Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
974c50db
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
974c50db
编写于
1月 15, 2020
作者:
H
hong19860320
提交者:
GitHub
1月 15, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[LITE][NPU] Add layer_norm op bridge (#2767)
上级
789accae
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
183 addition
and
10 deletion
+183
-10
lite/kernels/npu/bridges/CMakeLists.txt
lite/kernels/npu/bridges/CMakeLists.txt
+2
-0
lite/kernels/npu/bridges/instance_norm_op.cc
lite/kernels/npu/bridges/instance_norm_op.cc
+3
-4
lite/kernels/npu/bridges/layer_norm_op.cc
lite/kernels/npu/bridges/layer_norm_op.cc
+168
-0
lite/kernels/npu/bridges/paddle_use_bridges.h
lite/kernels/npu/bridges/paddle_use_bridges.h
+1
-0
lite/tests/kernels/CMakeLists.txt
lite/tests/kernels/CMakeLists.txt
+1
-1
lite/tests/kernels/instance_norm_compute_test.cc
lite/tests/kernels/instance_norm_compute_test.cc
+2
-2
lite/tests/kernels/layer_norm_compute_test.cc
lite/tests/kernels/layer_norm_compute_test.cc
+6
-3
未找到文件。
lite/kernels/npu/bridges/CMakeLists.txt
浏览文件 @
974c50db
...
@@ -42,6 +42,7 @@ lite_cc_library(subgraph_bridge_unsqueeze_op_npu SRCS unsqueeze_op.cc DEPS ${npu
...
@@ -42,6 +42,7 @@ lite_cc_library(subgraph_bridge_unsqueeze_op_npu SRCS unsqueeze_op.cc DEPS ${npu
lite_cc_library
(
subgraph_bridge_argmax_op_npu SRCS argmax_op.cc DEPS
${
npu_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_argmax_op_npu SRCS argmax_op.cc DEPS
${
npu_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_instance_norm_op_npu SRCS instance_norm_op.cc DEPS
${
npu_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_instance_norm_op_npu SRCS instance_norm_op.cc DEPS
${
npu_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_dropout_op_npu SRCS dropout_op.cc DEPS
${
npu_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_dropout_op_npu SRCS dropout_op.cc DEPS
${
npu_subgraph_bridge_deps
}
)
lite_cc_library
(
subgraph_bridge_layer_norm_op_npu SRCS layer_norm_op.cc DEPS
${
npu_subgraph_bridge_deps
}
)
set
(
npu_subgraph_bridges
set
(
npu_subgraph_bridges
subgraph_bridge_registry
subgraph_bridge_registry
...
@@ -71,6 +72,7 @@ set(npu_subgraph_bridges
...
@@ -71,6 +72,7 @@ set(npu_subgraph_bridges
subgraph_bridge_argmax_op_npu
subgraph_bridge_argmax_op_npu
subgraph_bridge_instance_norm_op_npu
subgraph_bridge_instance_norm_op_npu
subgraph_bridge_dropout_op_npu
subgraph_bridge_dropout_op_npu
subgraph_bridge_layer_norm_op_npu
CACHE INTERNAL
"npu_subgraph_bridges"
)
CACHE INTERNAL
"npu_subgraph_bridges"
)
message
(
STATUS
"+++++ npu_subgraph_bridges:
${
npu_subgraph_bridges
}
"
)
message
(
STATUS
"+++++ npu_subgraph_bridges:
${
npu_subgraph_bridges
}
"
)
lite/kernels/npu/bridges/instance_norm_op.cc
浏览文件 @
974c50db
...
@@ -82,7 +82,7 @@ int InstanceNormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -82,7 +82,7 @@ int InstanceNormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
}
else
{
}
else
{
if
(
!
bias
->
persistable
())
{
if
(
!
bias
->
persistable
())
{
LOG
(
WARNING
)
<<
"[NPU] Only supporting persistable bias tensor."
;
LOG
(
WARNING
)
<<
"[NPU] Only supporting persistable bias tensor."
;
bias
->
set_persistable
(
true
)
;
return
FAILED
;
}
}
bias_node
=
graph
->
Add
(
bias_name
,
*
bias
,
scale_bias_dims
);
bias_node
=
graph
->
Add
(
bias_name
,
*
bias
,
scale_bias_dims
);
}
}
...
