Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
ab199ae0
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ab199ae0
编写于
3月 07, 2019
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add winograd implementation for arm64
上级
a8b775ec
变更
9
展开全部
显示空白变更内容
内联
并排
Showing
9 changed file
with
647 addition
and
424 deletion
+647
-424
src/operators/kernel/arm/convolution/conv_add_bn_relu_kernel.cpp
...rators/kernel/arm/convolution/conv_add_bn_relu_kernel.cpp
+1
-1
src/operators/kernel/arm/convolution/conv_add_kernel.cpp
src/operators/kernel/arm/convolution/conv_add_kernel.cpp
+3
-1
src/operators/kernel/arm/convolution/conv_add_relu_kernel.cpp
...operators/kernel/arm/convolution/conv_add_relu_kernel.cpp
+1
-1
src/operators/kernel/arm/convolution/conv_bn_add_relu_kernel.cpp
...rators/kernel/arm/convolution/conv_bn_add_relu_kernel.cpp
+1
-1
src/operators/kernel/arm/convolution/conv_bn_relu_kernel.cpp
src/operators/kernel/arm/convolution/conv_bn_relu_kernel.cpp
+1
-1
src/operators/kernel/arm/convolution/conv_common.cpp
src/operators/kernel/arm/convolution/conv_common.cpp
+1
-1
src/operators/kernel/arm/convolution/conv_kernel.cpp
src/operators/kernel/arm/convolution/conv_kernel.cpp
+1
-1
src/operators/math/winograd/winograd_transform_f6k3.cpp
src/operators/math/winograd/winograd_transform_f6k3.cpp
+638
-4
src/operators/math/winograd/winograd_transform_f6k3_arm64.cpp
...operators/math/winograd/winograd_transform_f6k3_arm64.cpp
+0
-413
未找到文件。
src/operators/kernel/arm/convolution/conv_add_bn_relu_kernel.cpp
浏览文件 @
ab199ae0
...
...
@@ -79,12 +79,12 @@ void ConvAddBNReluKernel<CPU, float>::Compute(
math
::
ScaleAddChannelWise
<
RELU
>
(
param
.
Output
(),
param
.
NewScale
(),
param
.
NewBias
(),
param
.
Output
());
break
;
#endif // __aarch64__
case
ConvParam
<
CPU
>::
EXEC_WINOGRAD3X3_FLOAT
:
WinogradConv3x3
<
8
,
3
>
(
param
);
math
::
ScaleAddChannelWise
<
RELU
>
(
param
.
Output
(),
param
.
NewScale
(),
param
.
NewBias
(),
param
.
Output
());
break
;
#endif // __aarch64__
case
ConvParam
<
CPU
>::
EXEC_GEMM_FLOAT
:
ConvBNReluBasic
<
FusionConvAddBNReluParam
<
CPU
>>
(
param
);
break
;
...
...
src/operators/kernel/arm/convolution/conv_add_kernel.cpp
浏览文件 @
ab199ae0
...
...
@@ -11,11 +11,13 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADD_OP
#include "operators/kernel/conv_add_kernel.h"
#include "operators/kernel/arm/convolution/conv_common.h"
#include "operators/kernel/central-arm-func/conv_add_arm_func.h"
#include "operators/kernel/central-arm-func/conv_arm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -47,12 +49,12 @@ void ConvAddKernel<CPU, float>::Compute(const FusionConvAddParam<CPU> ¶m) {
math
::
AddChannelWise
<
IDENTITY
>
(
param
.
Output
(),
param
.
Bias
(),
param
.
Output
());
break
;
#endif // __aarch64__
case
ConvParam
<
CPU
>::
EXEC_WINOGRAD3X3_FLOAT
:
WinogradConv3x3
<
8
,
3
>
(
param
);
math
::
AddChannelWise
<
IDENTITY
>
(
param
.
Output
(),
param
.
Bias
(),
param
.
Output
());
break
;
#endif // __aarch64__
case
ConvParam
<
CPU
>::
EXEC_GEMM_FLOAT
:
ConvAddBasic
(
param
);
break
;
...
...
src/operators/kernel/arm/convolution/conv_add_relu_kernel.cpp
浏览文件 @
ab199ae0
...
