Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
94e89540
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
94e89540
编写于
12月 03, 2018
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Optimize int8 depthwise conv
上级
b1ca620b
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
447 addition
and
95 deletion
+447
-95
src/operators/kernel/arm/quantize_kernel.cpp
src/operators/kernel/arm/quantize_kernel.cpp
+2
-2
src/operators/kernel/central-arm-func/conv_arm_func.h
src/operators/kernel/central-arm-func/conv_arm_func.h
+2
-2
src/operators/math/depthwise_conv3x3.h
src/operators/math/depthwise_conv3x3.h
+2
-2
src/operators/math/depthwise_conv3x3_int8.cpp
src/operators/math/depthwise_conv3x3_int8.cpp
+441
-89
未找到文件。
src/operators/kernel/arm/quantize_kernel.cpp
浏览文件 @
94e89540
...
...
@@ -88,8 +88,8 @@ template <>
inline
int8_t
Round
<
ROUND_NEAREST_TO_EVEN
>
(
const
float
&
x
)
{
float
v
=
std
::
round
(
x
);
int32_t
q
=
static_cast
<
int32_t
>
(
v
);
if
(
abs
(
abs
(
q
-
v
)
-
0.5
)
<=
0
)
{
if
(
abs
(
q
)
%
2
!=
0
)
{
if
(
std
::
abs
(
std
::
abs
(
q
-
v
)
-
0.5
)
<=
0
)
{
if
(
std
::
abs
(
q
)
%
2
!=
0
)
{
q
=
q
+
((
q
>
0
)
?
-
1
:
1
);
}
}
...
...
src/operators/kernel/central-arm-func/conv_arm_func.h
浏览文件 @
94e89540
...
...
@@ -180,10 +180,10 @@ inline void DepthwiseConv3x3(const ConvParam<CPU> ¶m) {
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
);
if
(
strides
[
0
]
==
1
)
{
math
::
DepthwiseConv3x3
s
1
<
Itype
,
Otype
>
(
in_batch
,
*
filter
,
paddings
,
math
::
DepthwiseConv3x3
S
1
<
Itype
,
Otype
>
(
in_batch
,
*
filter
,
paddings
,
&
out_batch
);
}
else
if
(
strides
[
0
]
==
2
)
{
math
::
DepthwiseConv3x3
s
2
<
Itype
,
Otype
>
(
in_batch
,
*
filter
,
paddings
,
math
::
DepthwiseConv3x3
S
2
<
Itype
,
Otype
>
(
in_batch
,
*
filter
,
paddings
,
&
out_batch
);
}
else
{
// math::DepthwiseConv3x3<Itype, Otype>(input_pad, *filter,
...
...
src/operators/math/depthwise_conv3x3.h
浏览文件 @
94e89540
...
...
@@ -74,13 +74,13 @@ void DepthwiseConv3x3s2p0(const framework::Tensor *input,
// framework::Tensor *output);
template
<
typename
Itype
,
typename
Otype
>
void
DepthwiseConv3x3
s
1
(
const
framework
::
Tensor
&
input
,
void
DepthwiseConv3x3
S
1
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
filter
,
const
std
::
vector
<
int
>
&
paddings
,
framework
::
Tensor
*
output
);
template
<
typename
Itype
,
typename
Otype
>
void
DepthwiseConv3x3
s
2
(
const
framework
::
Tensor
&
input
,
void
DepthwiseConv3x3
S
2
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
filter
,
const
std
::
vector
<
int
>
&
paddings
,
framework
::
Tensor
*
output
);
...
...
src/operators/math/depthwise_conv3x3_int8.cpp
浏览文件 @
94e89540
...
...
@@ -12,12 +12,300 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#if defined(__ARM_NEON__) && !defined(__aarch64__)
#include "operators/math/depthwise_conv3x3.h"
#ifdef __ARM_NEON__
#include <arm_neon.h>
#endif
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
template
<
int
Stride
>
inline
void
Depth3x3ValidColLoadInput
(
const
int8_t
*
input
,
const
int
input_w
,
const
int
valid_cols
,
int16x8_t
*
y0
,
int16x8_t
*
y1
,
int16x8_t
*
y2
)
{
PADDLE_MOBILE_THROW_EXCEPTION
(
"Stride %d is not supported."
