未验证 提交 965fce05 编写于 作者: xiebaiyuan's avatar xiebaiyuan 提交者: GitHub

Merge branch 'develop' into add_concat_int8

......@@ -21,6 +21,9 @@ limitations under the License. */
namespace paddle_mobile {
namespace fpga {
#define USE_RELU 1
#define USE_BIAS 2
int get_align_image_cw(int cw) { return align_to_x(cw, IMAGE_ALIGNMENT); }
void format_image(framework::Tensor *image_tensor) {
......@@ -172,6 +175,170 @@ void format_concat_output(framework::Tensor *out, int height, int width,
out->reset_data_ptr(data_ptr);
}
void expand_conv_arg(ConvArgs *arg) {
ConvArgs args = *arg;
uint64_t filterlen = (uint64_t)args.kernel.width *
(uint64_t)args.kernel.height *
(uint64_t)args.image.channels;
filterlen = align_to_x(filterlen, FILTER_ELEMENT_ALIGNMENT);
filterlen *= align_to_x((uint64_t)args.filter_num, FILTER_NUM_ALIGNMENT);
uint64_t fpga_bias_scale_len =
align_to_x(args.filter_num / args.group_num, 8) * args.group_num;
uint64_t output_height =
(args.image.height + args.image.pad_height * 2 - args.kernel.height) /
args.kernel.stride_h +
1;
uint64_t output_width =
(args.image.width + args.image.pad_width * 2 - args.kernel.width) /
args.kernel.stride_w +
1;
uint64_t output_size =
output_height * output_width * (uint64_t)args.filter_num;
auto filter_per_group = (uint64_t)(args.filter_num / args.group_num);
auto channel_per_group = (uint64_t)(args.image.channels / args.group_num);
uint64_t image_row_count = ((uint64_t)args.image.width) *
((uint64_t)args.image.channels); // without align
uint64_t image_amount_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT);
uint64_t image_one_pad_per_row =
align_to_x(image_row_count, IMAGE_ALIGNMENT) +
((uint64_t)args.image.pad_width) * ((uint64_t)args.image.channels);
uint64_t filter_amount_all =
align_to_x(((uint64_t)args.kernel.height) *
((uint64_t)args.kernel.width) * channel_per_group,
FILTER_ELEMENT_ALIGNMENT);
uint64_t output_amount_per_row =
align_to_x(output_width * ((uint64_t)args.filter_num), IMAGE_ALIGNMENT);
// find the opt partition strategy
uint64_t res_win;
uint64_t res_fit = 0;
for (res_win = 1; res_win <= output_width; res_win = res_win + 1) {
if ((align_to_x(
(args.image.channels *
(args.kernel.width + (res_win - 1) * args.kernel.stride_w)),
IMAGE_ALIGNMENT) /
16 +
1) *
args.kernel.height >
2048) {
break;
}
}
if (res_win != output_width) {
res_win -= 1;
}
if (((res_win % 2) != 0) && (res_win != 1)) {
res_win = res_win - 1;
}
res_fit = res_win;
uint64_t block_num = (output_width + res_fit - 1) / res_fit;
uint64_t block_len = res_fit;
uint64_t block_last = output_width - res_fit * (block_num - 1);
uint64_t res_amount_per_row = output_width * args.filter_num;
uint64_t res_amount_per_row_pad = output_amount_per_row - res_amount_per_row;
uint64_t image_block_amount_per_row =
args.kernel.stride_w * (res_fit)*args.image.channels;
uint64_t filter_pad_width_mul_channel =
args.image.pad_width * args.image.channels;
uint64_t image_amount_per_row_multi_win_first =
image_amount_per_row * (4 * args.kernel.stride_h - args.image.pad_height);
uint64_t image_amount_per_row_multi_win =
image_amount_per_row * (4 * args.kernel.stride_h);
uint64_t image_block_num = block_num;
uint64_t image_block_len =
align_to_x((args.image.channels *
(args.kernel.width + (block_len - 1) * args.kernel.stride_w)),
IMAGE_ALIGNMENT) /
16 +
1;
uint64_t image_block_len_last =
align_to_x(
(args.image.channels *
(args.kernel.width + (block_last - 1) * args.kernel.stride_w)),
IMAGE_ALIGNMENT) /
16 +
1;
uint64_t image_win_cnt = block_len;
uint64_t image_win_cnt_last = block_last;
uint64_t res_row_data_align4_pad = res_amount_per_row_pad / 8;
uint64_t prog_full_cnt = 2048 / (filter_amount_all / 16 * 2) - 1;
if (prog_full_cnt == 1023) {
prog_full_cnt--;
}
uint64_t post_prog_full_cnt =
(512 / (align_to_x(args.filter_num, 4) / 4 * 2) > 2)
? (512 / (align_to_x(args.filter_num, 4) / 4 * 2) - 2)
: 0;
uint64_t cmd = 0UL | (args.relu_enabled ? USE_RELU : 0) | USE_BIAS;
(*arg).driver.image_address_phy = vaddr_to_paddr(args.image.address);
(*arg).driver.sb_address_phy = vaddr_to_paddr(args.sb_address);
(*arg).driver.filter_address_phy = vaddr_to_paddr(args.filter_address);
(*arg).driver.output_address_phy = vaddr_to_paddr(args.output.address);
(*arg).driver.output_height = output_height;
(*arg).driver.output_width = output_width;
(*arg).driver.filter_per_group = filter_per_group;
(*arg).driver.channel_per_group = channel_per_group;
(*arg).driver.image_amount_per_row = image_amount_per_row;
(*arg).driver.image_one_pad_per_row = image_one_pad_per_row;
(*arg).driver.filter_amount_all = filter_amount_all;
(*arg).driver.output_amount_per_row = output_amount_per_row;
(*arg).driver.image_block_amount_per_row = image_block_amount_per_row;
(*arg).driver.filter_pad_width_mul_channel = filter_pad_width_mul_channel;
(*arg).driver.image_amount_per_row_multi_win_first =
image_amount_per_row_multi_win_first;
(*arg).driver.image_amount_per_row_multi_win = image_amount_per_row_multi_win;
(*arg).driver.image_block_num = image_block_num;
(*arg).driver.image_block_len = image_block_len;
(*arg).driver.image_block_len_last = image_block_len_last;
(*arg).driver.image_win_cnt = image_win_cnt;
(*arg).driver.image_win_cnt_last = image_win_cnt_last;
(*arg).driver.res_row_data_align4_pad = res_row_data_align4_pad;
(*arg).driver.prog_full_cnt = prog_full_cnt;
(*arg).driver.post_prog_full_cnt = post_prog_full_cnt;
