Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
a57307ef
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a57307ef
编写于
8月 10, 2018
作者:
Y
yangfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
implement multithreading 3x3 s1 depthwise_conv
上级
bf3f9183
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
413 addition
and
165 deletion
+413
-165
src/operators/math/depthwise_conv_3x3.cpp
src/operators/math/depthwise_conv_3x3.cpp
+413
-165
未找到文件。
src/operators/math/depthwise_conv_3x3.cpp
浏览文件 @
a57307ef
...
...
@@ -529,42 +529,42 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
const
float
*
newscale_data
=
new_scale
->
data
<
float
>
();
const
float
*
newbias_data
=
new_bias
->
data
<
float
>
();
const
int
h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
l
=
h
;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
c
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
hxw
=
h
*
w
;
const
int
input_channel
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
input_height
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
input_width
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
output_height
=
static_cast
<
int
>
(
output
->
dims
()[
2
]);
const
int
output_width
=
static_cast
<
int
>
(
output
->
dims
()[
3
]);
const
int
hxw
=
input_height
*
input_width
;
const
int
l
=
input_height
;
float32x4_t
vnewbias
=
vdupq_n_f32
(
0.0
);
float32x4_t
vnewscale
=
vdupq_n_f32
(
1.0
);
float32x4_t
vzero
=
vdupq_n_f32
(
0
);
for
(
int
b
=
0
;
b
<
batch_size
;
++
b
)
{
const
float
*
filter_data_tmp
=
filter_data
;
for
(
int
j
=
0
;
j
<
c
;
++
j
)
{
vnewbias
=
vdupq_n_f32
(
newbias_data
[
j
]);
vnewscale
=
vdupq_n_f32
(
newscale_data
[
j
]);
int
l_mid
=
l
-
2
;
// l=1->l_mid=-1,l=2->l_mid=0
float
w00
=
filter_data_tmp
[
0
];
float
w01
=
filter_data_tmp
[
1
];
float
w02
=
filter_data_tmp
[
2
];
float
w10
=
filter_data_tmp
[
3
];
float
w11
=
filter_data_tmp
[
4
];
float
w12
=
filter_data_tmp
[
5
];
float
w20
=
filter_data_tmp
[
6
];
float
w21
=
filter_data_tmp
[
7
];
float
w22
=
filter_data_tmp
[
8
];
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
filter_data
=
filter
->
data
<
float
>
();
for
(
int
c
=
0
;
c
<
input_channel
;
c
++
)
{
vnewbias
=
vdupq_n_f32
(
newbias_data
[
c
]);
vnewscale
=
vdupq_n_f32
(
newscale_data
[
c
]);
float
w00
=
filter_data
[
0
];
float
w01
=
filter_data
[
1
];
float
w02
=
filter_data
[
2
];
float
w10
=
filter_data
[
3
];
float
w11
=
filter_data
[
4
];
float
w12
=
filter_data
[
5
];
float
w20
=
filter_data
[
6
];
float
w21
=
filter_data
[
7
];
float
w22
=
filter_data
[
8
];
output_data
[
0
]
=
w11
*
input_data
[
0
]
+
w12
*
input_data
[
1
]
+
w21
*
input_data
[
l
]
+
w22
*
input_data
[
l
+
1
];
output_data
[
l
-
1
]
=
w10
*
input_data
[
l
-
2
]
+
w11
*
input_data
[
l
-
1
]
+
w20
*
input_data
[
2
*
l
-
2
]
+
w21
*
input_data
[
2
*
l
-
1
];
output_data
[(
l
-
1
)
*
l
]
=
w01
*
input_data
[(
l
-
2
)
*
l
]
+
w02
*
input_data
[(
l
-
2
)
*
l
+
1
]
+
w11
*
input_data
[(
l
-
1
)
*
l
]
+
w12
*
input_data
[(
l
-
1
)
*
l
+
1
];
...
...
@@ -572,13 +572,13 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
w01
*
input_data
[(
l
-
2
)
*
(
l
+
1
)
+
1
]
+
w10
*
input_data
[
l
*
l
-
2
]
+
w11
*
input_data
[
l
*
l
-
1
];
output_data
[
0
]
=
output_data
[
0
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data
[
0
]
=
output_data
[
0
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
output_data
[
l
-
1
]
=
output_data
[
l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data
[
l
-
1
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
output_data
[(
l
-
1
)
*
l
]
=
output_data
[(
l
-
1
)
*
l
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data
[(
l
-
1
)
*
l
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
output_data
[
l
*
l
-
1
]
=
output_data
[
l
*
l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data
[
l
*
l
-
1
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
if
(
if_relu
)
{
output_data
[
0
]
=
output_data
[
0
]
<
0
?