...
@@ -46,11 +46,11 @@ void ConvAddReluKernel<CPU, float>::Compute(
DepthwiseConv5x5
<
float
,
float
>
(
param
);
math
::
AddChannelWise
<
RELU
>
(
param
.
Output
(),
param
.
Bias
(),
param
.
Output
());
break
;
#endif // __aarch64__
case
ConvParam
<
CPU
>::
EXEC_WINOGRAD3X3_FLOAT
:
WinogradConv3x3
<
8
,
3
>
(
param
);
math
::
AddChannelWise
<
RELU
>
(
param
.
Output
(),
param
.
Bias
(),
param
.
Output
());
break
;
#endif // __aarch64__
case
ConvParam
<
CPU
>::
EXEC_GEMM_FLOAT
:
ConvAddReluBasic
<
FusionConvAddReluParam
<
CPU
>>
(
param
);
break
;
...
...
src/operators/kernel/arm/convolution/conv_bn_add_relu_kernel.cpp
浏览文件 @
ab199ae0
...
...
@@ -79,12 +79,12 @@ void ConvBNAddReluKernel<CPU, float>::Compute(
math
::
ScaleAddChannelWise
<
RELU
>
(
param
.
Output
(),
param
.
NewScale
(),
param
.
NewBias
(),
param
.
Output
());
break
;
#endif // __aarch64__
case
ConvParam
<
CPU
>::
EXEC_WINOGRAD3X3_FLOAT
:
WinogradConv3x3
<
8
,
3
>
(
param
);
math
::
ScaleAddChannelWise
<
RELU
>
(
param
.
Output
(),
param
.
NewScale
(),
param
.
NewBias
(),
param
.
Output
());
break
;
#endif // __aarch64__
case
ConvParam
<
CPU
>::
EXEC_GEMM_FLOAT
:
ConvBNReluBasic
<
FusionConvBNAddReluParam
<
CPU
>>
(
param
);
break
;
...
...
src/operators/kernel/arm/convolution/conv_bn_relu_kernel.cpp
浏览文件 @
ab199ae0
...
...
@@ -78,12 +78,12 @@ void ConvBNReluKernel<CPU, float>::Compute(
math
::
ScaleAddChannelWise
<
RELU
>
(
param
.
Output
(),
param
.
NewScale
(),
param
.
NewBias
(),
param
.
Output
());
break
;
#endif // __aarch64__
case
ConvParam
<
CPU
>::
EXEC_WINOGRAD3X3_FLOAT
:
WinogradConv3x3
<
8
,
3
>
(
param
);
math
::
ScaleAddChannelWise
<
RELU
>
(
param
.
Output
(),
param
.
NewScale
(),
param
.
NewBias
(),
param
.
Output
());
break
;
#endif // __aarch64__
case
ConvParam
<
CPU
>::
EXEC_GEMM_FLOAT
:
ConvBNReluBasic
<
FusionConvBNReluParam
<
CPU
>>
(
param
);
break
;
...
...
src/operators/kernel/arm/convolution/conv_common.cpp
浏览文件 @
ab199ae0
...
...
@@ -53,6 +53,7 @@ void InitBaseConvKernel(ConvParam<CPU> *param) {
}
else
if
(
depth5x5
&&
param
->
Strides
()[
0
]
==
param
->
Strides
()[
1
]
&&
param
->
Strides
()[
0
]
==
1
)
{
param
->
ExecMode
()
=
ConvParam
<
CPU
>::
EXEC_DEPTHWISE5x5_FLOAT
;
#endif
}
else
if
(
conv3x3
&&
!
depth3x3
&&
param
->
Strides
()[
0
]
==
param
->
Strides
()[
1
]
&&
param
->
Dilations
()[
0
]
==
param
->
Dilations
()[
1
]
&&
...
...
@@ -68,7 +69,6 @@ void InitBaseConvKernel(ConvParam<CPU> *param) {
param
->
transformed_filter_
=
new
framework
::
LoDTensor
;
operators
::
math
::
winograd_transform_weight
<
8
,
3
>
(
*
param
->
Filter
(),
param
->
transformed_filter_
);
#endif
}
else
{
param
->
ExecMode
()
=
ConvParam
<
CPU
>::
EXEC_GEMM_FLOAT
;
}
...