(*arg).driver.fpga_bias_scale_len = fpga_bias_scale_len;
(*arg).driver.cmd = cmd;
} // expand_conv_arg()
void expand_EW_arg(EWAddArgs *arg) {
EWAddArgs args = *arg;
uint64_t cmd = args.relu_enabled ? USE_RELU : 0;
uint64_t datalen = (uint64_t)args.image0.width *
(uint64_t)args.image0.height *
(uint64_t)args.image0.channels;
uint64_t coefficient = (uint64_t)args.const0 << 32 | (uint64_t)args.const1;
uint64_t image0_address_phy = vaddr_to_paddr(args.image0.address);
uint64_t image1_address_phy = vaddr_to_paddr(args.image1.address);
uint64_t output_address_phy = vaddr_to_paddr(args.output.address);
uint64_t image_amount_per_row =
align_to_x((uint64_t)args.image0.width * (uint64_t)args.image0.channels,
IMAGE_ALIGNMENT);
uint64_t image_image_pixel = ((uint64_t)args.image0.channels << 32) |
((uint64_t)args.image0.width << 16) |
(uint64_t)args.image0.height;
(*arg).driver.image0_address_phy = image0_address_phy;
(*arg).driver.image1_address_phy = image1_address_phy;
(*arg).driver.datalen = datalen;
(*arg).driver.image_image_pixel = image_image_pixel;
(*arg).driver.image_amount_per_row = image_amount_per_row;
(*arg).driver.output_address_phy = output_address_phy;
(*arg).driver.coefficient = coefficient;
(*arg).driver.cmd = cmd;
} // expand_EW_arg
void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
framework::Tensor *out, framework::Tensor *filter,
bool relu_enabled, int group_num, int stride_h,
......@@ -206,7 +373,7 @@ void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
auto channel = (int)out->dims()[1]; // NOLINT
int filter_num_per_div = get_filter_num_per_div(filter, group_num);
int element_num = get_aligned_filter_element_num(
filter->dims()[1] * filter->dims()[2] * filter->dims()[3]);
(int)(filter->dims()[1] * filter->dims()[2] * filter->dims()[3]));
for (int i = 0; i < n; i++) {
arg->conv_arg[i].relu_enabled = relu_enabled;
......@@ -223,24 +390,23 @@ void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
arg->conv_arg[i].image.pad_height = (uint32_t)padding_h;
arg->conv_arg[i].image.pad_width = (uint32_t)padding_w;
arg->conv_arg[i].filter_scale_address = filter->scale;
// arg->conv_arg[i].filter_address = &(
// (int8_t *)filter_ptr)[i * element_num * filter_num_per_div]; //
// NOLINT
// arg->conv_arg[i].sb_address = &bs_ptr[i * filter_num_per_div * 2];
arg->conv_arg[i].filter_num = (uint32_t)(
i == n - 1 ? channel - (n - 1) * filter_num_per_div // NOLINT
: filter_num_per_div);
size_t filter_size =
element_num * arg->conv_arg[i].filter_num * sizeof(int8_t);
element_num *
align_to_x(arg->conv_arg[i].filter_num, FILTER_NUM_ALIGNMENT) *
sizeof(int8_t);
auto filter_head =
&((int8_t *)filter_ptr)[i * element_num * filter_num_per_div];
arg->conv_arg[i].filter_address = fpga_malloc(filter_size);
memcpy(arg->conv_arg[i].filter_address, filter_head, filter_size);
fpga_flush(arg->conv_arg[i].filter_address, filter_size);
size_t bs_size = 2 * arg->conv_arg[i].filter_num * sizeof(float);
size_t bs_size = 2 *
align_to_x(arg->conv_arg[i].filter_num, BS_NUM_ALIGNMENT) *
sizeof(float);
auto bs_head = &bs_ptr[i * filter_num_per_div * 2];
arg->conv_arg[i].sb_address = fpga_malloc(bs_size);
memcpy(arg->conv_arg[i].sb_address, bs_head, bs_size);
......@@ -249,9 +415,9 @@ void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
if (n > 1) {
arg->conv_arg[i].output.scale_address =
(float *)fpga_malloc(2 * sizeof(float)); // NOLINT
arg->conv_arg[i].output.address =
fpga_malloc(out->dims()[2] *
align_to_x(out->dims()[3] * arg->conv_arg[i].filter_num,
arg->conv_arg[i].output.address = fpga_malloc(
out->dims()[2] *
align_to_x((int)(out->dims()[3] * arg->conv_arg[i].filter_num),
IMAGE_ALIGNMENT) *
sizeof(half));
} else {
......@@ -263,10 +429,13 @@ void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
(half *)arg->conv_arg[i].output.address; // NOLINT
arg->concat_arg.scales_in[i] = arg->conv_arg[i].output.scale_address;
arg->concat_arg.channel_num[i] = arg->conv_arg[i].filter_num;
expand_conv_arg(&arg->conv_arg[i]);
}
filter->reset_data_ptr(nullptr);
fpga_free(bs_ptr);
}
} // fill_split_arg
void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
framework::Tensor *out, framework::Tensor *filter,
bool relu_enabled, int group_num, int stride_h,
......@@ -277,28 +446,27 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
auto out_ptr = out->data<float>();
arg->group_num = (uint32_t)group_num;
arg->sub_conv_num = stride_h;
arg->sub_conv_num = (uint32_t)stride_h;
arg->filter_num = (uint32_t)filter->dims()[0];
int sub_conv_num = arg->sub_conv_num;
int sub_stride = 1;
int sub_pad = deconv_filter::deconv_calc_sub_pad(filter->dims()[3], padding_w,
stride_w);
int sub_filter_width =
deconv_filter::deconv_get_sub_filter_axis(filter->dims()[3], stride_w);
int sub_pad = deconv_filter::deconv_calc_sub_pad((int)filter->dims()[3],
padding_w, stride_w);
int sub_filter_width = deconv_filter::deconv_get_sub_filter_axis(
(int)filter->dims()[3], stride_w);
int sub_output_width = deconv_filter::deconv_get_sub_out_axis(
input->dims()[3], sub_pad, sub_filter_width);
(int)input->dims()[3], sub_pad, sub_filter_width);
int sub_output_height = deconv_filter::deconv_get_sub_out_axis(
input->dims()[2], sub_pad, sub_filter_width);
(int)input->dims()[2], sub_pad, sub_filter_width);
arg->sub_output_width = sub_output_width;
arg->sub_output_height = sub_output_height;
arg->omit_size =
deconv_filter::deconv_get_omit(stride_w, filter->dims()[3], padding_w);