0
:
output_data
[
0
];
...
...
@@ -593,6 +593,7 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
w01
*
input_data
[
i
*
l
-
l
]
+
w02
*
input_data
[
i
*
l
-
l
+
1
]
+
w11
*
input_data
[
i
*
l
]
+
w12
*
input_data
[
i
*
l
+
1
]
+
w21
*
input_data
[
i
*
l
+
l
]
+
w22
*
input_data
[
i
*
l
+
l
+
1
];
output_data
[
i
*
l
+
l
-
1
]
=
w00
*
input_data
[
i
*
l
+
l
-
1
-
l
-
1
]
+
w01
*
input_data
[
i
*
l
+
l
-
1
-
l
]
+
w10
*
input_data
[
i
*
l
+
l
-
1
-
1
]
+
...
...
@@ -600,9 +601,9 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
w20
*
input_data
[
i
*
l
+
l
-
1
+
l
-
1
]
+
w21
*
input_data
[
i
*
l
+
l
-
1
+
l
];
output_data
[
i
*
l
]
=
output_data
[
i
*
l
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data
[
i
*
l
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
output_data
[
i
*
l
+
l
-
1
]
=
output_data
[
i
*
l
+
l
-
1
]
*
newscale_data
[
j
]
+
newbias_data
[
j
];
output_data
[
i
*
l
+
l
-
1
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
if
(
if_relu
)
{
output_data
[
i
*
l
]
=
output_data
[
i
*
l
]
<
0
?
0
:
output_data
[
i
*
l
];
...
...
@@ -611,28 +612,19 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
}
}
// top 1 row and bottom 1 row
const
float
*
input_tmp
=
input_data
;
float32x4_t
in0
,
in1
,
in2
,
in3
,
in4
,
in5
,
in6
,
in7
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
out0
;
in0
=
vld1q_f32
(
input_tmp
);
in2
=
vld1q_f32
(
input_tmp
+
l
);
const
float
*
input_tmp_end
=
input_tmp
+
(
l
-
2
)
*
l
;
in4
=
vld1q_f32
(
input_tmp_end
);
in6
=
vld1q_f32
(
input_tmp_end
+
l
);
int
c_mid
=
l_mid
;
auto
output_ptr
=
output_data
+
1
;
for
(;
c_mid
>
3
;
c_mid
-=
4
)
{
in1
=
vld1q_f32
(
input_tmp
+
4
);
in3
=
vld1q_f32
(
input_tmp
+
l
+
4
);
int
m
;
for
(
m
=
1
;
m
<
output_width
-
4
;
m
+=
4
)
{
float
*
output_ptr
=
output_data
+
m
;
float32x4_t
in0
,
in1
,
in2
,
in3
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
out0
;
in0
=
vld1q_f32
(
input_data
+
m
-
1
);
in1
=
vld1q_f32
(
input_data
+
m
+
3
);
in2
=
vld1q_f32
(
input_data
+
input_width
+
m
-
1
);
in3
=
vld1q_f32
(
input_data
+
input_width
+
m
+
3
);
tmp0
=
vextq_f32
(
in0
,
in1
,
1
);
tmp1
=
vextq_f32
(
in0
,
in1
,
2
);
tmp2
=
vextq_f32
(
in2
,
in3
,
1
);
tmp3
=
vextq_f32
(
in2
,
in3
,
2
);
out0
=
vmulq_n_f32
(
in0
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w12
);
...
...
@@ -644,182 +636,438 @@ void DepthwiseConvAddBNRelu3x3s1p1(const Tensor *input, const Tensor *filter,
out0
=
vmaxq_f32
(
out0
,
vzero
);
}
vst1q_f32
(
output_ptr
,
out0
);
}
for
(
m
=
1
;
(
m
+
3
)
<
output_width
-
1
;
m
=
m
+
4
)
{
}
for
(
int
j
=
m
;
j
<
output_width
-
1
;
j
++
)
{
output_data
[
j
]
=
input_data
[
j
-
1
]
*
w10
+
input_data
[
j
]
*
w11
+
input_data
[
j
+
1
]
*
w12
+
input_data
[
input_width
+
j
-
1
]
*
w20
+
input_data
[
input_width
+
j
]
*
w21
+
input_data
[
input_width
+
j
+
1
]
*
w22
;
output_data
[
j
]
=
output_data
[
j
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
in5
=
vld1q_f32
(
input_tmp_end
+
4
);
in7
=
vld1q_f32
(
input_tmp_end
+
l
+
4
);
if
(
if_relu
)
{
output_data
[
j
]
=
output_data
[
j
]
<
0
?