...
src/operators/kernel/arm/convolution/conv_kernel.cpp
浏览文件 @
ab199ae0
...
...
@@ -55,10 +55,10 @@ void ConvKernel<CPU, float>::Compute(const ConvParam<CPU> ¶m) {
case
ConvParam
<
CPU
>::
EXEC_DEPTHWISE5x5_FLOAT
:
DepthwiseConv5x5
<
float
,
float
>
(
param
);
break
;
#endif // __aarch64__
case
ConvParam
<
CPU
>::
EXEC_WINOGRAD3X3_FLOAT
:
WinogradConv3x3
<
8
,
3
>
(
param
);
break
;
#endif // __aarch64__
case
ConvParam
<
CPU
>::
EXEC_GEMM_FLOAT
:
GemmConv
<
float
,
float
>
(
param
);
break
;
...
...
src/operators/math/winograd/winograd_transform_f6k3.cpp
浏览文件 @
ab199ae0
此差异已折叠。
点击以展开。
src/operators/math/winograd/winograd_transform_f6k3_arm64.cpp
已删除
100644 → 0
浏览文件 @
a8b775ec
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// We refer https://github.com/andravin/wincnn to access the winograd transform
// matrixs
#ifdef CONV_OP
#ifdef __aarch64__
#include "operators/math/winograd/winograd_transform.h"
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
template
<
>
void
winograd_transform_weight
<
8
,
3
>
(
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
)
{
// weight shape is [out_channel, in_channel, kernel_h, kernel_w]
int
out_channel
=
weight
.
dims
()[
0
];
int
in_channel
=
weight
.
dims
()[
1
];
// reshape and alloc transformed weight
framework
::
DDim
transformed_shape
=
framework
::
make_ddim
(
std
::
vector
<
int
>
{
out_channel
,
in_channel
,
64
});
float
*
outptr
=
output
->
mutable_data
<
float
>
(
transformed_shape
);
const
float
*
inptr
=
weight
.
data
<
float
>
();
for
(
int
oc
=
0
;
oc
<
out_channel
;
++
oc
)
{
for
(
int
ic
=
0
;
ic
<
in_channel
;
++
ic
)
{
size_t
offset
=
oc
*
in_channel
+
ic
;
float
*
kout
=
outptr
+
offset
*
64
;
const
float
*
k
=
inptr
+
offset
*
9
;
float
gw
[
3
][
8
];
for
(
int
i
=
0
;
i
<
3
;
++
i
,
k
+=
3
)
{
float
g0
=
k
[
0
];
float
g1
=
k
[
1
];
float
g2
=
k
[
2
];
float
d0
=
g0
+
g2
;
float
d1
=
g0
+
4
*
g2
;
float
d2
=
g2
+
4
*
g0
;
float
d3
=
2
*
g1
;
gw
[
i
][
0
]
=
g0
;
gw
[
i
][
1
]
=
-
2.
f
/
9
*
(
d0
+
g1
);
// -2.f/9 * (g0 + g1 + g2)
gw
[
i
][
2
]
=
-
2.
f
/
9
*
(
d0
-
g1
);
// -2.f/9 * (g0 - g1 + g2)
gw
[
i
][
3
]
=
1.
f
/
90
*
(
d1
+
d3
);
// 1.f/90 * (g0 + 2 * g1 + 4 * g2)
gw
[
i
][
4
]
=
1.
f
/
90
*
(
d1
-
d3
);
// 1.f/90 * (g0 - 2 * g1 + 4 * g2)
gw
[
i
][
5
]
=
1.
f
/
180
*
(
d2
+
d3
);
// 1.f/180 * (4 * g0 + 2 * g1 + g2)
gw
[
i
][
6
]
=
1.