arg->sub_output_width = (uint32_t)sub_output_width;
arg->sub_output_height = (uint32_t)sub_output_height;
arg->omit_size = (uint32_t)deconv_filter::deconv_get_omit(
stride_w, (int)filter->dims()[3], padding_w);
arg->conv_args = (ConvArgs *)fpga_malloc(sub_conv_num * sizeof(ConvArgs));
int sub_channels = (int32_t)input->dims()[1];
int sub_channels = (int)input->dims()[1];
int omit_size = arg->omit_size;
int real_out_width = sub_output_width * sub_conv_num - 2 * omit_size;
int real_out_height = sub_output_height * sub_conv_num - 2 * omit_size;
......@@ -318,42 +486,41 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
for (int i = 0; i < sub_conv_num; ++i) {
arg->conv_args[i].filter_num = (arg->sub_conv_num) * (arg->filter_num);
arg->conv_args[i].group_num = group_num;
arg->conv_args[i].group_num = (uint32_t)group_num;
arg->conv_args[i].filter_scale_address = filter->scale;
arg->conv_args[i].relu_enabled = relu_enabled;
arg->conv_args[i].kernel.width = sub_filter_width;
arg->conv_args[i].kernel.height = sub_filter_width;
arg->conv_args[i].kernel.width = (uint32_t)sub_filter_width;
arg->conv_args[i].kernel.height = (uint32_t)sub_filter_width;
arg->conv_args[i].kernel.stride_w = 1;
arg->conv_args[i].kernel.stride_h = 1;
// DeconvParam.conv_args[i].image.address = (void*)ptr_image;
arg->conv_args[i].image.scale_address = input->scale;
arg->conv_args[i].image.channels = sub_channels;
arg->conv_args[i].image.channels = (uint32_t)sub_channels;
arg->conv_args[i].image.width = (uint32_t)input->dims()[3];
arg->conv_args[i].image.height = (uint32_t)input->dims()[2];
arg->conv_args[i].image.pad_width = sub_pad;
arg->conv_args[i].image.pad_height = sub_pad;
arg->conv_args[i].image.pad_width = (uint32_t)sub_pad;
arg->conv_args[i].image.pad_height = (uint32_t)sub_pad;
arg->conv_args[i].image.address = input_ptr;
arg->conv_args[i].sb_address = (void *)bs_ptr;
char *filter_sub_space =
auto filter_sub_space =
(char *)fpga_malloc(align_conv_sub_filter_count * sizeof(char));
fpga_copy(filter_sub_space,
(char *)filter_ptr + i * align_conv_sub_filter_count,
align_conv_sub_filter_count);
(size_t)align_conv_sub_filter_count);
arg->conv_args[i].filter_address = (void *)(filter_sub_space);
fpga_flush(filter_sub_space, align_conv_sub_filter_count);
fpga_flush(filter_sub_space, (size_t)align_conv_sub_filter_count);
if (sub_conv_num == 1) {
arg->conv_args[i].output.address = out_ptr;
arg->conv_args[i].output.scale_address = out->scale;
} else {
half *ptr_output = (half *)fpga_malloc(conv_output_size * sizeof(half));
auto ptr_output = (half *)fpga_malloc(conv_output_size * sizeof(half));
arg->conv_args[i].output.address = (void *)((half *)ptr_output);
float *ptr_output_scale = (float *)fpga_malloc(2 * sizeof(float));
auto ptr_output_scale = (float *)fpga_malloc(2 * sizeof(float));
arg->conv_args[i].output.scale_address = ptr_output_scale;
}
}
......@@ -361,6 +528,7 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
arg->output.address = out_ptr;
arg->output.scale_address = out->scale;
// fpga_free(filter_ptr);
}
} // fill_deconv_arg
} // namespace fpga
} // namespace paddle_mobile
......@@ -14,8 +14,6 @@ limitations under the License. */
#pragma once
#define BS_NUM_ALIGNMENT 8
namespace paddle_mobile {
namespace fpga {
namespace bias_scale {
......
......@@ -14,8 +14,6 @@ limitations under the License. */
#pragma once
#define BS_NUM_ALIGNMENT 8
namespace paddle_mobile {
namespace fpga {
namespace deconv_bias_scale {
......
......@@ -14,9 +14,6 @@ limitations under the License. */
#pragma once
#define FILTER_NUM_ALIGNMENT 32 // Filter number aligned to 32
#define FILTER_ELEMENT_ALIGNMENT 16 // Filter element number aligned to 16
namespace paddle_mobile {
namespace fpga {
namespace filter {
......
......@@ -111,25 +111,37 @@ void concat_images(int16_t **images_in, float **scales_in, void *image_out,
fpga_flush(image_out, height * align_each_out_area_cw * sizeof(int16_t));
}
void split_image(int16_t *image_in, float *scale_in, void **images_out,
float **scales_out, int image_num, uint32_t *channel_nums,
int height, int width) {
void split_image(int16_t *image_in, const float *scale_in, void **images_out,
float **scales_out, int image_num,
const uint32_t *channel_nums, int height, int width) {
int total_channel = 0;
for (int i = 0; i < image_num; i++) {
scales_out[i][0] = scale_in[0];
scales_out[i][1] = scale_in[1];
total_channel += channel_nums[i];
}
int element_num = height * align_to_x(width * total_channel, IMAGE_ALIGNMENT);
fpga_invalidate(image_in, element_num * sizeof(int16_t));
int src_offset = 0, des_offset = 0;
for (int h = 0; h < height; h++) {
int src_offset = h * align_to_x(total_channel * width, IMAGE_ALIGNMENT);
for (int w = 0; w < width; w++) {
src_offset = h * align_to_x(total_channel * width, IMAGE_ALIGNMENT) +
w * total_channel;
for (int i = 0; i < image_num; i++) {
int des_offset = h * align_to_x(channel_nums[i] * width, IMAGE_ALIGNMENT);
des_offset = h * align_to_x(channel_nums[i] * width, IMAGE_ALIGNMENT) +
w * channel_nums[i];
memcpy((int16_t *)images_out[i] + des_offset, image_in + src_offset,
channel_nums[i] * sizeof(int16_t));
src_offset += channel_nums[i];
}
}
}
for (int i = 0; i < image_num; i++) {
element_num = height * align_to_x(width * channel_nums[i], IMAGE_ALIGNMENT);
fpga_flush(images_out[i], element_num * sizeof(int16_t));
}
}
} // namespace image
......