0
:
output_data
[
j
];
}
}
tmp0
=
vextq_f32
(
in4
,
in5
,
1
);
tmp1
=
vextq_f32
(
in4
,
in5
,
2
);
tmp2
=
vextq_f32
(
in6
,
in7
,
1
);
tmp3
=
vextq_f32
(
in6
,
in7
,
2
);
for
(
m
=
1
;
(
m
+
3
)
<
output_width
-
1
;
m
=
m
+
4
)
{
float
*
output_ptr
=
output_data
+
(
output_height
-
1
)
*
output_width
+
m
;
out0
=
vmulq_n_f32
(
in4
,
w00
);
float32x4_t
in0
,
in1
,
in2
,
in3
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
out0
;
in0
=
vld1q_f32
(
input_data
+
(
output_height
-
2
)
*
input_width
+
m
-
1
);
in1
=
vld1q_f32
(
input_data
+
(
output_height
-
2
)
*
input_width
+
m
+
3
);
in2
=
vld1q_f32
(
input_data
+
(
output_height
-
1
)
*
input_width
+
m
-
1
);
in3
=
vld1q_f32
(
input_data
+
(
output_height
-
1
)
*
input_width
+
m
+
3
);
tmp0
=
vextq_f32
(
in0
,
in1
,
1
);
tmp1
=
vextq_f32
(
in0
,
in1
,
2
);
tmp2
=
vextq_f32
(
in2
,
in3
,
1
);
tmp3
=
vextq_f32
(
in2
,
in3
,
2
);
out0
=
vmulq_n_f32
(
in0
,
w00
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w01
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w02
);
out0
=
vmlaq_n_f32
(
out0
,
in
6
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
in
2
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
vzero
);
}
vst1q_f32
(
output_ptr
+
(
l
-
1
)
*
l
,
out0
);
// can optimize to each 8 stride.
input_tmp
+=
4
;
input_tmp_end
+=
4
;
output_ptr
+=
4
;
in0
=
in1
;
in2
=
in3
;
in4
=
in5
;
in6
=
in7
;
vst1q_f32
(
output_ptr
,
out0
);
}
for
(
m
=
1
;
(
m
+
3
)
<
output_width
-
1
;
m
=
m
+
4
)
{
}
for
(
int
j
=
m
;
j
<
output_width
-
1
;
j
++
)
{
output_data
[(
output_height
-
1
)
*
input_width
+
j
]
=
input_data
[(
output_height
-
2
)
*
input_width
+
j
-
1
]
*
w00
+
input_data
[(
output_height
-
2
)
*
input_width
+
j
]
*
w01
+
input_data
[(
output_height
-
2
)
*
input_width
+
j
+
1
]
*
w02
+
input_data
[(
output_height
-
1
)
*
input_width
+
j
-
1
]
*
w10
+
input_data
[(
output_height
-
1
)
*
input_width
+
j
]
*
w11
+
input_data
[(
output_height
-
1
)
*
input_width
+
j
+
1
]
*
w12
;
output_data
[(
output_height
-
1
)
*
output_width
+
j
]
=
output_data
[(
output_height
-
1
)
*
output_width
+
j
]
*
newscale_data
[
c
]
+
newbias_data
[
c
];
// top right pad
float32x4_t
pad0
=
vdupq_n_f32
(
input_data
[
l
-
1
]);
float32x4_t
pad1
=
vdupq_n_f32
(
input_data
[
2
*
l
-
1
]);
tmp0
=
vextq_f32
(
in0
,
pad0
,
1
);
tmp1
=
vextq_f32
(
in0
,
pad0
,
2
);
tmp2
=
vextq_f32
(
in2
,
pad1
,
1
);
tmp3
=
vextq_f32
(
in2
,
pad1
,
2
);
out0
=
vmulq_n_f32
(
in0
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w12
);
out0
=
vmlaq_n_f32
(
out0
,
in2
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w22
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
vzero
);
if
(
if_relu
)
{
output_data
[(
output_height
-
1
)
*
output_width
+
j
]
=
output_data
[(
output_height
-
1
)
*
output_width
+
j
]
<
0
?