,
Stride
);
}
template
<
>
inline
void
Depth3x3ValidColLoadInput
<
1
>
(
const
int8_t
*
input
,
const
int
input_w
,
const
int
valid_cols
,
int16x8_t
*
y0
,
int16x8_t
*
y1
,
int16x8_t
*
y2
)
{
int8_t
fake_input
[
3
][
8
];
if
(
valid_cols
==
1
)
{
for
(
int
i
=
0
;
i
<
8
;
++
i
,
input
+=
input_w
)
{
fake_input
[
0
][
i
]
=
input
[
0
];
}
}
else
if
(
valid_cols
==
2
)
{
for
(
int
i
=
0
;
i
<
8
;
++
i
,
input
+=
input_w
)
{
fake_input
[
0
][
i
]
=
input
[
0
];
fake_input
[
1
][
i
]
=
input
[
1
];
}
}
else
{
for
(
int
i
=
0
;
i
<
8
;
++
i
,
input
+=
input_w
)
{
fake_input
[
0
][
i
]
=
input
[
0
];
fake_input
[
1
][
i
]
=
input
[
1
];
fake_input
[
2
][
i
]
=
input
[
2
];
}
}
int8x8_t
input0
=
vld1_s8
(
fake_input
[
0
]);
int8x8_t
input1
=
vld1_s8
(
fake_input
[
1
]);
int8x8_t
input2
=
vld1_s8
(
fake_input
[
2
]);
y0
[
0
]
=
vmovl_s8
(
input0
);
y1
[
0
]
=
vmovl_s8
(
input1
);
y2
[
0
]
=
vmovl_s8
(
input2
);
y0
[
1
]
=
vextq_s16
(
y0
[
0
],
y0
[
0
],
1
);
y0
[
2
]
=
vextq_s16
(
y0
[
0
],
y0
[
0
],
2
);
y1
[
1
]
=
vextq_s16
(
y1
[
0
],
y1
[
0
],
1
);
y1
[
2
]
=
vextq_s16
(
y1
[
0
],
y1
[
0
],
2
);
y2
[
1
]
=
vextq_s16
(
y2
[
0
],
y2
[
0
],
1
);
y2
[
2
]
=
vextq_s16
(
y2
[
0
],
y2
[
0
],
2
);
}
template
<
>
inline
void
Depth3x3ValidColLoadInput
<
2
>
(
const
int8_t
*
input
,
const
int
input_w
,
const
int
valid_cols
,
int16x8_t
*
y0
,
int16x8_t
*
y1
,
int16x8_t
*
y2
)
{
int8_t
fake_input
[
3
][
13
];
if
(
valid_cols
==
1
)
{
for
(
int
i
=
0
;
i
<
13
;
++
i
,
input
+=
input_w
)
{
fake_input
[
0
][
i
]
=
input
[
0
];
}
}
else
if
(
valid_cols
==
2
)
{
for
(
int
i
=
0
;
i
<
13
;
++
i
,
input
+=
input_w
)
{
fake_input
[
0
][
i
]
=
input
[
0
];
fake_input
[
1
][
i
]
=
input
[
1
];
}
}
else
{
for
(
int
i
=
0
;
i
<
13
;
++
i
,
input
+=
input_w
)
{
fake_input
[
0
][
i
]
=
input
[
0
];
fake_input
[
1
][
i
]
=
input
[
1
];
fake_input
[
2
][
i
]
=
input
[
2
];
}
}
int8x8x2_t
input0
=
vld2_s8
(
fake_input
[
0
]);
int8x8x2_t
input1
=
vld2_s8
(
fake_input
[
1
]);
int8x8x2_t
input2
=
vld2_s8
(
fake_input
[
2
]);
y0
[
0
]
=
vmovl_s8
(
input0
.
val
[
0
]);
y0
[
1
]
=
vmovl_s8
(
input0
.
val
[
1
]);
y0
[
2
]
=
vextq_s16
(
y0
[
0
],
y0
[
0
],
1
);
y1
[
0
]
=
vmovl_s8
(
input1
.
val
[
0
]);
y1
[
1
]
=
vmovl_s8
(
input1
.
val
[
1
]);
y1
[
2
]
=
vextq_s16
(
y1
[
0
],
y1
[
0
],
1
);
y2
[
0
]
=
vmovl_s8
(
input2
.
val
[
0
]);
y2
[
1
]
=
vmovl_s8
(
input2
.
val
[
1
]);
y2
[
2
]
=
vextq_s16
(
y2
[
0
],
y2
[
0
],
1
);
}
template
<
int
Stride_h
,
int
Stride_w
>
inline
void
DepthwiseConv3x3ValidCol
(
const
int8_t
*
input
,
const
int8_t
*
filter
,
const
int
h_output
,
const
int
h_output_end
,
const
int
w_output
,
const
int
input_h
,
const
int
input_w
,
const
int
padding_h
,
const
int
padding_w
,
const
int
output_w
,
int32_t
*
output
)
{
const
int
w_in_start
=
-
padding_w
+
w_output
*
Stride_w
;
const
int
w_in_end
=
w_in_start
+
3
;
const
int
w_start
=
w_in_start
>
0
?