......@@ -14,9 +14,8 @@ limitations under the License. */
#pragma once
#include <stdint.h>
#include <cstdint>
#define IMAGE_ALIGNMENT 16 // Aligned to 16
namespace paddle_mobile {
namespace fpga {
namespace image {
......@@ -24,13 +23,16 @@ namespace image {
void convert_to_hwc(float** data_in, int channel, int height, int width);
void align_element_conv(float** data_in, int height, int cw);
void format_image(float** data_in, int channel, int height, int width);
// Concat featuremaps along channel direction
void concat_images(int16_t** images_in, float** scales_in, void* image_out,
float* scale_out, int image_num, uint32_t* channel_num,
int height,
int width); // Concat featuremaps along channel direction
void split_image(int16_t* image_in, float* scale_in, void** images_out,
float** scales_out, int image_num, uint32_t* channel_nums,
int height, int width);
// Split featuremap along channel direction
void split_image(int16_t* image_in, const float* scale_in, void** images_out,
float** scales_out, int image_num,
const uint32_t* channel_nums, int height, int width);
} // namespace image
} // namespace fpga
} // namespace paddle_mobile
......@@ -203,29 +203,11 @@ int ComputeBasicConv(const struct ConvArgs &args) {
DLOG << " out_address:" << args.output.address
<< " out_scale_address:" << args.output.scale_address;
#endif
cout << " relu_enabled:" << args.relu_enabled
<< " sb_address:" << args.sb_address
<< " filter_address:" << args.filter_address
<< " filter_num:" << args.filter_num
<< " group_num:" << args.group_num;
cout << " image_address:" << args.image.address
<< " image_scale_address:" << args.image.scale_address
<< " image_channels:" << args.image.channels
<< " image_height:" << args.image.height
<< " image_width:" << args.image.width
<< " pad_height:" << args.image.pad_height
<< " pad_width:" << args.image.pad_width;
cout << " kernel_height:" << args.kernel.height
<< " kernel_width:" << args.kernel.width
<< " stride_h:" << args.kernel.stride_h
<< " stride_w:" << args.kernel.stride_w;
cout << " out_address:" << args.output.address
<< " out_scale_address:" << args.output.scale_address;
#ifdef PADDLE_MOBILE_ZU5
DLOG << "Conv";
// return 0;
uint64_t timer_cnt;
int ret = 0;
uint64_t output_scale = 0;
/*
uint64_t output_scale;
uint64_t image_scale;
uint64_t filter_scale;
......@@ -233,14 +215,10 @@ int ComputeBasicConv(const struct ConvArgs &args) {
uint64_t sb_address_phy = 0;
uint64_t filter_address_phy = 0;
uint64_t output_address_phy = 0;
int ret = 0;
fpga_copy(&image_scale, args.image.scale_address, 2 * sizeof(float));
fpga_copy(&filter_scale, args.filter_scale_address, 2 * sizeof(float));
cout << "image_scale :" << hex << (image_scale) << endl;
cout << "filter_scale :" << hex << (filter_scale) << endl;
uint64_t filterlen = (uint64_t)args.kernel.width *
(uint64_t)args.kernel.height *
(uint64_t)args.image.channels;
......@@ -349,8 +327,8 @@ int ComputeBasicConv(const struct ConvArgs &args) {
filter_address_phy = vaddr_to_paddr(args.filter_address);
output_address_phy = vaddr_to_paddr(args.output.address);
/*SDK刷Cache保证数据一致性*/
uint64_t cmd = 0UL | (args.relu_enabled ? USE_RELU : 0) | USE_BIAS;
*/
pthread_mutex_lock(&g_fpgainfo.pe_data->mutex);
if (ERROR == g_fpgainfo.pe_data->pes[PE_IDX_CONV]->status) {
......@@ -359,78 +337,63 @@ int ComputeBasicConv(const struct ConvArgs &args) {
pthread_mutex_unlock(&g_fpgainfo.pe_data->mutex);
return ret;
}
/*restart scale*/
reg_writeq(output_scale, REG_SCALE_PARAMETER);
reg_writeq(image_address_phy, REG_CONV_IMAGE_BASE_ADDR);
reg_writeq(filter_address_phy, REG_CONV_FILTER_BASE_ADDR);
reg_writeq(sb_address_phy, REG_CONV_SB_BASE_ADDR);
reg_writeq(output_address_phy, REG_CONV_RESULT_BASE_ADDR);
reg_writeq(
((uint64_t)args.image.height) | (((uint64_t)args.image.width) << 32),
REG_CONV_IMAGE_PIXEL);
reg_writeq(
((uint64_t)args.kernel.height) | (((uint64_t)args.kernel.width) << 32),
REG_CONV_FILTER_PIXEL);
reg_writeq(output_height | (output_width << 32), REG_CONV_RESULT_PIXEL);
reg_writeq(args.driver.output_height | (args.driver.output_width << 32),
REG_CONV_RESULT_PIXEL);
reg_writeq(((uint64_t)args.image.pad_height) |
(((uint64_t)args.image.pad_width) << 32),
REG_CONV_PAD_PIXEL);
reg_writeq(((uint64_t)args.kernel.stride_h) |
(((uint64_t)args.kernel.stride_w) << 32),
REG_CONV_STEP_PIXEL);
reg_writeq((uint64_t)args.group_num, REG_CONV_GROUP_NUMBER);
reg_writeq((uint64_t)args.filter_num, REG_CONV_FILTER_NUMBER);
reg_writeq((uint64_t)args.image.channels, REG_CONV_CHANNEL_NUMBER);
reg_writeq(*(uint64_t *)args.image.scale_address, REG_CONV_IMAGE_SCALE);
reg_writeq(*(uint64_t *)args.filter_scale_address, REG_CONV_FILTER_SCALE);