@@ -108,7 +108,7 @@ int InstanceNormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -108,7 +108,7 @@ int InstanceNormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
CHECK_EQ
(
channel_size
,
scale_dims
.
production
());
CHECK_EQ
(
channel_size
,
scale_dims
.
production
());
if
(
!
scale
->
persistable
())
{
if
(
!
scale
->
persistable
())
{
LOG
(
WARNING
)
<<
"[NPU] Only supporting persistable scale tensor."
;
LOG
(
WARNING
)
<<
"[NPU] Only supporting persistable scale tensor."
;
scale
->
set_persistable
(
true
)
;
return
FAILED
;
}
}
scale_node
=
graph
->
Add
(
scale_name
,
*
scale
,
scale_bias_dims
);
scale_node
=
graph
->
Add
(
scale_name
,
*
scale
,
scale_bias_dims
);
}
else
{
}
else
{
...
@@ -121,8 +121,7 @@ int InstanceNormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
...
@@ -121,8 +121,7 @@ int InstanceNormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
instance_norm_op
->
set_input_x
(
*
x_node
->
data
());
instance_norm_op
->
set_input_x
(
*
x_node
->
data
());
instance_norm_op
->
set_input_scale
(
*
scale_node
->
data
());
instance_norm_op
->
set_input_scale
(
*
scale_node
->
data
());
instance_norm_op
->
set_input_bias
(
*
bias_node
->
data
());
instance_norm_op
->
set_input_bias
(
*
bias_node
->
data
());
instance_norm_op
->
set_attr_reduction_indices
(
instance_norm_op
->
set_attr_reduction_indices
(
ge
::
AttrValue
::
LIST_INT
({
2
}));
ge
::
AttrValue
::
LIST_INT
({
0
,
1
,
2
}));
instance_norm_op
->
set_attr_epsilon
(
epsilon
);
instance_norm_op
->
set_attr_epsilon
(
epsilon
);
return
SUCCESS
;
return
SUCCESS
;
}
}
...
...
lite/kernels/npu/bridges/layer_norm_op.cc
0 → 100644
浏览文件 @
974c50db
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/npu/bridges/graph.h"
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/npu/bridges/utility.h"
namespace
paddle
{
namespace
lite
{
namespace
subgraph
{
namespace
npu
{
int
LayerNormConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
auto
graph
=
static_cast
<
Graph
*>
(
ctx
);
auto
op_info
=
op
->
op_info
();
auto
op_type
=
op_info
->
Type
();
auto
scope
=
op
->
scope
();
VLOG
(
3
)
<<
"[NPU] Converting "
+
op_type
+
"..."
;
// Get input and output vars and op attributes
auto
x_name
=
op_info
->
Input
(
"X"
).
front
();
auto
x_type
=
kernel
->
GetInputDeclType
(
"X"
);
CHECK
(
x_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
x_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
x
=
scope
->
FindMutableTensor
(
x_name
);
auto
x_dims
=
x
->
dims
();
auto
padded_x_shape
=
CvtShape
(
x_dims
);
auto
x_rank
=
static_cast
<
int
>
(
x_dims
.
size
());
CHECK
(
x_rank
>=
2
&&
x_rank
<=
4
);
auto
y_name
=
op_info
->
Output
(
"Y"
).
front
();
auto
y_type
=
kernel
->
GetOutputDeclType
(
"Y"
);
CHECK
(
y_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
y_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
y
=
scope
->
FindMutableTensor
(
y_name
);
auto
y_dims
=
y
->
dims
();
auto
padded_y_shape
=
CvtShape
(
y_dims
);
auto
epsilon
=
op_info
->
GetAttr
<
float
>
(
"epsilon"
);
auto
begin_norm_axis
=
op_info
->
GetAttr
<
int
>
(
"begin_norm_axis"
);
if
(
begin_norm_axis
<
0
)
{
begin_norm_axis
+=
x_rank
;
}
CHECK
(
begin_norm_axis
>=
1
&&
begin_norm_axis
<
x_rank
);
auto
x_mat_dims
=
x_dims
.