w_in_start
:
0
;
const
int
w_end
=
w_in_end
<
input_w
?
w_in_end
:
input_w
;
int
remain_start
=
h_output
;
#ifdef __ARM_NEON__
int
output_tiles
=
(
h_output_end
-
h_output
)
/
6
;
remain_start
=
h_output
+
output_tiles
*
6
;
int
input_h_start
=
h_output
*
Stride_h
-
padding_h
;
size_t
input_offset
=
input_h_start
*
input_w
+
w_start
;
size_t
output_offset
=
h_output
*
output_w
+
w_output
;
int16x8_t
_input
[
3
][
3
];
int16x4_t
_kernel
[
3
];
int32x4_t
_sum0
,
_sum1
;
const
int8_t
*
filter_ptr
=
filter
;
asm
volatile
(
"mov r0, #3
\n
"
"vld1.s8 d10, [%[filter]], r0
\n
"
"vld1.s8 d11, [%[filter]], r0
\n
"
"vld1.s8 d12, [%[filter]]
\n
"
"vtrn.8 d10, d11
\n
"
"vtrn.8 d12, d13
\n
"
"vtrn.16 d10, d12
\n
"
"vtrn.16 d11, d13
\n
"
"vmovl.s8 q7, d10
\n
"
"vmovl.s8 q8, d11
\n
"
"vmovl.s8 q9, d12
\n
"
"vmov.32 %[_kernel0], d14
\n
"
"vmov.32 %[_kernel1], d16
\n
"
"vmov.32 %[_kernel2], d18
\n
"
:
[
_kernel0
]
"+w"
(
_kernel
[
0
]),
[
_kernel1
]
"+w"
(
_kernel
[
1
]),
[
_kernel2
]
"+w"
(
_kernel
[
2
])
:
[
filter
]
"r"
(
filter_ptr
)
:
"memory"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"r0"
);
int
valid_cols
=
w_end
-
w_start
;
for
(
int
h
=
0
;
h
<
output_tiles
*
6
;
h
+=
6
)
{
int32_t
*
output0
=
output
+
output_offset
;
int32_t
*
output1
=
output0
+
output_w
;
int32_t
*
output2
=
output1
+
output_w
;
int32_t
*
output3
=
output2
+
output_w
;
int32_t
*
output4
=
output3
+
output_w
;
int32_t
*
output5
=
output4
+
output_w
;
Depth3x3ValidColLoadInput
<
Stride_w
>
(
input
+
input_offset
,
input_w
,
valid_cols
,
_input
[
0
],
_input
[
1
],
_input
[
2
]);
_sum0
=
veorq_s32
(
_sum0
,
_sum0
);
_sum1
=
veorq_s32
(
_sum1
,
_sum1
);
for
(
int
w_in
=
0
;
w_in
<
valid_cols
;
++
w_in
)
{
int
index
=
w_in
+
w_start
-
w_in_start
;
_sum0
=
vmlal_lane_s16
(
_sum0
,
vget_low_s16
(
_input
[
w_in
][
0
]),
_kernel
[
index
],
0
);
_sum0
=
vmlal_lane_s16
(
_sum0
,
vget_low_s16
(
_input
[
w_in
][
1
]),
_kernel
[
index
],
1
);
_sum0
=
vmlal_lane_s16
(
_sum0
,
vget_low_s16
(
_input
[
w_in
][
2
]),
_kernel
[
index
],
2
);
_sum1
=
vmlal_lane_s16
(
_sum1
,
vget_high_s16
(
_input
[
w_in
][
0
]),
_kernel
[
index
],
0
);
_sum1
=
vmlal_lane_s16
(
_sum1
,
vget_high_s16
(
_input
[
w_in
][
1
]),
_kernel
[
index
],
1
);
_sum1
=
vmlal_lane_s16
(
_sum1
,
vget_high_s16
(
_input
[
w_in
][
2
]),
_kernel
[
index
],
2
);
}
vst1q_lane_s32
(
output0
,
_sum0
,
0
);
vst1q_lane_s32
(
output1
,
_sum0
,
1
);
vst1q_lane_s32
(
output2
,
_sum0