0
:
output_data
[(
output_height
-
1
)
*
output_width
+
j
];
}
}
for
(
int
i
=
0
;
i
<
c_mid
;
++
i
)
{
if
(
i
==
0
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
0
);
#pragma omp parallel for
for
(
int
i
=
1
;
i
<
output_height
-
1
;
i
++
)
{
for
(
int
m
=
1
;
(
m
+
3
)
<
output_width
-
1
;
m
=
m
+
4
)
{
float
*
output_ptr
=
output_data
+
i
*
output_width
+
m
;
float32x4_t
in0
,
in1
,
in2
,
in3
,
in4
,
in5
,
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
out0
;
in0
=
vld1q_f32
(
input_data
+
(
i
-
1
)
*
input_width
+
m
-
1
);
in1
=
vld1q_f32
(
input_data
+
(
i
-
1
)
*
input_width
+
m
+
3
);
in2
=
vld1q_f32
(
input_data
+
i
*
input_width
+
m
-
1
);
in3
=
vld1q_f32
(
input_data
+
i
*
input_width
+
m
+
3
);
in4
=
vld1q_f32
(
input_data
+
(
i
+
1
)
*
input_width
+
m
-
1
);
in5
=
vld1q_f32
(
input_data
+
(
i
+
1
)
*
input_width
+
m
+
3
);
tmp0
=
vextq_f32
(
in0
,
in1
,
1
);
tmp1
=
vextq_f32
(
in0
,
in1
,
2
);
tmp2
=
vextq_f32
(
in2
,
in3
,
1
);
tmp3
=
vextq_f32
(
in2
,
in3
,
2
);
tmp4
=
vextq_f32
(
in4
,
in5
,
1
);
tmp5
=
vextq_f32
(
in4
,
in5
,
2
);
out0
=
vmulq_n_f32
(
in0
,
w00
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w01
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w02
);
out0
=
vmlaq_n_f32
(
out0
,
in2
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vmlaq_n_f32
(
out0
,
in4
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp4
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp5
,
w22
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
vzero
);
}
vst1q_f32
(
output_ptr
,
out0
);
}
i
f
(
i
==
1
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
1
);
i
nt
m
;
for
(
m
=
1
;
(
m
+
3
)
<
output_width
-
1
;
m
=
m
+
4
)
{
}
if
(
i
==
2
)
{
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
2
);
for
(
int
j
=
m
;
j
<
output_width
-
1
;
j
++
)
{
output_data
[
i
*
output_width
+
j
]
=
input_data
[(
i
-
1
)
*
input_width
+
j
-
1
]
*
w00
+
input_data
[(
i
-
1
)
*
input_width
+
j
]
*
w01
+
input_data
[(
i
-
1
)
*
input_width
+
j
+
1
]
*
w02
+
input_data
[(
i
)
*
input_width
+
j
-
1
]
*
w10
+
input_data
[(
i
)
*
input_width
+
j
]
*
w11
+
input_data
[(
i
)
*
input_width
+
j
+
1
]
*
w12
+
input_data
[(
i
+
1
)
*
input_width
+
j
-
1
]
*
w20
+
input_data
[(
i
+
1
)
*
input_width
+
j
]
*
w21
+
input_data
[(
i
+
1
)
*
input_width
+
j
+
1
]
*
w22
;
output_data
[
i
*
output_width
+
j
]
=
newscale_data
[
c
]
*
output_data
[
i
*
output_width
+
j
]
+
newbias_data
[
c
];
if
(
if_relu
)
{
output_data
[
i
*
output_width
+
j
]
=
output_data
[
i
*
output_width
+
j
]
<
0
?