Flatten2D
(
begin_norm_axis
);
auto
left
=
x_mat_dims
[
0
];
auto
right
=
x_mat_dims
[
1
];
// X node
std
::
shared_ptr
<
Node
>
x_node
=
nullptr
;
if
(
graph
->
Has
(
x_name
))
{
x_node
=
graph
->
Get
(
x_name
);
}
else
{
x_node
=
graph
->
Add
(
x_name
,
*
x
,
padded_x_shape
);
}
// Reshaped X node if needs
bool
reshape
=
false
;
if
(
!
(
x_rank
==
4
&&
begin_norm_axis
==
1
))
{
reshape
=
true
;
// Only the input shape 4-D(n, c, h, w) and axis=1 is supported
// by HiAI DDK, So the input shape need to be padded to 4-D if it is less
// than 4 or axis!=1. For example:
// (1) (n, c, h, w), axis=1 -> no need
// (2) (n, c, h, w), axis=2 -> (n * c, h, w, 1)
// (3) (n, c, h, w), axis=3 -> (n * c * h, w, 1)
// (4) (n, h, w), axis=1 -> (n, h, w, 1)
// (5) (n, h, w), axis=2 -> (n * h, w, 1, 1)
// (6) (h, w), axis=1 -> (h, w, 1, 1)
padded_x_shape
=
{
left
};
for
(
int
i
=
begin_norm_axis
;
i
<
x_rank
;
i
++
)
{
padded_x_shape
.
push_back
(
x_dims
[
i
]);
}
auto
remain
=
4
-
padded_x_shape
.
size
();
for
(
int
i
=
0
;
i
<
remain
;
i
++
)
{
padded_x_shape
.
push_back
(
1
);
}
auto
reshaped_x_node
=
graph
->
Add
<
ge
::
op
::
Reshape
>
(
x_name
+
"/reshape"
,
x_node
->
precision
(),
x_node
->
layout
());
auto
reshaped_x_op
=
reshaped_x_node
->
data
<
ge
::
op
::
Reshape
>
();
reshaped_x_op
->
set_input_tensor
(
*
x_node
->
data
());
reshaped_x_op
->
set_attr_shape
(
padded_x_shape
);
x_node
=
reshaped_x_node
;
}
// Bias node
auto
scale_bias_dims
=
DDim
({
1
,
padded_x_shape
[
1
],
padded_x_shape
[
2
],
padded_x_shape
[
3
]});
std
::
shared_ptr
<
Node
>
bias_node
=
nullptr
;
if
(
HasInputArg
(
op_info
,
scope
,
"Bias"
))
{
auto
bias_name
=
op_info
->
Input
(
"Bias"
).
front
();
auto
bias_type
=
kernel
->
GetInputDeclType
(
"Bias"
);
CHECK
(
bias_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
bias_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
bias
=
scope
->
FindMutableTensor
(
bias_name
);
auto
bias_dims
=
bias
->
dims
();
CHECK_EQ
(
bias_dims
.
size
(),
1
);
CHECK_EQ
(
bias_dims
.
production
(),
right
);
if
(
!
bias
->
persistable
())
{
LOG
(
WARNING
)
<<
"[NPU] Only supporting persistable bias tensor."
;
return
FAILED
;
}
bias_node
=
graph
->
Add
(
bias_name
,
*
bias
,
scale_bias_dims
);
}
else
{
bias_node
=
graph
->
Add
(
y_name
+
"/bias"
,
0.0
f
,
scale_bias_dims
);
}
// Scale node
std
::
shared_ptr
<
Node
>
scale_node
=
nullptr
;
if
(
HasInputArg
(
op_info
,
scope
,
"Scale"
))
{
auto
scale_name
=
op_info
->
Input
(
"Scale"
).
front
();
auto
scale_type
=
kernel
->
GetInputDeclType
(
"Scale"
);
CHECK
(
scale_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
scale_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
scale
=
scope
->
FindMutableTensor
(
scale_name
);
auto
scale_dims
=
scale
->
dims
();
CHECK_EQ
(
scale_dims
.
size
(),
1
);
CHECK_EQ
(
scale_dims
.
production
(),
right
);
if
(
!
scale
->
persistable
())
{
LOG
(
WARNING
)
<<
"[NPU] Only supporting persistable scale tensor."