,
2
);
vst1q_lane_s32
(
output3
,
_sum0
,
3
);
vst1q_lane_s32
(
output4
,
_sum1
,
0
);
vst1q_lane_s32
(
output5
,
_sum1
,
1
);
input_offset
+=
6
*
Stride_h
*
input_w
;
output_offset
+=
6
*
output_w
;
}
#endif
for
(
int
h
=
remain_start
;
h
<
h_output_end
;
++
h
)
{
int32_t
value
=
0
;
const
int
h_in_start
=
-
padding_h
+
h
*
Stride_h
;
for
(
int
i
=
0
;
i
<
3
;
++
i
)
{
for
(
int
w_in
=
w_start
;
w_in
<
w_end
;
++
w_in
)
{
value
+=
filter
[
i
*
3
+
(
w_in
-
w_in_start
)]
*
input
[(
h_in_start
+
i
)
*
input_w
+
w_in
];
}
}
output
[
h
*
output_w
+
w_output
]
=
value
;
}
}
#define DEPTHWISE_CONV_NORMAL_BORDER(start, end) \
for (int w = start; w < end; ++w) { \
const int w_in_start = -padding_w + w * Stride_w; \
const int w_in_end = w_in_start + 3; \
const int w_start = w_in_start > 0 ? w_in_start : 0; \
const int w_end = w_in_end < input_w ? w_in_end : input_w; \
int32_t value = 0; \
for (int h_in = h_start; h_in < h_end; ++h_in) { \
for (int w_in = w_start; w_in < w_end; ++w_in) { \
value += filter[(h_in - h_in_start) * 3 + (w_in - w_in_start)] * \
input[h_in * input_w + w_in]; \
} \
} \
output_ptr[w] = value; \
}
template
<
int
Stride
>
inline
void
Depth3x3NormalRowLoadInput
(
const
int8_t
*
input
,
int16x8_t
&
y0
,
// NOLINT
int16x8_t
&
y1
,
// NOLINT
int16x8_t
&
y2
)
{
// NOLINT
PADDLE_MOBILE_THROW_EXCEPTION
(
"Stride %d is not supported."
,
Stride
);
}
template
<
>
inline
void
Depth3x3NormalRowLoadInput
<
1
>
(
const
int8_t
*
input
,
int16x8_t
&
y0
,
// NOLINT
int16x8_t
&
y1
,
// NOLINT
int16x8_t
&
y2
)
{
// NOLINT
int8x8_t
x0
=
vld1_s8
(
input
);
y0
=
vmovl_s8
(
x0
);
y1
=
vextq_s16
(
y0
,
y0
,
1
);
y2
=
vextq_s16
(
y1
,
y1
,
1
);
}
template
<
>
inline
void
Depth3x3NormalRowLoadInput
<
2
>
(
const
int8_t
*
input
,
int16x8_t
&
y0
,
// NOLINT
int16x8_t
&
y1
,
// NOLINT
int16x8_t
&
y2
)
{
// NOLINT
int8x8x2_t
x0
=
vld2_s8
(
input
);
y0
=
vmovl_s8
(
x0
.
val
[
0
]);
y1
=
vmovl_s8
(
x0
.
val
[
1
]);
y2
=
vextq_s16
(
y0
,
y0
,
1
);
}
template
<
int
Stride_h
,
int
Stride_w
>
inline
void
DepthwiseConv3x3NormalRow
(
const
int8_t
*
input
,
const
int8_t
*
filter
,
const
int
h_output
,
const
int
input_h
,
const
int
input_w
,
const
int
padding_h
,
const
int
padding_w
,
const
int
output_w
,
int32_t
*
output
)
{
const
int
h_in_start
=
-
padding_h
+
h_output
*
Stride_h
;
const
int
h_in_end
=
h_in_start
+
3
;
const
int
h_start
=
h_in_start
>
0
?
h_in_start
:
0
;
const
int
h_end
=
h_in_end
<
input_h
?