0
:
output_data
[
i
*
output_width
+
j
];
}
}
}
// bottom right pad
float32x4_t
pad2
=
vdupq_n_f32
(
input_data
[
l
*
l
-
1
-
l
]);
float32x4_t
pad3
=
vdupq_n_f32
(
input_data
[
l
*
l
-
1
]);
input_data
=
input_data
+
hxw
;
output_data
=
output_data
+
hxw
;
filter_data
=
filter_data
+
9
;
}
}
tmp0
=
vextq_f32
(
in4
,
pad2
,
1
);
tmp1
=
vextq_f32
(
in4
,
pad2
,
2
);
tmp2
=
vextq_f32
(
in6
,
pad3
,
1
);
tmp3
=
vextq_f32
(
in6
,
pad3
,
2
);
/*
const float *input_data = input->data<float>();
const float *filter_data = filter->data<float>();
float *output_data = output->data<float>();
const float *newscale_data = new_scale->data<float>();
const float *newbias_data = new_bias->data<float>();
const int h = static_cast<int>(input->dims()[2]);
const int w = static_cast<int>(input->dims()[3]);
const int l = h;
const int batch_size = static_cast<int>(input->dims()[0]);
const int c = static_cast<int>(input->dims()[1]);
const int hxw = h * w;
float32x4_t vnewbias = vdupq_n_f32(0.0);
float32x4_t vnewscale = vdupq_n_f32(1.0);
float32x4_t vzero = vdupq_n_f32(0);
for (int b = 0; b < batch_size; ++b) {
const float *filter_data_tmp = filter_data;
for (int j = 0; j < c; ++j) {
vnewbias = vdupq_n_f32(newbias_data[j]);
vnewscale = vdupq_n_f32(newscale_data[j]);
int l_mid = l - 2; // l=1->l_mid=-1,l=2->l_mid=0
float w00 = filter_data_tmp[0];
float w01 = filter_data_tmp[1];
float w02 = filter_data_tmp[2];
float w10 = filter_data_tmp[3];
float w11 = filter_data_tmp[4];
float w12 = filter_data_tmp[5];
float w20 = filter_data_tmp[6];
float w21 = filter_data_tmp[7];
float w22 = filter_data_tmp[8];
output_data[0] = w11 * input_data[0] + w12 * input_data[1] +
w21 * input_data[l] + w22 * input_data[l + 1];
output_data[l - 1] = w10 * input_data[l - 2] + w11 * input_data[l - 1] +
w20 * input_data[2 * l - 2] +
w21 * input_data[2 * l - 1];
out0
=
vmulq_n_f32
(
in4
,
w00
);
out0
=
vmlaq_n_f32
(
out0
,
tmp0
,
w01
);
out0
=
vmlaq_n_f32
(
out0
,
tmp1
,
w02
);
out0
=
vmlaq_n_f32
(
out0
,
in6
,
w10
);
out0
=
vmlaq_n_f32
(
out0
,
tmp2
,
w11
);
out0
=
vmlaq_n_f32
(
out0
,
tmp3
,
w12
);
out0
=
vmlaq_f32
(
vnewbias
,
vnewscale
,
out0
);
if
(
if_relu
)
{
out0
=
vmaxq_f32
(
out0
,
vzero
);
}
for
(
int
i
=
0
;
i
<
c_mid
;
++
i
)
{
if
(
i
==
0
)
{
vst1q_lane_f32
(
output_ptr
+
(
l
-
1
)
*
l
+
i
,
out0
,
0
);
}
if
(
i
==
1
)
{
vst1q_lane_f32
(
output_ptr
+
(
l
-
1
)
*
l
+
i
,
out0
,
1
);
output_data[(l - 1) * l] =
w01 * input_data[(l - 2) * l] + w02 * input_data[(l - 2) * l + 1] +
w11 * input_data[(l - 1) * l] + w12 * input_data[(l - 1) * l + 1];
output_data[l * l - 1] = w00 * input_data[(l - 2) * (l + 1)] +
w01 * input_data[(l - 2) * (l + 1) + 1] +
w10 * input_data[l * l - 2] +
w11 * input_data[l * l - 1];
output_data[0] = output_data[0] * newscale_data[j] + newbias_data[j];
output_data[l - 1] =
output_data[l - 1] * newscale_data[j] + newbias_data[j];
output_data[(l - 1) * l] =
output_data[(l - 1) * l] * newscale_data[j] + newbias_data[j];
output_data[l * l - 1] =
output_data[l * l - 1] * newscale_data[j] + newbias_data[j];
if (if_relu) {
output_data[0] = output_data[0] < 0 ? 0 : output_data[0];
output_data[l - 1] = output_data[l - 1] < 0 ? 0 : output_data[l - 1];
output_data[(l - 1) * l] =
output_data[(l - 1) * l] < 0 ? 0 : output_data[(l - 1) * l];
output_data[l * l - 1] =
output_data[l * l - 1] < 0 ? 0 : output_data[l * l - 1];
}
if
(
i
==
2
)
{
vst1q_lane_f32
(
output_ptr
+
(
l
-
1