reg_writeq(args.driver.image_address_phy, REG_CONV_IMAGE_BASE_ADDR);
reg_writeq(args.driver.filter_address_phy, REG_CONV_FILTER_BASE_ADDR);
reg_writeq(args.driver.sb_address_phy, REG_CONV_SB_BASE_ADDR);
reg_writeq(args.driver.output_address_phy, REG_CONV_RESULT_BASE_ADDR);
reg_writeq(args.driver.filter_per_group, REG_CONV_FILTER_PER_GROUP);
reg_writeq(args.driver.channel_per_group, REG_CONV_CHANNEL_PER_GROUP);
reg_writeq(args.driver.image_amount_per_row, REG_CONV_IMAGE_AMOUNT_PER_ROW);
reg_writeq(args.driver.image_one_pad_per_row, REG_CONV_IMAGE_ONE_PAD_PER_ROW);
reg_writeq(args.driver.filter_amount_all, REG_CONV_FILTER_AMOUNT_ALL);
reg_writeq(args.driver.output_amount_per_row, REG_CONV_RESULT_AMOUNT_PER_ROW);
reg_writeq(args.driver.image_block_amount_per_row, 0xca8);
reg_writeq(args.driver.filter_pad_width_mul_channel, 0xcb0);
reg_writeq(args.driver.image_amount_per_row_multi_win_first, 0xcb8);
reg_writeq(args.driver.image_amount_per_row_multi_win, 0xcc0);
reg_writeq(args.driver.image_block_num, 0xcc8);
reg_writeq(args.driver.image_block_len, 0xcd0);
reg_writeq(args.driver.image_block_len_last, 0xcd8);
reg_writeq(args.driver.image_win_cnt, 0xce0);
reg_writeq(args.driver.image_win_cnt_last, 0xce8);
reg_writeq(args.driver.res_row_data_align4_pad, 0xcf8);
reg_writeq(args.driver.prog_full_cnt, 0xd08);
reg_writeq(args.driver.post_prog_full_cnt, 0xd10);
reg_writeq(args.driver.fpga_bias_scale_len / 4, 0xd20);
reg_writeq(args.driver.cmd, REG_CONV_CMD);
reg_writeq(filter_per_group, REG_CONV_FILTER_PER_GROUP);
reg_writeq(channel_per_group, REG_CONV_CHANNEL_PER_GROUP);
reg_writeq(image_amount_per_row, REG_CONV_IMAGE_AMOUNT_PER_ROW);
reg_writeq(image_one_pad_per_row, REG_CONV_IMAGE_ONE_PAD_PER_ROW);
reg_writeq(filter_amount_all, REG_CONV_FILTER_AMOUNT_ALL);
reg_writeq(output_amount_per_row, REG_CONV_RESULT_AMOUNT_PER_ROW);
reg_writeq(image_block_amount_per_row, 0xca8);
reg_writeq(filter_pad_width_mul_channel, 0xcb0);
reg_writeq(image_amount_per_row_multi_win_first, 0xcb8);
reg_writeq(image_amount_per_row_multi_win, 0xcc0);
reg_writeq(image_block_num, 0xcc8);
reg_writeq(image_block_len, 0xcd0);
reg_writeq(image_block_len_last, 0xcd8);
reg_writeq(image_win_cnt, 0xce0);
reg_writeq(image_win_cnt_last, 0xce8);
reg_writeq(res_row_data_align4_pad, 0xcf8);
reg_writeq(prog_full_cnt, 0xd08);
reg_writeq(post_prog_full_cnt, 0xd10);
reg_writeq(fpga_bias_scale_len / 4, 0xd20);
/*write scale*/
reg_writeq(image_scale, REG_CONV_IMAGE_SCALE);
reg_writeq(filter_scale, REG_CONV_FILTER_SCALE);
reg_writeq(cmd, REG_CONV_CMD);
DLOG << "before reg poll";
if (0 != fpga_regpoll(REG_INTERRUPT, INTERRUPT_CONV, PE_IRQ_TIMEOUT)) {
g_fpgainfo.pe_data->pes[PE_IDX_CONV]->status = ERROR;
ret = -EIO;
DLOG << "Conv Wait Irq Timeout!";
}
DLOG << "after reg poll";
usleep(40);
/*SDK 无效 Cache保证数据一致性*/
output_scale = reg_readq(REG_SCALE_PARAMETER);
output_scale = (output_scale << 32) | (output_scale >> 32);
fpga_copy(args.output.scale_address, &output_scale, sizeof(float) * 2);
cout << "output_scale :" << hex << (output_scale) << endl;
//*(args.output.scale_address) = output_scale;
pthread_mutex_unlock(&g_fpgainfo.pe_data->mutex);
return ret;
......@@ -575,9 +538,6 @@ int ComputeFpgaPool(const struct PoolingArgs &args) {
DLOG << "Pooling Wait Irq Timeout!";
}
DLOG << "after reg poll";
usleep(40);
/*SDK 无效 Cache保证数据一致性*/
// *(args.output.scale_address) = reg_readq(REG_SCALE_PARAMETER);
output_scale = reg_readq(REG_SCALE_PARAMETER);
......@@ -615,11 +575,9 @@ int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
<< " out_scale_address:" << args.output.scale_address;
#endif
#ifdef PADDLE_MOBILE_ZU5
DLOG << "Conv";
// return 0;
int ret = 0;
uint64_t output_scale = 0;
uint64_t timer_cnt = 0;
/*uint64_t timer_cnt = 0;
uint64_t image0_address_phy = 0;
uint64_t image1_address_phy = 0;
uint64_t output_address_phy = 0;
......@@ -629,15 +587,6 @@ int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
(uint64_t)args.image0.height *
(uint64_t)args.image0.channels;
uint64_t coefficient = (uint64_t)args.const0 << 32 | (uint64_t)args.const1;
pthread_mutex_lock(&g_fpgainfo.pe_data->mutex);
if (ERROR == g_fpgainfo.pe_data->pes[PE_IDX_POOLING]->status) {
ret = -EIO;
DLOG << "Conv Status Error!";
pthread_mutex_unlock(&g_fpgainfo.pe_data->mutex);
return ret;
}
image0_address_phy = vaddr_to_paddr(args.image0.address);
image1_address_phy = vaddr_to_paddr(args.image1.address);
output_address_phy = vaddr_to_paddr(args.output.address);
......@@ -647,36 +596,35 @@ int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
IMAGE_ALIGN);
uint64_t image_image_pixel = ((uint64_t)args.image0.channels << 32) |
((uint64_t)args.image0.width << 16) |
(uint64_t)args.image0.height;