f
/
180
*
(
d2
-
d3
);
// 1.f/180 * (4 * g0 - 2 * g1 + g2)
gw
[
i
][
7
]
=
g2
;
}
for
(
int
i
=
0
;
i
<
8
;
++
i
,
kout
+=
8
)
{
float
g0
=
gw
[
0
][
i
];
float
g1
=
gw
[
1
][
i
];
float
g2
=
gw
[
2
][
i
];
float
d0
=
g0
+
g2
;
float
d1
=
g0
+
4
*
g2
;
float
d2
=
g2
+
4
*
g0
;
float
d3
=
2
*
g1
;
kout
[
0
]
=
g0
;
kout
[
1
]
=
-
2.
f
/
9
*
(
d0
+
g1
);
// -2.f/9 * (k0 + k1 + k2)
kout
[
2
]
=
-
2.
f
/
9
*
(
d0
-
g1
);
// -2.f/9 * (k0 - k1 + k2)
kout
[
3
]
=
1.
f
/
90
*
(
d1
+
d3
);
// 1.f/90 * (k0 + 2 * k1 + 4 * k2)
kout
[
4
]
=
1.
f
/
90
*
(
d1
-
d3
);
// 1.f/90 * (k0 - 2 * k1 + 4 * k2)
kout
[
5
]
=
1.
f
/
180
*
(
d2
+
d3
);
// 8.f/45 * (4 * k0 + 2 * k1 + k2)
kout
[
6
]
=
1.
f
/
180
*
(
d2
-
d3
);
// 8.f/45 * (4 * k0 - 2 * k1 + k2)
kout
[
7
]
=
g2
;
}
}
}
}
template
<
>
void
winograd_transform_input
<
8
,
3
>
(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
output
)
{
// tile input to [c, roundup(h/6), roundup(w/6), 64] and do transformation
int
channel
=
input
.
dims
()[
1
];
int
height
=
input
.
dims
()[
2
];
int
width
=
input
.
dims
()[
3
];
int
h_tiles
=
(
height
+
3
)
/
6
;
// (height + 5 - 2) / 6
int
w_tiles
=
(
width
+
3
)
/
6
;
// (width + 5 - 2) / 6
framework
::
DDim
transformed_shape
=
framework
::
make_ddim
(
std
::
vector
<
int
>
{
channel
,
h_tiles
,
w_tiles
,
64
});
float
*
outptr
=
output
->
mutable_data
<
float
>
(
transformed_shape
);
memset
(
outptr
,
0
,
channel
*
h_tiles
*
w_tiles
*
64
*
sizeof
(
float
));
const
float
*
inptr
=
input
.
data
<
float
>
();
// pack input to tiles
for
(
int
c
=
0
;
c
<
channel
;
++
c
)
{
int
inter_h
=
(
height
-
2
)
/
6
;
int
inter_w
=
(
width
-
2
)
/
6
;
int
remain_h
=
height
-
(
inter_h
*
6
);
int
remain_w
=
width
-
(
inter_w
*
6
);
const
float
*
in0
=
inptr
+
c
*
height
*
width
;
const
float
*
in1
=
in0
+
width
;
const
float
*
in2
=
in1
+
width
;
const
float
*
in3
=
in2
+
width
;
const
float
*
in4
=
in3
+
width
;
const
float
*
in5
=
in4
+
width
;
const
float
*
in6
=
in5
+
width
;
const
float
*
in7
=
in6
+
width
;
float
*
out
=
outptr
+
c
*
h_tiles
*
w_tiles
*
64
;
for
(
int
h
=
0
;
h
<
inter_h
;
++
h
)
{
for
(
int
w
=
0
;
w
<
inter_w
;
++
w
)
{
memcpy
(
out
,
in0
,
8
*
sizeof
(
float
));
memcpy
(
out
+
8
,
in1
,
8
*
sizeof
(
float
));
memcpy
(
out
+
16
,
in2
,
8
*
sizeof
(
float
));
memcpy
(