)
*
l
+
i
,
out0
,
2
);
for (int i = 1; i < l - 1; ++i) {
output_data[i * l] =
w01 * input_data[i * l - l] + w02 * input_data[i * l - l + 1] +
w11 * input_data[i * l] + w12 * input_data[i * l + 1] +
w21 * input_data[i * l + l] + w22 * input_data[i * l + l + 1];
output_data[i * l + l - 1] = w00 * input_data[i * l + l - 1 - l - 1] +
w01 * input_data[i * l + l - 1 - l] +
w10 * input_data[i * l + l - 1 - 1] +
w11 * input_data[i * l + l - 1] +
w20 * input_data[i * l + l - 1 + l - 1] +
w21 * input_data[i * l + l - 1 + l];
output_data[i * l] =
output_data[i * l] * newscale_data[j] + newbias_data[j];
output_data[i * l + l - 1] =
output_data[i * l + l - 1] * newscale_data[j] + newbias_data[j];
if (if_relu) {
output_data[i * l] = output_data[i * l] < 0 ? 0 : output_data[i *
l]; output_data[i * l + l - 1] =
output_data[i * l + l - 1] < 0 ? 0 : output_data[i * l + l - 1];
}
}
}
// mid
for
(
int
i
=
0
;
i
<
l
-
2
;
++
i
)
{
auto
output_ptr
=
output_data
+
(
i
+
1
)
*
l
+
1
;
input_tmp
=
input_data
+
i
*
l
;
auto
in0_tmp
=
vld1q_f32
(
input_tmp
);
auto
in2_tmp
=
vld1q_f32
(
input_tmp
+
l
);
auto
in4_tmp
=
vld1q_f32
(
input_tmp
+
l
+
l
);
c_mid
=
l_mid
;
// top 1 row and bottom 1 row
const float *input_tmp = input_data;
float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1, tmp2,
tmp3, tmp4, tmp5, out0;
in0 = vld1q_f32(input_tmp);
in2 = vld1q_f32(input_tmp + l);
const float *input_tmp_end = input_tmp + (l - 2) * l;
in4 = vld1q_f32(input_tmp_end);
in6 = vld1q_f32(input_tmp_end + l);
int c_mid = l_mid;
auto output_ptr = output_data + 1;
for (; c_mid > 3; c_mid -= 4) {
auto
in1_tmp
=
vld1q_f32
(
input_tmp
+
4
);
auto
in3_tmp
=
vld1q_f32
(
input_tmp
+
l
+
4
);
auto
in5_tmp
=
vld1q_f32
(
input_tmp
+
l
+
l
+
4
);
in1 = vld1q_f32(input_tmp + 4);
in3 = vld1q_f32(input_tmp + l + 4);
tmp0
=
vextq_f32
(
in0_tmp
,
in1_tmp
,
1
);
tmp1
=
vextq_f32
(
in0_tmp
,
in1_tmp
,
2
);
tmp2
=
vextq_f32
(
in2_tmp
,
in3_tmp
,
1
);
tmp3
=
vextq_f32
(
in2_tmp
,
in3_tmp
,
2
);
tmp4
=
vextq_f32
(
in4_tmp
,
in5_tmp
,
1
);
tmp5
=
vextq_f32
(
in4_tmp
,
in5_tmp
,
2
);
tmp0 = vextq_f32(in0, in1, 1);
tmp1 = vextq_f32(in0, in1, 2);
out0
=
vmulq_n_f32
(
in0_tmp
,
w00
);
tmp2 = vextq_f32(in2, in3, 1);
tmp3 = vextq_f32(in2, in3, 2);
out0 = vmulq_n_f32(in0, w10);
out0 = vmlaq_n_f32(out0, tmp0, w11);
out0 = vmlaq_n_f32(out0, tmp1, w12);
out0 = vmlaq_n_f32(out0, in2, w20);
out0 = vmlaq_n_f32(out0, tmp2, w21);
out0 = vmlaq_n_f32(out0, tmp3, w22);
out0 = vmlaq_f32(vnewbias, vnewscale, out0);
if (if_relu) {
out0 = vmaxq_f32(out0, vzero);
}
vst1q_f32(output_ptr, out0);
in5 = vld1q_f32(input_tmp_end + 4);
in7 = vld1q_f32(input_tmp_end + l + 4);
tmp0 = vextq_f32(in4, in5, 1);
tmp1 = vextq_f32(in4, in5, 2);
tmp2 = vextq_f32(in6, in7, 1);
tmp3 = vextq_f32(in6, in7, 2);
out0 = vmulq_n_f32(in4, w00);
out0 = vmlaq_n_f32(out0, tmp0, w01);
out0 = vmlaq_n_f32(out0, tmp1, w02);
out0
=
vmlaq_n_f32
(
out0
,
in
2_tmp
,
w10
);
out0 = vmlaq_n_f32(out0, in
6
, w10);
out0 = vmlaq_n_f32(out0, tmp2, w11);
out0 = vmlaq_n_f32(out0, tmp3, w12);
out0
=
vmlaq_n_f32
(
out0
,
in4_tmp
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp4
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp5
,
w22
);
out0 = vmlaq_f32(vnewbias, vnewscale, out0);
if (if_relu) {
out0 = vmaxq_f32(out0, vzero);
}
vst1q_f32
(
output_ptr
,
out0
);
vst1q_f32(output_ptr
+ (l - 1) * l
, out0);
output_ptr
+=
4
;
// can optimize to each 8 stride.