(uint64_t)args.image0.height;*/
/*SDK刷Cache保证数据一致性*/
pthread_mutex_lock(&g_fpgainfo.pe_data->mutex);
if (ERROR == g_fpgainfo.pe_data->pes[PE_IDX_EW]->status) {
ret = -EIO;
DLOG << "EW Status Error!";
pthread_mutex_unlock(&g_fpgainfo.pe_data->mutex);
return ret;
}
/*restart scale*/
reg_writeq(output_scale, REG_SCALE_PARAMETER);
reg_writeq(image0_address_phy, REG_EW_IMAGE0_BASE_ADDR);
reg_writeq(image1_address_phy, REG_EW_IMAGE1_BASE_ADDR);
reg_writeq(datalen, REG_EW_DATA_LEN);
reg_writeq(image_image_pixel, REG_EW_IMAGE_PIXEL);
reg_writeq(image_amount_per_row, REG_EW_IMAGE_AMOUNT_PER_ROW);
reg_writeq(output_address_phy, REG_EW_RESULT_BASE_ADDR);
reg_writeq(coefficient, REG_EW_COEFFICIENT);
reg_writeq(cmd, REG_EW_CMD);
reg_writeq(args.driver.image0_address_phy, REG_EW_IMAGE0_BASE_ADDR);
reg_writeq(args.driver.image1_address_phy, REG_EW_IMAGE1_BASE_ADDR);
reg_writeq(args.driver.datalen, REG_EW_DATA_LEN);
reg_writeq(args.driver.image_image_pixel, REG_EW_IMAGE_PIXEL);
reg_writeq(args.driver.image_amount_per_row, REG_EW_IMAGE_AMOUNT_PER_ROW);
reg_writeq(args.driver.output_address_phy, REG_EW_RESULT_BASE_ADDR);
reg_writeq(args.driver.coefficient, REG_EW_COEFFICIENT);
reg_writeq(args.driver.cmd, REG_EW_CMD);
if (0 != fpga_regpoll(REG_INTERRUPT, INTERRUPT_POOLING, PE_IRQ_TIMEOUT)) {
g_fpgainfo.pe_data->pes[PE_IDX_POOLING]->status = ERROR;
g_fpgainfo.pe_data->pes[PE_IDX_EW]->status = ERROR;
ret = -EIO;
DLOG << "EW Wait Irq Timeout!";
}
usleep(40);
/*SDK 无效 Cache保证数据一致性*/
output_scale = reg_readq(REG_SCALE_PARAMETER);
output_scale = (output_scale << 32) | (output_scale >> 32);
fpga_copy(args.output.scale_address, &output_scale, sizeof(float) * 2);
//*(args.output.scale_address) = reg_readq(REG_SCALE_PARAMETER);
//*(args.output.timer_cnt) = reg_readq(REG_TIMER_COUNTER);
pthread_mutex_unlock(&g_fpgainfo.pe_data->mutex);
......@@ -802,9 +750,7 @@ int PerformBypass(const struct BypassArgs &args) {
DLOG << "BYPASS Wait Irq Timeout!";
}
DLOG << "after reg poll";
usleep(40);
/*SDK 无效 Cache保证数据一致性*/
output_scale = reg_readq(REG_SCALE_PARAMETER);
output_scale = (output_scale << 32) | (output_scale >> 32);
fpga_copy(args.output.scale_address, &output_scale, sizeof(float) * 2);
......@@ -883,8 +829,9 @@ void deconv_post_process(half **data_in, int sub_conv_n, int num, int channel,
*data_in = ptr_deconv;
fpga_free(ptr_tmp);
}
int ComputeFpgaDeconv(const struct DeconvArgs &args) {
#ifdef FPGA_TEST_MODE
#ifdef FPGA_PRINT_MODE
DLOG << "=============ComputeFPGADeConv===========";
DLOG << " filter_num:" << args.filter_num
<< " group_num:" << args.group_num
......
......@@ -146,11 +146,11 @@ int format_conv_data(framework::Tensor *filter_tensor,
}
int format_fc_data(framework::Tensor *filter_tensor,
framework::Tensor *ofm_tensor, float *bs_ptr) {
framework::Tensor *ofm_tensor, float **bs_ptr) {
float max_value = fpga::filter_find_max(filter_tensor);
fpga::format_fc_filter(filter_tensor, max_value);
int aligned_num = get_aligned_filter_num(filter_tensor);
fpga::format_bias_scale_array(&bs_ptr,
fpga::format_bias_scale_array(bs_ptr,
(int)filter_tensor->dims()[0], // NOLINT
aligned_num);
int aligned_channel = fpga::get_conv_output_channel(filter_tensor);
......@@ -214,7 +214,7 @@ void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
arg->conv_arg[i].output.scale_address = out->scale;
int num_after_alignment = filter::calc_aligned_num(
(int)input->dims()[1], arg->filter_num); // NOLINT
arg->filter_num, (int)input->dims()[1]); // NOLINT
arg->conv_arg[i].free_space =
fpga_malloc(num_after_alignment * 2 * sizeof(half));
}
......
......@@ -41,7 +41,7 @@ void format_concat_output(framework::Tensor* out, int height, int width,
int format_conv_data(framework::Tensor* filter_tensor,
framework::Tensor* ofm_tensor, float** bs_ptr, int group);
int format_fc_data(framework::Tensor* filter_tensor,
framework::Tensor* ofm_tensor, float* bs_ptr);
framework::Tensor* ofm_tensor, float** bs_ptr);
void fill_split_arg(struct SplitConvArgs* arg, framework::Tensor* input,
framework::Tensor* out, framework::Tensor* filter,
bool relu_enabled, int group_num, int stride_h,
......
......@@ -137,8 +137,6 @@ int fpga_regpoll(uint64_t reg, uint64_t val, int time) {
for (i = 0; i < timeout; i++) {
if (val == reg_readq(reg)) {
std::cout << "fpga_regpoll:" << i << "val:" << val << "reg:" << reg
<< std::endl;
break;
}
}
......@@ -401,8 +399,6 @@ void fpga_copy_driver(void *dest, const void *src, size_t num) {
DLOG << "dest:" << dest << " src:" << src << " size:" << num;
for (i = 0; i < num; i++) {
// DLOG << "i:" << i << " val:" << *((int8_t *)src + i);
// usleep(1);
*((int8_t *)dest + i) = *((int8_t *)src + i); // NOLINT
}
......