out
+
24
,
in3
,
8
*
sizeof
(
float
));
memcpy
(
out
+
32
,
in4
,
8
*
sizeof
(
float
));
memcpy
(
out
+
40
,
in5
,
8
*
sizeof
(
float
));
memcpy
(
out
+
48
,
in6
,
8
*
sizeof
(
float
));
memcpy
(
out
+
56
,
in7
,
8
*
sizeof
(
float
));
in0
+=
6
;
in1
+=
6
;
in2
+=
6
;
in3
+=
6
;
in4
+=
6
;
in5
+=
6
;
in6
+=
6
;
in7
+=
6
;
out
+=
64
;
}
// remain width
if
(
remain_w
>
2
)
{
memcpy
(
out
,
in0
,
remain_w
*
sizeof
(
float
));
memcpy
(
out
+
8
,
in1
,
remain_w
*
sizeof
(
float
));
memcpy
(
out
+
16
,
in2
,
remain_w
*
sizeof
(
float
));
memcpy
(
out
+
24
,
in3
,
remain_w
*
sizeof
(
float
));
memcpy
(
out
+
32
,
in4
,
remain_w
*
sizeof
(
float
));
memcpy
(
out
+
40
,
in5
,
remain_w
*
sizeof
(
float
));
memcpy
(
out
+
48
,
in6
,
remain_w
*
sizeof
(
float
));
memcpy
(
out
+
56
,
in7
,
remain_w
*
sizeof
(
float
));
out
+=
64
;
}
in0
+=
5
*
width
+
remain_w
;
in1
+=
5
*
width
+
remain_w
;
in2
+=
5
*
width
+
remain_w
;
in3
+=
5
*
width
+
remain_w
;
in4
+=
5
*
width
+
remain_w
;
in5
+=
5
*
width
+
remain_w
;
in6
+=
5
*
width
+
remain_w
;
in7
+=
5
*
width
+
remain_w
;
}
// remain height
if
(
remain_h
>
2
)
{
for
(
int
w
=
0
;
w
<
inter_w
;
++
w
)
{
for
(
int
rh
=
0
;
rh
<
remain_h
;
++
rh
)
{
memcpy
(
out
+
rh
*
8
,
in0
+
rh
*
width
,
8
*
sizeof
(
float
));
}
out
+=
64
;
in0
+=
6
;
}
// remain width
if
(
remain_w
>
2
)
{
for
(
int
rh
=
0
;
rh
<
remain_h
;
++
rh
)
{
memcpy
(
out
+
rh
*
8
,
in0
+
rh
*
width
,
remain_w
*
sizeof
(
float
));
}
}
}
}
// transform tiles, compute B_T * d(c, b) * B
for
(
int
c
=
0
;
c
<
channel
;
++
c
)
{
for
(
int
tile
=
0
;
tile
<
h_tiles
*
w_tiles
;
++
tile
)
{
float
*
out
=
outptr
+
(
c
*
h_tiles
*
w_tiles
+
tile
)
*
64
;
// compute B_T * d(c, b)
float
bd
[
8
][
8
];
for
(
int
i
=
0
;
i
<
8
;
++
i
)
{
float
d0
=
out
[
8
*
i
+
0
];
float
d1
=
out
[
8
*
i
+
1
];
float
d2
=
out
[
8
*
i
+
2
];
float
d3
=
out
[
8
*
i
+
3
];
float
d4
=
out
[
8
*
i
+
4
];
float
d5
=
out
[
8
*
i
+
5
];
float
d6
=
out
[
8
*
i
+
6
];
float
d7
=
out
[
8
*
i
+
7
];
bd
[
i
][
0
]
=
d0
-
d6
+
(
d4
-
d2
)
*
5.25
;
float
v1
=
d2
-
4.25
*
d4
+
d6
;
float
v2
=
d1
-
4.25
*
d3
+
d5
;
// d1 + d2 - 4.25 * d3 - 4.25 * d4 + d5 + d6
bd
[
i
][
1
]
=
v1
+
v2
;
// -d1 + d2 + 4.25 * d3 - 4.25 * d4 - d5 + d6
bd
[
i
][
2
]
=
v1
-
v2
;
v1
=
0.25
*
d2
-
1.25
*
d4
+
d6
;
v2
=
0.5
*
d1
-
