Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
9851c008
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9851c008
编写于
9月 12, 2019
作者:
N
NazgulLee
提交者:
Yanzhan Yang
9月 12, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimize conv7*7, compute 2 point in 1 thread. test=develop (#2028)
上级
8ab543ff
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
291 addition
and
2 deletion
+291
-2
mobile/src/operators/kernel/cl/cl-kernel-func/conv_func.cpp
mobile/src/operators/kernel/cl/cl-kernel-func/conv_func.cpp
+129
-0
mobile/src/operators/kernel/cl/cl-kernel-func/conv_func.h
mobile/src/operators/kernel/cl/cl-kernel-func/conv_func.h
+6
-0
mobile/src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
mobile/src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
+151
-0
mobile/src/operators/kernel/cl/conv_add_kernel.cpp
mobile/src/operators/kernel/cl/conv_add_kernel.cpp
+5
-2
未找到文件。
mobile/src/operators/kernel/cl/cl-kernel-func/conv_func.cpp
浏览文件 @
9851c008
...
...
@@ -32,6 +32,135 @@ void WinogradConv3x3<4, 3>(framework::CLHelper *cl_helper,
const
framework
::
CLImage
*
new_scale
,
const
framework
::
CLImage
*
new_bias
)
{}
void
ConvAddBnReluPt1x2
(
framework
::
CLHelper
*
cl_helper
,
const
ConvParam
<
GPU_CL
>
&
param
,
bool
ifRelu
,
const
framework
::
CLImage
*
biase
,
const
framework
::
CLImage
*
new_scale
,
const
framework
::
CLImage
*
new_bias
)
{
auto
kernel
=
cl_helper
->
KernelAt
(
0
);
auto
default_work_size
=
cl_helper
->
DefaultWorkSize
(
*
param
.
Output
());
default_work_size
[
1
]
=
(
default_work_size
[
1
]
+
1
)
/
2
;
int
c_block
=
default_work_size
[
0
];
int
w
=
default_work_size
[
1
];
int
nh
=
default_work_size
[
2
];
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
filter
=
param
.
Filter
()
->
GetCLImage
();
auto
output
=
param
.
Output
()
->
GetCLImage
();
int
stride
=
param
.
Strides
()[
0
];
int
offset
=
param
.
Offset
();
int
input_c
=
reinterpret_cast
<
framework
::
CLImageConverterFolder
*>
(
param
.
Input
()
->
Converter
())
->
GetCBlock
();
int
dilation
=
param
.
Dilations
()[
0
];
int
input_width
=
param
.
Input
()
->
dims
()[
3
];
int
input_height
=
param
.
Input
()
->
dims
()[
2
];
int
output_width
=
param
.
Output
()
->
dims
()[
3
];
int
output_height
=
param
.
Output
()
->
dims
()[
2
];
int
filter_channel
=
param
.
Filter
()
->
dims
()[
1
];
int
input_channel
=
param
.
Input
()
->
dims
()[
1
];
//
// DLOG << " c block " << c_block;
// DLOG << " w " << w;
// DLOG << " nh " << nh;
// DLOG << " stride " << stride;
// DLOG << " offset " << offset;
// DLOG << " input_c " << input_c;
// DLOG << " dilation " << dilation;
// DLOG << " input width " << input_width;
// DLOG << " input height " << input_height;
// DLOG << " output width " << output_width;
// DLOG << " output height " << output_height;
// DLOG << " input dim " << param.Input()->dims();
// DLOG << " output dim " << param.Output()->dims();
// DLOG << " filter dim " << param.Filter()->dims();
cl_int
status
;
int
index
=
0
;
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
c_block
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
w
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
nh
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
input
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
filter
);
CL_CHECK_ERRORS
(
status
);
if
(
biase
)
{
auto
bias_mem
=
biase
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
bias_mem
);
CL_CHECK_ERRORS
(
status
);
}
if
(
new_scale
&&
new_bias
)
{
auto
new_scale_mem
=
new_scale
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
new_scale_mem
);
CL_CHECK_ERRORS
(
status
);
auto
new_bias_mem
=
new_bias
->
GetCLImage
();
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
new_bias_mem
);
CL_CHECK_ERRORS
(
status
);
}
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
cl_mem
),
&
output
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
stride
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
offset
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_c
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
dilation
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
input_height
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
output_width
);
CL_CHECK_ERRORS
(
status
);
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
output_height
);
CL_CHECK_ERRORS
(
status
);
if
(
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Filter
()
->
dims
()[
3
]
==
3
)
{
if
(
filter_channel
!=
input_channel
)
{
if
(
filter_channel
!=
1
)
{
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
filter_channel
);
CL_CHECK_ERRORS
(
status
);
int
has_group
=
1
;
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
has_group
);
CL_CHECK_ERRORS
(
status
);
}
}
else
{
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
filter_channel
);
CL_CHECK_ERRORS
(
status
);
int
has_group
=
0
;
status
=
clSetKernelArg
(
kernel
,
index
++
,
sizeof
(
int
),
&
has_group
);
CL_CHECK_ERRORS
(
status
);
}
}
// DLOG<<"default_work_size"<<default_work_size[0]<<"
// "<<default_work_size[1]<<" "<<default_work_size[2];
status
=
clEnqueueNDRangeKernel
(
cl_helper
->
CLCommandQueue
(),
kernel
,
default_work_size
.