......@@ -103,22 +103,15 @@ struct FPGA_INFO {
extern struct FPGA_INFO g_fpgainfo;
inline uint64_t reg_readq(uint32_t offset) {
// DLOG << "offset : " << offset;
uint64_t value =
*(volatile uint64_t *)((uint8_t *)g_fpgainfo.FpgaRegVirAddr + // NOLINT
offset); // NOLINT
// DLOG << "read end";
usleep(10);
return value;
}
inline void reg_writeq(uint64_t value, uint32_t offset) {
// DLOG << "offset : " << offset << ", value : " << value;
*(volatile uint64_t *)((uint8_t *)g_fpgainfo.FpgaRegVirAddr + // NOLINT
offset) = value;
// DLOG << "write end";
usleep(10);
}
int open_device_driver();
......
......@@ -92,7 +92,8 @@ void fpga_free(void *ptr) {
}
void fpga_copy(void *dest, const void *src, size_t num) {
#ifdef PADDLE_MOBILE_ZU5
driver::fpga_copy_driver(dest, src, num);
// driver::fpga_copy_driver(dest, src, num);
memcpy(dest, src, num);
#else
memcpy(dest, src, num);
#endif
......
......@@ -20,6 +20,13 @@ limitations under the License. */
namespace paddle_mobile {
namespace fpga {
#ifdef PADDLE_MOBILE_FPGA_V1
#define IMAGE_ALIGNMENT 16 // Aligned to 16
#define FILTER_NUM_ALIGNMENT 32 // Filter number aligned to 32
#define FILTER_ELEMENT_ALIGNMENT 16 // Filter element number aligned to 16
#define BS_NUM_ALIGNMENT 8
#endif
enum DataType {
DATA_TYPE_FP32 = 1,
DATA_TYPE_FP16 = 0,
......@@ -52,19 +59,70 @@ struct ImageOutputArgs {
float* scale_address; // output scale address;
uint64_t timer_cnt; // time counter for FPGA computation
};
#ifdef PADDLE_MOBILE_FPGA_V1
struct ConvDriverParam {
uint64_t image_address_phy;
uint64_t filter_address_phy;
uint64_t sb_address_phy;
uint64_t output_address_phy;
uint64_t output_height;
uint64_t output_width;
uint64_t filter_per_group;
uint64_t channel_per_group;
uint64_t image_amount_per_row;
uint64_t image_one_pad_per_row;
uint64_t filter_amount_all;
uint64_t output_amount_per_row;
uint64_t image_block_amount_per_row;
uint64_t filter_pad_width_mul_channel;
uint64_t image_amount_per_row_multi_win_first;
uint64_t image_amount_per_row_multi_win;
uint64_t image_block_num;
uint64_t image_block_len;
uint64_t image_block_len_last;
uint64_t image_win_cnt;
uint64_t image_win_cnt_last;
uint64_t res_row_data_align4_pad;
uint64_t prog_full_cnt;
uint64_t post_prog_full_cnt;
uint64_t fpga_bias_scale_len;
uint64_t cmd;
};
struct EWAddDriverParam {
uint64_t image0_address_phy;
uint64_t image1_address_phy;
uint64_t datalen;
uint64_t image_image_pixel;
uint64_t image_amount_per_row;
uint64_t output_address_phy;
uint64_t coefficient;
uint64_t cmd;
};
#endif
struct ConvArgs {
bool relu_enabled;
void* sb_address; // scale and bias
void* filter_address;
float* filter_scale_address;
void* free_space; // used by FPGA logic
uint32_t filter_num;
uint32_t group_num;
struct KernelArgs kernel;
struct ImageInputArgs image; // input image;
struct ImageOutputArgs output;
#ifdef PADDLE_MOBILE_FPGA_V2
void* free_space; // used by FPGA logic
#endif
#ifdef PADDLE_MOBILE_FPGA_V1
struct ConvDriverParam driver;
#endif
};
struct ConcatArgs {
......@@ -115,6 +173,9 @@ struct EWAddArgs {
struct ImageInputArgs image0;
struct ImageInputArgs image1;
struct ImageOutputArgs output;
#ifdef PADDLE_MOBILE_FPGA_V1
struct EWAddDriverParam driver;
#endif
};
struct BypassArgs {
......@@ -150,5 +211,9 @@ void fpga_copy(void* dest, const void* src, size_t num);
int fpga_flush(void* address, size_t size);
int fpga_invalidate(void* address, size_t size);
uint64_t vaddr_to_paddr(void* address);
void expand_conv_arg(ConvArgs* arg);
void expand_EW_arg(EWAddArgs* arg);
} // namespace fpga
} // namespace paddle_mobile
......@@ -26,6 +26,7 @@ int ComputeFpgaEWAdd(const struct EWAddArgs& args);
int ComputeFpgaConv(const struct SplitConvArgs& args);
int ComputeFPGAConcat(const struct ConcatArgs& args);
int ComputeFPGASplit(const struct SplitArgs& args);
int ComputeFpgaDeconv(const struct DeconvArgs& args);
} // namespace fpga
} // namespace paddle_mobile
......@@ -19,10 +19,12 @@ limitations under the License. */
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
#endif
namespace paddle_mobile {
namespace operators {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#ifndef __aarch64__
inline float32_t vmaxvq_f32(float32x4_t r) {
float32x2_t v = vmax_f32(vget_high_f32(r), vget_low_f32(r));
......
......@@ -49,6 +49,7 @@ bool ElementwiseAddKernel<FPGA, float>::Init(ElementwiseAddParam<FPGA> *param) {
ewaddArgs.image1.pad_width = 0;
ewaddArgs.output.scale_address = out->scale;
ewaddArgs.output.address = out_ptr;
fpga::expand_EW_arg(&ewaddArgs);
param->SetFpgaArgs(ewaddArgs);
return true;
}
......
......@@ -50,6 +50,7 @@ bool ElementwiseAddReluKernel<FPGA, float>::Init(
ewaddArgs.image1.pad_width = 0;
ewaddArgs.output.scale_address = out->scale;
ewaddArgs.output.address = out_ptr;
fpga::expand_EW_arg(&ewaddArgs);
param->SetFpgaArgs(ewaddArgs);
return true;
}
......