2.5
*
d3
+
2
*
d5
;
// 0.5 * d1 + 0.25 * d2 - 2.5 * d3 - 1.25 * d4 + 2 * d5 + d6
bd
[
i
][
3
]
=
v1
+
v2
;
// -0.5 * d1 + 0.25 * d2 + 2.5 * d3 - 1.25 * d4 - 2 * d5 + d6
bd
[
i
][
4
]
=
v1
-
v2
;
v1
=
4
*
d2
-
5
*
d4
+
d6
;
v2
=
2
*
d1
-
2.5
*
d3
+
0.5
*
d5
;
// 2 * d1 + 4 * d2 - 2.5 * d3 - 5 * d4 + 0.5 * d5 + d6
bd
[
i
][
5
]
=
v1
+
v2
;
// -2 * d1 + 4 * d2 + 2.5 * d3 - 5 * d4 - 0.5 * d5 + d6
bd
[
i
][
6
]
=
v1
-
v2
;
bd
[
i
][
7
]
=
d7
-
d1
+
(
d3
-
d5
)
*
5.25
;
}
// compute B_T * d(c, b) * B
for
(
int
i
=
0
;
i
<
8
;
++
i
,
out
+=
8
)
{
float
d0
=
bd
[
0
][
i
];
float
d1
=
bd
[
1
][
i
];
float
d2
=
bd
[
2
][
i
];
float
d3
=
bd
[
3
][
i
];
float
d4
=
bd
[
4
][
i
];
float
d5
=
bd
[
5
][
i
];
float
d6
=
bd
[
6
][
i
];
float
d7
=
bd
[
7
][
i
];
out
[
0
]
=
d0
-
d6
+
(
d4
-
d2
)
*
5.25
;
float
v1
=
d2
-
4.25
*
d4
+
d6
;
float
v2
=
d1
-
4.25
*
d3
+
d5
;
// d1 + d2 - 4.25 * d3 - 4.25 * d4 + d5 + d6
out
[
1
]
=
v1
+
v2
;
// -d1 + d2 + 4.25 * d3 - 4.25 * d4 - d5 + d6
out
[
2
]
=
v1
-
v2
;
v1
=
0.25
*
d2
-
1.25
*
d4
+
d6
;
v2
=
0.5
*
d1
-
2.5
*
d3
+
2
*
d5
;
// 0.5 * d1 + 0.25 * d2 - 2.5 * d3 - 1.25 * d4 + 2 * d5 + d6
out
[
3
]
=
v1
+
v2
;
// -0.5 * d1 + 0.25 * d2 + 2.5 * d3 - 1.25 * d4 - 2 * d5 + d6
out
[
4
]
=
v1
-
v2
;
v1
=
4
*
d2
-
5
*
d4
+
d6
;
v2
=
2
*
d1
-
2.5
*
d3
+
0.5
*
d5
;
// 2 * d1 + 4 * d2 - 2.5 * d3 - 5 * d4 + 0.5 * d5 + d6
out
[
5
]
=
v1
+
v2
;
// -2 * d1 + 4 * d2 + 2.5 * d3 - 5 * d4 - 0.5 * d5 + d6
out
[
6
]
=
v1
-
v2
;
out
[
7
]
=
d7
-
d1
+
(
d3
-
d5
)
*
5.25
;
}
}
}
}
template
<
>
void
winograd_transform_output
<
8
,
3
>
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
output
)
{
// input shape is [in_channel, h_tiles, w_tiles, 64]
// weight shape is [out_channel, in_channel, 64]
int
in_channel
=
input
.
dims
()[
0
];
int
h_tiles
=
input
.
dims
()[
1
];
int
w_tiles
=
input
.
dims
()[
2
];
int
tiles
=
h_tiles
*
w_tiles
;
int
out_channel
=
weight
.
dims
()[
0
];
// compute U*V first
framework
::
Tensor
output_m
;
framework
::
DDim
shape
=
framework
::
make_ddim
(
std
::
vector
<
int
>
{
out_channel
,
tiles
,
64
});
float
*
output_m_ptr
=
output_m
.
mutable_data
<
float
>
(
shape
);
memset
(
output_m_ptr
,
0
,
output_m
.
numel
()
*
sizeof
(
float
));
const
float
*
input_ptr
=
input
.
data
<
float
>
();
const
float
*
weight_ptr
=
weight
.