size
(),
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
CL_CHECK_ERRORS
(
status
);
}
void
ConvAddBnRelu
(
framework
::
CLHelper
*
cl_helper
,
const
ConvParam
<
GPU_CL
>
&
param
,
bool
ifRelu
,
const
framework
::
CLImage
*
biase
,
...
...
mobile/src/operators/kernel/cl/cl-kernel-func/conv_func.h
浏览文件 @
9851c008
...
...
@@ -41,6 +41,12 @@ void ConvAddBnRelu(framework::CLHelper *cl_helper,
const
framework
::
CLImage
*
new_scale
=
nullptr
,
const
framework
::
CLImage
*
new_bias
=
nullptr
);
void
ConvAddBnReluPt1x2
(
framework
::
CLHelper
*
cl_helper
,
const
ConvParam
<
GPU_CL
>
&
param
,
bool
ifRelu
=
false
,
const
framework
::
CLImage
*
biase
=
nullptr
,
const
framework
::
CLImage
*
new_scale
=
nullptr
,
const
framework
::
CLImage
*
new_bias
=
nullptr
);
void
DWConvAddBnRelu
(
framework
::
CLHelper
*
cl_helper
,
const
ConvParam
<
GPU_CL
>
&
param
,
bool
ifRelu
=
false
,
const
framework
::
CLImage
*
biase
=
nullptr
,
...
...
mobile/src/operators/kernel/cl/cl_kernel/conv_kernel.inc.cl
浏览文件 @
9851c008
...
...
@@ -2111,6 +2111,157 @@ __kernel void conv_7x7(__private const int global_size_dim0,
write_imageh(output_image, output_pos, output);
}
__kernel void conv_7x7Pt1x2(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
__read_only image2d_t input_image,
__read_only image2d_t filter_image,
#if defined(BIASE_CH) || defined(BIASE_ELE)
__read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
__read_only image2d_t new_scale,
__read_only image2d_t new_biase,
#endif
__write_only image2d_t output_image,
__private const int stride,
__private const int offset,
__private const int input_c,
__private const int dilation,
__private const int input_width,/* of one block */
__private const int input_height,/* of one block */
__private const int output_width,
__private const int output_height) {
const int out_c = get_global_id(0);
const int out_w1 = get_global_id(1);
const int out_nh = get_global_id(2);
if (out_c >= global_size_dim0 ||
out_w1 >= global_size_dim1 ||
out_nh >= global_size_dim2) {
return;
}
const int out_w = out_w1 * 2;
int2 output_pos = (int2)(out_c * output_width + out_w, out_nh);
const int filter_n0 = 4 * out_c + 0;
const int filter_n1 = 4 * out_c + 1;
const int filter_n2 = 4 * out_c + 2;
const int filter_n3 = 4 * out_c + 3;
int2 stride_xy;
stride_xy.x = stride;
stride_xy.y = stride;
int2 ouput_pos_in_one_block;
ouput_pos_in_one_block.x = out_w;
ouput_pos_in_one_block.y = out_nh;
const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
CLK_ADDRESS_CLAMP
|
CLK_FILTER_NEAREST;
int2 in_pos_in_one_block;
in_pos_in_one_block.x = ouput_pos_in_one_block.x * stride + offset;
in_pos_in_one_block.y = ouput_pos_in_one_block.y * stride + offset;
half4 output0 = 0.0f;
half4 output1 = 0.0f;
#ifdef BIASE_CH
output0 = read_imageh(bias, sampler, (int2)(out_c, 0));
output1 = output0;
#elif defined(BIASE_ELE)
output0 = read_imageh(bias, sampler, output_pos);
output1 = read_imageh(bias, sampler, (int2)(output_pos.x + 1, output_pos.y));
#else
output0 = 0.0f;
output1 = 0.0f;
#endif
half4 input[8];
half4 filter0[4];
half4 filter1[4];
half4 filter2[4];
half4 filter3[4];
int2 filter_pos0;
int2 filter_pos1;
int2 filter_pos2;
int2 filter_pos3;
for (int i = 0; i < input_c; ++i) {
int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
for(int k = 0; k < 7; k++){
for (int j = 0; j < 8; j++) {