input_tmp += 4;
in0_tmp
=
in1_tmp
;
in2_tmp
=
in3_tmp
;
in4_tmp
=
in5_tmp
;
input_tmp_end += 4;
output_ptr += 4;
in0 = in1;
in2 = in3;
in4 = in5;
in6 = in7;
}
float32x4_t
pad0
=
vdupq_n_f32
(
input_data
[
i
*
l
+
l
-
1
]);
float32x4_t
pad
1
=
vdupq_n_f32
(
input_data
[
i
*
l
+
l
-
1
+
l
]);
float32x4_t
pad
2
=
vdupq_n_f32
(
input_data
[
i
*
l
+
l
-
1
+
l
+
l
]);
// top right pad
float32x4_t pad
0 = vdupq_n_f32(input_data[l - 1
]);
float32x4_t pad
1 = vdupq_n_f32(input_data[2 * l - 1
]);
tmp0
=
vextq_f32
(
in0_tmp
,
pad0
,
1
);
tmp1
=
vextq_f32
(
in0_tmp
,
pad0
,
2
);
tmp2
=
vextq_f32
(
in2_tmp
,
pad1
,
1
);
tmp3
=
vextq_f32
(
in2_tmp
,
pad1
,
2
);
tmp4
=
vextq_f32
(
in4_tmp
,
pad2
,
1
);
tmp5
=
vextq_f32
(
in4_tmp
,
pad2
,
2
);
tmp0 = vextq_f32(in0, pad0, 1);
tmp1 = vextq_f32(in0, pad0, 2);
tmp2 = vextq_f32(in2, pad1, 1);
tmp3 = vextq_f32(in2, pad1, 2);
out0
=
vmulq_n_f32
(
in0_tmp
,
w00
);
out0 = vmulq_n_f32(in0, w10);
out0 = vmlaq_n_f32(out0, tmp0, w11);
out0 = vmlaq_n_f32(out0, tmp1, w12);
out0 = vmlaq_n_f32(out0, in2, w20);
out0 = vmlaq_n_f32(out0, tmp2, w21);
out0 = vmlaq_n_f32(out0, tmp3, w22);
out0 = vmlaq_f32(vnewbias, vnewscale, out0);
if (if_relu) {
out0 = vmaxq_f32(out0, vzero);
}
for (int i = 0; i < c_mid; ++i) {
if (i == 0) {
vst1q_lane_f32(output_ptr + i, out0, 0);
}
if (i == 1) {
vst1q_lane_f32(output_ptr + i, out0, 1);
}
if (i == 2) {
vst1q_lane_f32(output_ptr + i, out0, 2);
}
}
// bottom right pad
float32x4_t pad2 = vdupq_n_f32(input_data[l * l - 1 - l]);
float32x4_t pad3 = vdupq_n_f32(input_data[l * l - 1]);
tmp0 = vextq_f32(in4, pad2, 1);
tmp1 = vextq_f32(in4, pad2, 2);
tmp2 = vextq_f32(in6, pad3, 1);
tmp3 = vextq_f32(in6, pad3, 2);
out0 = vmulq_n_f32(in4, w00);
out0 = vmlaq_n_f32(out0, tmp0, w01);
out0 = vmlaq_n_f32(out0, tmp1, w02);
out0
=
vmlaq_n_f32
(
out0
,
in
2_tmp
,
w10
);
out0 = vmlaq_n_f32(out0, in
6
, w10);
out0 = vmlaq_n_f32(out0, tmp2, w11);
out0 = vmlaq_n_f32(out0, tmp3, w12);
out0
=
vmlaq_n_f32
(
out0
,
in4_tmp
,
w20
);
out0
=
vmlaq_n_f32
(
out0
,
tmp4
,
w21
);
out0
=
vmlaq_n_f32
(
out0
,
tmp5
,
w22
);
out0 = vmlaq_f32(vnewbias, vnewscale, out0);
if (if_relu) {
out0 = vmaxq_f32(out0, vzero);
}
for (int i = 0; i < c_mid; ++i) {
if (i == 0) {
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
0
);
vst1q_lane_f32(output_ptr +
(l - 1) * l +
i, out0, 0);
}
if (i == 1) {
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
1
);
vst1q_lane_f32(output_ptr +
(l - 1) * l +
i, out0, 1);
}
if (i == 2) {
vst1q_lane_f32
(
output_ptr
+
i
,
out0
,