data
<
float
>
();
for
(
int
i
=
0
;
i
<
out_channel
;
++
i
)
{
for
(
int
j
=
0
;
j
<
tiles
;
++
j
)
{
const
float
*
w_ptr
=
weight_ptr
+
i
*
in_channel
*
64
;
const
float
*
in_ptr
=
input_ptr
+
j
*
64
;
float
*
m_ptr
=
output_m_ptr
+
(
i
*
tiles
+
j
)
*
64
;
for
(
int
c
=
0
;
c
<
in_channel
;
++
c
)
{
for
(
int
k
=
0
;
k
<
64
;
++
k
)
{
m_ptr
[
k
]
+=
w_ptr
[
k
]
*
in_ptr
[
k
];
}
w_ptr
+=
64
;
in_ptr
+=
tiles
*
64
;
}
}
}
for
(
int
oc
=
0
;
oc
<
out_channel
;
++
oc
)
{
for
(
int
tile
=
0
;
tile
<
tiles
;
++
tile
)
{
float
*
m
=
output_m_ptr
+
(
oc
*
tiles
+
tile
)
*
64
;
// compute A_T * m
float
am
[
6
][
8
];
for
(
int
i
=
0
;
i
<
8
;
++
i
)
{
float
d0
=
m
[
i
*
8
+
0
];
float
d1
=
m
[
i
*
8
+
1
];
float
d2
=
m
[
i
*
8
+
2
];
float
d3
=
m
[
i
*
8
+
3
];
float
d4
=
m
[
i
*
8
+
4
];
float
d5
=
m
[
i
*
8
+
5
];
float
d6
=
m
[
i
*
8
+
6
];
float
d7
=
m
[
i
*
8
+
7
];
float
v0
=
d1
+
d2
;
float
v1
=
d1
-
d2
;
float
v2
=
d3
+
d4
;
float
v3
=
d3
-
d4
;
float
v4
=
d5
+
d6
;
float
v5
=
d5
-
d6
;
am
[
0
][
i
]
=
d0
+
v0
+
v2
+
32
*
v4
;
am
[
1
][
i
]
=
v1
+
2
*
v3
+
16
*
v5
;
am
[
2
][
i
]
=
v0
+
4
*
v2
+
8
*
v4
;
am
[
3
][
i
]
=
v1
+
8
*
v3
+
4
*
v5
;
am
[
4
][
i
]
=
v0
+
16
*
v2
+
2
*
v4
;
am
[
5
][
i
]
=
v1
+
32
*
v3
+
v5
+
d7
;
}
// compute A_T * m * A
for
(
int
i
=
0
;
i
<
6
;
++
i
,
m
+=
8
)
{
float
d0
=
am
[
i
][
0
];
float
d1
=
am
[
i
][
1
];
float
d2
=
am
[
i
][
2
];
float
d3
=
am
[
i
][
3
];
float
d4
=
am
[
i
][
4
];
float
d5
=
am
[
i
][
5
];
float
d6
=
am
[
i
][
6
];
float
d7
=
am
[
i
][
7
];
float
v0
=
d1
+
d2
;
float
v1
=
d1
-
d2
;
float
v2
=
d3
+
d4
;
float
v3
=
d3
-
d4
;
float
v4
=
d5
+
d6
;
float
v5
=
d5
-
d6
;
m
[
0
]
=
d0
+
v0
+
v2
+
32
*
v4
;
m
[
1
]
=
v1
+
2
*
v3
+
16
*
v5
;
m
[
2
]
=
v0
+
4
*
v2
+
8
*
v4
;
m
[
3
]
=
v1
+
8
*
v3
+
4
*
v5
;
m
[
4
]
=
v0
+
16
*
v2
+
2
*
v4
;
m
[
5
]
=
v1
+
32
*
v3
+
v5
+
d7
;
}
}
}
int
out_h
=
output
->
dims
()[
2
];
int
out_w
=
output
->
dims
()[
3
];
float
*
output_ptr
=
output
->
mutable_data
<
float
>
();
// copy valid region to final output
for
(
int
oc
=
0
;
oc
<
out_channel
;
++
oc
)
{
int
inter_h
=
out_h
/
6
;
int
inter_w
=
out_w
/
6
;
int
remain_h
=
out_h
-
inter_h
*
6
;
int
remain_w
=
out_w
-
inter_w
*
6
;
float
*
out_ptr0
=
output_ptr