;
return
FAILED
;
}
scale_node
=
graph
->
Add
(
scale_name
,
*
scale
,
scale_bias_dims
);
}
else
{
scale_node
=
graph
->
Add
(
y_name
+
"/scale"
,
1.0
f
,
scale_bias_dims
);
}
// LayerNorm node
auto
layer_norm_node
=
graph
->
Add
<
ge
::
op
::
InstanceNorm
>
(
y_name
);
auto
layer_norm_op
=
layer_norm_node
->
data
<
ge
::
op
::
InstanceNorm
>
();
layer_norm_op
->
set_input_x
(
*
x_node
->
data
());
layer_norm_op
->
set_input_scale
(
*
scale_node
->
data
());
layer_norm_op
->
set_input_bias
(
*
bias_node
->
data
());
layer_norm_op
->
set_attr_reduction_indices
(
ge
::
AttrValue
::
LIST_INT
({
3
}));
layer_norm_op
->
set_attr_epsilon
(
epsilon
);
// Reshaped Y node if needs
if
(
reshape
)
{
auto
reshaped_y_node
=
graph
->
Add
<
ge
::
op
::
Reshape
>
(
y_name
,
layer_norm_node
->
precision
(),
layer_norm_node
->
layout
());
auto
reshaped_y_op
=
reshaped_y_node
->
data
<
ge
::
op
::
Reshape
>
();
reshaped_y_op
->
set_input_tensor
(
*
layer_norm_node
->
data
());
reshaped_y_op
->
set_attr_shape
(
padded_y_shape
);
}
return
REBUILD_WHEN_SHAPE_CHANGED
;
}
}
// namespace npu
}
// namespace subgraph
}
// namespace lite
}
// namespace paddle
REGISTER_SUBGRAPH_BRIDGE
(
layer_norm
,
kNPU
,
paddle
::
lite
::
subgraph
::
npu
::
LayerNormConverter
);
lite/kernels/npu/bridges/paddle_use_bridges.h
浏览文件 @
974c50db
...
@@ -55,3 +55,4 @@ USE_SUBGRAPH_BRIDGE(transpose2, kNPU);
...
@@ -55,3 +55,4 @@ USE_SUBGRAPH_BRIDGE(transpose2, kNPU);
USE_SUBGRAPH_BRIDGE
(
unsqueeze
,
kNPU
);
USE_SUBGRAPH_BRIDGE
(
unsqueeze
,
kNPU
);
USE_SUBGRAPH_BRIDGE
(
unsqueeze2
,
kNPU
);
USE_SUBGRAPH_BRIDGE
(
unsqueeze2
,
kNPU
);
USE_SUBGRAPH_BRIDGE
(
instance_norm
,
kNPU
);
USE_SUBGRAPH_BRIDGE
(
instance_norm
,
kNPU
);
USE_SUBGRAPH_BRIDGE
(
layer_norm
,
kNPU
);
lite/tests/kernels/CMakeLists.txt
浏览文件 @
974c50db
...
@@ -26,7 +26,7 @@ if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA AND NOT LITE_WITH_BM) AND (LITE_
...
@@ -26,7 +26,7 @@ if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA AND NOT LITE_WITH_BM) AND (LITE_
lite_cc_test
(
test_kernel_concat_compute SRCS concat_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_concat_compute SRCS concat_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_transpose_compute SRCS transpose_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_transpose_compute SRCS transpose_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_reshape_compute SRCS reshape_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_reshape_compute SRCS reshape_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_layer_norm_compute SRCS layer_norm_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_layer_norm_compute SRCS layer_norm_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_dropout_compute SRCS dropout_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_dropout_compute SRCS dropout_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_softmax_compute SRCS softmax_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_softmax_compute SRCS softmax_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
npu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_mul_compute SRCS mul_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_mul_compute SRCS mul_compute_test.cc DEPS arena_framework
${
xpu_kernels
}
${
x86_kernels
}
${
cuda_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
...
...
lite/tests/kernels/instance_norm_compute_test.cc
浏览文件 @
974c50db
...
@@ -122,8 +122,8 @@ class InstanceNormComputeTest : public arena::TestCase {
...
