the skip list latter + local skip_list=("test_paddle_api" "test_cxx_api" "test_googlenet" + "test_mobilenetv1_lite_x86" "test_mobilenetv2_lite_x86" + "test_inceptionv4_lite_x86" "test_light_api" + "test_apis" "test_model_bin" + ) + local to_skip=0 + for _test in $(cat $TESTS_FILE); do + to_skip=0 + for skip_name in ${skip_list[@]}; do + if [ $skip_name = $_test ]; then + echo "to skip " $skip_name + to_skip=1 + fi + done + + if [ $to_skip -eq 0 ]; then + ctest -R $_test -V + fi + done +} + +# Build the code and run lite server tests. This is executed in the CI system. +function build_test_xpu { + cur_dir=$(pwd) + + build_dir=$cur_dir/build.lite.xpu + mkdir -p $build_dir + cd $build_dir + + cmake_xpu + build_xpu + + test_xpu +} + # test_arm_android function test_arm_android { local test_name=$1 @@ -850,6 +907,10 @@ function main { cmake_x86 shift ;; + cmake_xpu) + cmake_xpu + shift + ;; cmake_opencl) cmake_opencl $ARM_OS $ARM_ABI $ARM_LANG shift @@ -874,6 +935,10 @@ function main { test_server shift ;; + test_xpu) + test_xpu + shift + ;; test_arm) test_arm $ARM_OS $ARM_ABI $ARM_LANG $ARM_PORT shift @@ -890,6 +955,10 @@ function main { build_test_server shift ;; + build_test_xpu) + build_test_xpu + shift + ;; build_test_train) build_test_train shift diff --git a/lite/tools/debug/CMakeLists.txt b/lite/tools/debug/CMakeLists.txt index ae098b05a66668e1cd4166c4b174feec538d8b37..43c0812ab91f6ddcba02f93d2eea60f5a5268341 100644 --- a/lite/tools/debug/CMakeLists.txt +++ b/lite/tools/debug/CMakeLists.txt @@ -13,6 +13,7 @@ if(LITE_WITH_LIGHT_WEIGHT_FRAMEWORK OR LITE_ON_MODEL_OPTIMIZE_TOOL) X86_DEPS ${x86_kernels} ARM_DEPS ${arm_kernels} NPU_DEPS ${npu_kernels} + XPU_DEPS ${xpu_kernels} FPGA_DEPS ${fpga_kernels} CL_DEPS ${opencl_kernels}) endif()