input[j] = select(read_imageh(input_image, sampler,
(int2)(pos_in.x + (j - 3) * dilation, pos_in.y + (k - 3) * dilation)),
(half4)(0.0f),
(ushort4)((in_pos_in_one_block.x + (j - 3) * dilation < 0 || in_pos_in_one_block.y + (k - 3) * dilation < 0 || in_pos_in_one_block.x + (j - 3) * dilation >= input_width || in_pos_in_one_block.y + (k - 3) * dilation >= input_height) << 15));
int filter_h = k;
int filter_w = j;
int filter_c = i;
if (j < 7) {
filter_pos0.x = filter_c * 7 + filter_w;
filter_pos0.y = filter_n0 * 7 + filter_h;
filter_pos1.x = filter_c * 7 + filter_w;
filter_pos1.y = filter_n1 * 7 + filter_h;
filter_pos2.x = filter_c * 7 + filter_w;
filter_pos2.y = filter_n2 * 7 + filter_h;
filter_pos3.x = filter_c * 7 + filter_w;
filter_pos3.y = filter_n3 * 7 + filter_h;
filter0[0] = read_imageh(filter_image, sampler, filter_pos0);
filter0[1] = read_imageh(filter_image, sampler, filter_pos1);
filter0[2] = read_imageh(filter_image, sampler, filter_pos2);
filter0[3] = read_imageh(filter_image, sampler, filter_pos3);
output0.x += dot(input[j], filter0[0]);
output0.y += dot(input[j], filter0[1]);
output0.z += dot(input[j], filter0[2]);
output0.w += dot(input[j], filter0[3]);
}
if (j > 0) {
output1.x += dot(input[j], filter1[0]);
output1.y += dot(input[j], filter1[1]);
output1.z += dot(input[j], filter1[2]);
output1.w += dot(input[j], filter1[3]);
}
filter1[0] = filter0[0];
filter1[1] = filter0[1];
filter1[2] = filter0[2];
filter1[3] = filter0[3];
}
}
}
#ifdef BATCH_NORM
half s = read_imageh(new_scale, sampler, (int2)(out_c, 0));
half b = read_imageh(new_biase, sampler, (int2)(out_c, 0));
output0 = output0 * s + b;
output1 = output1 * s + b;
#endif
#ifdef RELU
output0 = activation(output0);
output1 = activation(output1);
#endif
write_imageh(output_image, output_pos, output0);
if ((output_pos.x + 1) % output_width != 0) {
write_imageh(output_image, (int2)(output_pos.x + 1, output_pos.y), output1);
}
}
__kernel void conv_5x5(__private const int global_size_dim0,
__private const int global_size_dim1,
__private const int global_size_dim2,
...
...
mobile/src/operators/kernel/cl/conv_add_kernel.cpp
浏览文件 @
9851c008
...
...
@@ -95,7 +95,8 @@ bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
param
->
Filter
()
->
InitCLImage
(
cl_helper_
.
CLContext
(),
cl_helper_
.
CLCommandQueue
());
this
->
cl_helper_
.
AddKernel
(
"conv_7x7"
,
conv_kernel_file
,
build_options
);
this
->
cl_helper_
.
AddKernel
(
"conv_7x7Pt1x2"
,
conv_kernel_file
,
build_options
);
}
else
if
(
param
->
Filter
()
->
dims
()[
2
]
==
5
&&
param
->
Filter
()
->
dims
()[
3
]
==
5
)
{
...
...
@@ -118,10 +119,12 @@ void ConvAddKernel<GPU_CL, float>::Compute(
break
;
case
ConvParam
<
GPU_CL
>::
EXEC_SLIDINGWINDOW1x1_FLOAT
:
case
ConvParam
<
GPU_CL
>::
EXEC_SLIDINGWINDOW5x5_FLOAT
:
case
ConvParam
<
GPU_CL
>::
EXEC_SLIDINGWINDOW7x7_FLOAT
:
case
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3_FLOAT
:
ConvAddBnRelu
(
&
this
->
cl_helper_
,
param
,
false
,
param
.
Bias
());
break
;
case
ConvParam
<
GPU_CL
>::
EXEC_SLIDINGWINDOW7x7_FLOAT
:
ConvAddBnReluPt1x2
(
&
this
->
cl_helper_
,
param
,
false
,
param
.
Bias
());
break
;
case
ConvParam
<
GPU_CL
>::
EXEC_DEPTHWISE3x3S1_FLOAT
:
DWConvAddBnRelu
(
&
this
->
cl_helper_
,
param
,
false
,
param
.
Bias
());
break
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录