2
);
vst1q_lane_f32(output_ptr + (l - 1) * l + i, out0, 2);
}
}
// mid
for (int i = 0; i < l - 2; ++i) {
auto output_ptr = output_data + (i + 1) * l + 1;
input_tmp = input_data + i * l;
auto in0_tmp = vld1q_f32(input_tmp);
auto in2_tmp = vld1q_f32(input_tmp + l);
auto in4_tmp = vld1q_f32(input_tmp + l + l);
c_mid = l_mid;
for (; c_mid > 3; c_mid -= 4) {
auto in1_tmp = vld1q_f32(input_tmp + 4);
auto in3_tmp = vld1q_f32(input_tmp + l + 4);
auto in5_tmp = vld1q_f32(input_tmp + l + l + 4);
tmp0 = vextq_f32(in0_tmp, in1_tmp, 1);
tmp1 = vextq_f32(in0_tmp, in1_tmp, 2);
tmp2 = vextq_f32(in2_tmp, in3_tmp, 1);
tmp3 = vextq_f32(in2_tmp, in3_tmp, 2);
tmp4 = vextq_f32(in4_tmp, in5_tmp, 1);
tmp5 = vextq_f32(in4_tmp, in5_tmp, 2);
out0 = vmulq_n_f32(in0_tmp, w00);
out0 = vmlaq_n_f32(out0, tmp0, w01);
out0 = vmlaq_n_f32(out0, tmp1, w02);
out0 = vmlaq_n_f32(out0, in2_tmp, w10);
out0 = vmlaq_n_f32(out0, tmp2, w11);
out0 = vmlaq_n_f32(out0, tmp3, w12);
out0 = vmlaq_n_f32(out0, in4_tmp, w20);
out0 = vmlaq_n_f32(out0, tmp4, w21);
out0 = vmlaq_n_f32(out0, tmp5, w22);
out0 = vmlaq_f32(vnewbias, vnewscale, out0);
if (if_relu) {
out0 = vmaxq_f32(out0, vzero);
}
vst1q_f32(output_ptr, out0);
output_ptr += 4;
input_tmp += 4;
in0_tmp = in1_tmp;
in2_tmp = in3_tmp;
in4_tmp = in5_tmp;
}
float32x4_t pad0 = vdupq_n_f32(input_data[i * l + l - 1]);
float32x4_t pad1 = vdupq_n_f32(input_data[i * l + l - 1 + l]);
float32x4_t pad2 = vdupq_n_f32(input_data[i * l + l - 1 + l + l]);
tmp0 = vextq_f32(in0_tmp, pad0, 1);
tmp1 = vextq_f32(in0_tmp, pad0, 2);
tmp2 = vextq_f32(in2_tmp, pad1, 1);
tmp3 = vextq_f32(in2_tmp, pad1, 2);
tmp4 = vextq_f32(in4_tmp, pad2, 1);
tmp5 = vextq_f32(in4_tmp, pad2, 2);
out0 = vmulq_n_f32(in0_tmp, w00);
out0 = vmlaq_n_f32(out0, tmp0, w01);
out0 = vmlaq_n_f32(out0, tmp1, w02);
out0 = vmlaq_n_f32(out0, in2_tmp, w10);
out0 = vmlaq_n_f32(out0, tmp2, w11);
out0 = vmlaq_n_f32(out0, tmp3, w12);
out0 = vmlaq_n_f32(out0, in4_tmp, w20);
out0 = vmlaq_n_f32(out0, tmp4, w21);
out0 = vmlaq_n_f32(out0, tmp5, w22);
out0 = vmlaq_f32(vnewbias, vnewscale, out0);
if (if_relu) {
out0 = vmaxq_f32(out0, vzero);
}
for (int i = 0; i < c_mid; ++i) {
if (i == 0) {
vst1q_lane_f32(output_ptr + i, out0, 0);
}
if (i == 1) {
vst1q_lane_f32(output_ptr + i, out0, 1);
}
if (i == 2) {
vst1q_lane_f32(output_ptr + i, out0, 2);
}
}
}
output_data += hxw;
input_data += hxw;
filter_data_tmp += 9;
}
output_data
+=
hxw
;
input_data
+=
hxw
;
filter_data_tmp
+=
9
;
}
}
*/
#endif
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录