@@ -122,8 +122,8 @@ class InstanceNormComputeTest : public arena::TestCase {
fill_data_rand
(
bias
.
data
(),
-
1.
f
,
1.
f
,
scale_bias_dims
.
production
());
fill_data_rand
(
bias
.
data
(),
-
1.
f
,
1.
f
,
scale_bias_dims
.
production
());
SetCommonTensor
(
x_
,
dims_
,
x
.
data
());
SetCommonTensor
(
x_
,
dims_
,
x
.
data
());
SetCommonTensor
(
scale_
,
scale_bias_dims
,
scale
.
data
());
SetCommonTensor
(
scale_
,
scale_bias_dims
,
scale
.
data
()
,
{},
true
);
SetCommonTensor
(
bias_
,
scale_bias_dims
,
bias
.
data
());
SetCommonTensor
(
bias_
,
scale_bias_dims
,
bias
.
data
()
,
{},
true
);
}
}
};
};
...
...
lite/tests/kernels/layer_norm_compute_test.cc
浏览文件 @
974c50db
...
@@ -132,13 +132,13 @@ class LayerNormComputeTest : public arena::TestCase {
...
@@ -132,13 +132,13 @@ class LayerNormComputeTest : public arena::TestCase {
DDim
scale_dims
({
scale_bias_size
});
DDim
scale_dims
({
scale_bias_size
});
std
::
vector
<
float
>
scale
(
scale_bias_size
);
std
::
vector
<
float
>
scale
(
scale_bias_size
);
fill_data_rand
(
scale
.
data
(),
-
1.
f
,
1.
f
,
scale_bias_size
);
fill_data_rand
(
scale
.
data
(),
-
1.
f
,
1.
f
,
scale_bias_size
);
SetCommonTensor
(
scale_
,
scale_dims
,
scale
.
data
());
SetCommonTensor
(
scale_
,
scale_dims
,
scale
.
data
()
,
{},
true
);
}
}
if
(
has_bias_
)
{
if
(
has_bias_
)
{
DDim
bias_dims
({
scale_bias_size
});
DDim
bias_dims
({
scale_bias_size
});
std
::
vector
<
float
>
bias
(
scale_bias_size
);
std
::
vector
<
float
>
bias
(
scale_bias_size
);
fill_data_rand
(
bias
.
data
(),
-
1.
f
,
1.
f
,
scale_bias_size
);
fill_data_rand
(
bias
.
data
(),
-
1.
f
,
1.
f
,
scale_bias_size
);
SetCommonTensor
(
bias_
,
bias_dims
,
bias
.
data
());
SetCommonTensor
(
bias_
,
bias_dims
,
bias
.
data
()
,
{},
true
);
}
}
}
}
};
};
...
@@ -149,6 +149,9 @@ TEST(LayerNorm, precision) {
...
@@ -149,6 +149,9 @@ TEST(LayerNorm, precision) {
Place
place
;
Place
place
;
#if defined(LITE_WITH_XPU)
#if defined(LITE_WITH_XPU)
place
=
TARGET
(
kXPU
);
place
=
TARGET
(
kXPU
);
#elif defined(LITE_WITH_NPU)
place
=
TARGET
(
kNPU
);
abs_error
=
1e-2
;
#elif defined(LITE_WITH_ARM)
#elif defined(LITE_WITH_ARM)
place
=
TARGET
(
kARM
);
place
=
TARGET
(
kARM
);
abs_error
=
6e-5
;
abs_error
=
6e-5
;
...
@@ -157,7 +160,7 @@ TEST(LayerNorm, precision) {
...
@@ -157,7 +160,7 @@ TEST(LayerNorm, precision) {
#endif
#endif
for
(
auto
dims
:
for
(
auto
dims
:
std
::
vector
<
std
::
vector
<
int64_t
>>
{{
1
,
2
,
3
,
4
},
{
2
,
3
,
4
},
{
3
,
4
}})
{
std
::
vector
<
std
::
vector
<
int64_t
>>
{{
2
,
3
,
4
,
5
},
{
3
,
4
,
5
},
{
4
,
5
}})
{
for
(
auto
epsilon
:
{
1e-5
f
})
{
for
(
auto
epsilon
:
{
1e-5
f
})
{
for
(
auto
axis
:
{
1
,
2
,
3
})
{
for
(
auto
axis
:
{
1
,
2
,
3
})
{
for
(
bool
has_bias
:
{
true
,
false
})
{
for
(
bool
has_bias
:
{
true
,
false
})
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录