+
oc
*
out_h
*
out_w
;
float
*
out_ptr1
=
out_ptr0
+
out_w
;
float
*
out_ptr2
=
out_ptr1
+
out_w
;
float
*
out_ptr3
=
out_ptr2
+
out_w
;
float
*
out_ptr4
=
out_ptr3
+
out_w
;
float
*
out_ptr5
=
out_ptr4
+
out_w
;
const
float
*
m_ptr
=
output_m_ptr
+
oc
*
tiles
*
64
;
for
(
int
tile_h
=
0
;
tile_h
<
inter_h
;
++
tile_h
)
{
for
(
int
tile_w
=
0
;
tile_w
<
inter_w
;
++
tile_w
)
{
const
float
*
m
=
m_ptr
+
(
tile_h
*
w_tiles
+
tile_w
)
*
64
;
memcpy
(
out_ptr0
,
m
,
6
*
sizeof
(
float
));
memcpy
(
out_ptr1
,
m
+
8
,
6
*
sizeof
(
float
));
memcpy
(
out_ptr2
,
m
+
16
,
6
*
sizeof
(
float
));
memcpy
(
out_ptr3
,
m
+
24
,
6
*
sizeof
(
float
));
memcpy
(
out_ptr4
,
m
+
32
,
6
*
sizeof
(
float
));
memcpy
(
out_ptr5
,
m
+
40
,
6
*
sizeof
(
float
));
out_ptr0
+=
6
;
out_ptr1
+=
6
;
out_ptr2
+=
6
;
out_ptr3
+=
6
;
out_ptr4
+=
6
;
out_ptr5
+=
6
;
}
// remain w
if
(
remain_w
>
0
)
{
const
float
*
m
=
m_ptr
+
(
tile_h
*
w_tiles
+
inter_w
)
*
64
;
memcpy
(
out_ptr0
,
m
,
remain_w
*
sizeof
(
float
));
memcpy
(
out_ptr1
,
m
+
8
,
remain_w
*
sizeof
(
float
));
memcpy
(
out_ptr2
,
m
+
16
,
remain_w
*
sizeof
(
float
));
memcpy
(
out_ptr3
,
m
+
24
,
remain_w
*
sizeof
(
float
));
memcpy
(
out_ptr4
,
m
+
32
,
remain_w
*
sizeof
(
float
));
memcpy
(
out_ptr5
,
m
+
40
,
remain_w
*
sizeof
(
float
));
out_ptr0
+=
remain_w
;
out_ptr1
+=
remain_w
;
out_ptr2
+=
remain_w
;
out_ptr3
+=
remain_w
;
out_ptr4
+=
remain_w
;
out_ptr5
+=
remain_w
;
}
out_ptr0
+=
5
*
out_w
;
out_ptr1
+=
5
*
out_w
;
out_ptr2
+=
5
*
out_w
;
out_ptr3
+=
5
*
out_w
;
out_ptr4
+=
5
*
out_w
;
out_ptr5
+=
5
*
out_w
;
}
// remain h
if
(
remain_h
>
0
)
{
for
(
int
tile_w
=
0
;
tile_w
<
inter_w
;
++
tile_w
)
{
const
float
*
m
=
m_ptr
+
(
inter_h
*
w_tiles
+
tile_w
)
*
64
;
for
(
int
rh
=
0
;
rh
<
remain_h
;
++
rh
)
{
memcpy
(
out_ptr0
+
rh
*
out_w
,
m
+
rh
*
8
,
6
*
sizeof
(
float
));
}
out_ptr0
+=
6
;
}
if
(
remain_w
>
0
)
{
const
float
*
m
=
m_ptr
+
(
inter_h
*
w_tiles
+
inter_w
)
*
64
;
for
(
int
rh
=
0
;
rh
<
remain_h
;
++
rh
)
{
memcpy
(
out_ptr0
+
rh
*
out_w
,
m
+
rh
*
8
,
remain_w
*
sizeof
(
float
));
}
}
}
}
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
#endif // __aarch64__
#endif // CONV_OP
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录