......@@ -24,8 +24,12 @@ template <>
bool SoftmaxKernel<FPGA, float>::Init(SoftmaxParam<FPGA> *param) {
auto input = const_cast<Tensor *>(param->InputX());
auto input_ptr = input->data<float>();
auto out = param->Out();
fpga::format_fp32_ofm(out);
auto float_input = new Tensor;
float_input->mutable_data<float>({1, input->dims()[1]});
float_input->mutable_data<float>(
{1, input->dims()[2], input->dims()[3], input->dims()[1]});
fpga::format_fp32_ofm(float_input);
fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
......@@ -34,8 +38,8 @@ bool SoftmaxKernel<FPGA, float>::Init(SoftmaxParam<FPGA> *param) {
args.input_data_type = fpga::DATA_TYPE_FP16;
args.output_data_type = fpga::DATA_TYPE_FP32;
args.image.address = input_ptr;
args.image.height = 1;
args.image.width = 1;
args.image.height = (uint32_t)input->dims()[2];
args.image.width = (uint32_t)input->dims()[3];
args.image.channels = (uint32_t)input->dims()[1];
args.output.address = float_input->data<float>();
args.output.scale_address = float_input->scale;
......@@ -50,9 +54,9 @@ void SoftmaxKernel<FPGA, float>::Compute(const SoftmaxParam<FPGA> &param) {
Tensor *out = param.Out();
fpga::PerformBypass(param.FpgaArgs());
fpga::fpga_invalidate(
(void *)in_x->data<float>(), // NOLINT
fpga::get_align_image_cw(in_x->dims()[1]) * sizeof(float));
fpga::fpga_invalidate((void *)in_x->data<float>(), // NOLINT
in_x->numel() * sizeof(float));
// TODO: In general case, 0 should be squeezed before softmax input
math::SoftmaxFuntor<CPU, float>()(in_x, out);
fpga::fpga_flush(out->data<float>(), out->memory_size());
}
......
......@@ -21,7 +21,7 @@ namespace operators {
template <>
bool ElementwiseAddReluKernel<FPGA, float>::Init(
ElementwiseAddReluParam<FPGA> *param) {
bool relu_enabled = false;
bool relu_enabled = true;
auto *input_x = const_cast<LoDTensor *>(param->InputX());
auto *input_y = const_cast<LoDTensor *>(param->InputY());
auto *out = param->Out();
......
......@@ -47,7 +47,7 @@ bool FusionFcKernel<FPGA, float>::Init(FusionFcParam<FPGA> *param) {
out->Resize(framework::make_ddim({1, channel, 1, 1}));
filter->Resize(framework::make_ddim({num, filter_channel, height, width}));
fpga::format_fc_data(filter, out, bs_ptr);
fpga::format_fc_data(filter, out, &bs_ptr);
fpga::SplitConvArgs conv_arg = {0};
fpga::fill_split_arg(&conv_arg, input_x, out, filter, relu_enabled, 1, 1, 1,
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#if defined(__ARM_NEON__) && defined(__aarch64__)
#include "operators/math/depthwise_conv3x3.h"
#ifdef __ARM_NEON__
#include <arm_neon.h>
#endif
namespace paddle_mobile {
namespace operators {
namespace math {
// template<>
// void DepthwiseConv3x3<int8_t, int32_t>(
// const framework::Tensor *input, const framework::Tensor *filter,
// const std::vector<int> &strides, framework::Tensor *output) {
// PADDLE_MOBILE_THROW_EXCEPTION(
// "Depthwise conv with generic strides has not been implemented.");
// }
template <>
void DepthwiseConv3x3S1<int8_t, int32_t>(const framework::Tensor &input,
const framework::Tensor &filter,
const std::vector<int> &paddings,
framework::Tensor *output) {
PADDLE_MOBILE_THROW_EXCEPTION(
"Depthwise conv3x3 with stride 1 for arm v8 has not been implemented.");
}
template <>
void DepthwiseConv3x3S2<int8_t, int32_t>(const framework::Tensor &input,
const framework::Tensor &filter,
const std::vector<int> &paddings,
framework::Tensor *output) {
PADDLE_MOBILE_THROW_EXCEPTION(
"Depthwise conv3x3 with stride 2 for arm v8 has not been implemented.");
}
} // namespace math
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// Inspired by https://arxiv.org/abs/1509.09308 and refered from nnpack and ncnn
// project.
#ifdef CONV_OP
#ifdef __aarch64__
#include "operators/math/pad.h"
#include "operators/math/winograd/winograd_transform.h"
namespace paddle_mobile {
namespace operators {
namespace math {
template <>
void winograd_transform_weight<8, 3>(const framework::Tensor &weight,
framework::Tensor *output) {
/*
* w0 = g0
* w1 = ((g0 + g2) + g1) * (-2.0 / 9)
* w2 = ((g0 + g2) - g1) * (-2.0 / 9)
* w3 = ((g0 + 4 * g2) + 2 * g1) * (1.0 / 90)
* w4 = ((g0 + 4 * g2) - 2 * g1) * (1.0 / 90)
* w5 = ((g2 + 4 * g0) + 2 * g1) * (1.0 / 180)
* w6 = ((g2 + 4 * g0) - 2 * g1) * (1.0 / 180)
* w7 = g2
*/
// TODO(hjchen2)
PADDLE_MOBILE_THROW_EXCEPTION(
"Winograd for arm v8 has not been implemented.");
}
template <>
void winograd_transform_input<8, 3>(const framework::Tensor &input,
framework::Tensor *output) {
/*
* x0 = (d0 - d6) + (d4 - d2) * 5.25
* x1 = (d2 + d6) - 4.25 * (d4 + d3) + (d1 + d5)
* x2 = (d2 + d6) - 4.25 * (d4 - d3) - (d1 + d5)
* x3 = (0.25 * d2 - 1.25 * d4 + d6) + (0.5 * d1 - 2.5 * d3 + 2 * d5)
* x4 = (0.25 * d2 - 1.25 * d4 + d6) - (0.5 * d1 - 2.5 * d3 + 2 * d5)
* x5 = (4 * d2 - 5 * d4 + d6) + (2 * d1 - 2.5 * d3 + 0.5 * d5)
* x6 = (4 * d2 - 5 * d4 + d6) - (2 * d1 - 2.5 * d3 + 0.5 * d5)
* x7 = (d7 - d1) + (d3 - d5) * 5.25
*/
// TODO(hjchen2)
PADDLE_MOBILE_THROW_EXCEPTION(
"Winograd for arm v8 has not been implemented.");
}
template <>
void winograd_transform_output<8, 3>(const framework::Tensor &input,
const framework::Tensor &weight,
framework::Tensor *output) {
// TODO(hjchen2)
PADDLE_MOBILE_THROW_EXCEPTION(
"Winograd for arm v8 has not been implemented.");
}
} // namespace math
} // namespace operators
} // namespace paddle_mobile
#endif // __aarch64__
#endif // CONV_OP
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册