h_in_end
:
input_h
;
int
valid_w_start
=
(
padding_w
+
Stride_w
-
1
)
/
Stride_w
;
int
valid_w_end
=
output_w
-
valid_w_start
;
int32_t
*
output_ptr
=
output
+
h_output
*
output_w
;
// border left
DEPTHWISE_CONV_NORMAL_BORDER
(
0
,
valid_w_start
)
// middle
int
remain_start
=
valid_w_start
;
#ifdef __ARM_NEON__
int
output_tiles
=
(
valid_w_end
-
valid_w_start
)
/
6
;
remain_start
=
valid_w_start
+
output_tiles
*
6
;
int32x4_t
_sum0
,
_sum1
;
int16x8_t
y0
,
y1
,
y2
;
int16x4_t
_kernel
[
3
];
for
(
int
h_in
=
h_start
;
h_in
<
h_end
;
++
h_in
)
{
int
index
=
h_in
-
h_in_start
;
int8x8_t
w0
=
vld1_s8
(
filter
+
index
*
3
);
int16x8_t
w1
=
vmovl_s8
(
w0
);
_kernel
[
index
]
=
vget_low_s16
(
w1
);
}
for
(
int
w
=
0
;
w
<
output_tiles
*
6
;
w
+=
6
)
{
_sum0
=
veorq_s32
(
_sum0
,
_sum0
);
_sum1
=
veorq_s32
(
_sum1
,
_sum1
);
int
output_offset
=
valid_w_start
+
w
;
int
input_w_offset
=
output_offset
*
Stride_w
-
padding_w
;
for
(
int
h_in
=
h_start
;
h_in
<
h_end
;
++
h_in
)
{
int
index
=
h_in
-
h_in_start
;
Depth3x3NormalRowLoadInput
<
Stride_w
>
(
input
+
h_in
*
input_w
+
input_w_offset
,
y0
,
y1
,
y2
);
_sum0
=
vmlal_lane_s16
(
_sum0
,
vget_low_s16
(
y0
),
_kernel
[
index
],
0
);
_sum0
=
vmlal_lane_s16
(
_sum0
,
vget_low_s16
(
y1
),
_kernel
[
index
],
1
);
_sum0
=
vmlal_lane_s16
(
_sum0
,
vget_low_s16
(
y2
),
_kernel
[
index
],
2
);
_sum1
=
vmlal_lane_s16
(
_sum1
,
vget_high_s16
(
y0
),
_kernel
[
index
],
0
);
_sum1
=
vmlal_lane_s16
(
_sum1
,
vget_high_s16
(
y1
),
_kernel
[
index
],
1
);
_sum1
=
vmlal_lane_s16
(
_sum1
,
vget_high_s16
(
y2
),
_kernel
[
index
],
2
);
}
vst1q_s32
(
output_ptr
+
output_offset
,
_sum0
);
vst1q_lane_s32
(
output_ptr
+
output_offset
+
4
,
_sum1
,
0
);
vst1q_lane_s32
(
output_ptr
+
output_offset
+
5
,
_sum1
,
1
);
}
#endif
for
(
int
w
=
remain_start
;
w
<
valid_w_end
;
++
w
)
{
int32_t
value
=
0
;
int
input_start
=
-
padding_w
+
w
*
Stride_w
;
for
(
int
h_in
=
h_start
;
h_in
<
h_end
;
++
h_in
)
{
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
value
+=
filter
[(
h_in
-
h_in_start
)
*
3
+
j
]
*
input
[
h_in
*
input_w
+
j
+
input_start
];
}
}
output_ptr
[
w
]
=
value
;
}
// border right
DEPTHWISE_CONV_NORMAL_BORDER
(
valid_w_end
,
output_w
)
}
// template<>
// void DepthwiseConv3x3<int8_t, int32_t>(
// const framework::Tensor *input, const framework::Tensor *filter,
...
...
@@ -27,44 +315,72 @@ namespace math {
// }
template
<
>
void
DepthwiseConv3x3
s
1
<
int8_t
,
int32_t
>
(
const
framework
::
Tensor
&
input
,
void
DepthwiseConv3x3
S
1
<
int8_t
,
int32_t
>
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
filter
,
const
std
::
vector
<
int
>
&
paddings
,
framework
::
Tensor
*
output
)
{
const
int8_t
*
input_data
=
input
.
data
<
int8_t
>
();
const
int8_t
*
filter_data
=
filter
.
data
<
int8_t
>
();
int32_t
*
out_data
=
output
->
mutable_data
<
int32_t
>
();
// make sure that batch size is 1
int
input_c
=
input
.
dims
()[
1
];
int
input_h
=
input
.
dims
()[
2
];
int
input_w
=
input
.
dims
()[
3
];
int
output_c
=
output
->
dims
()[
1
];
int
output_h
=
output
->
dims
()[
2
];
int
output_w
=
output
->
dims
()[
3
];
int
padding_h
=
paddings
[
0
];
int
padding_w
=
paddings
[
1
];
int
image_size
=
input_h
*
input_w
;
int
out_image_size
=
output_h
*
output_w
;
#if __aarch64__
// TODO(hjchen2)
#else
int
valid_h_start
=
padding_h
;
int
valid_h_end
=
output_h
-
valid_h_start
;
int
valid_h
=
valid_h_end
-
valid_h_start
;
int
valid_w_start
=
padding_w
;
int
valid_w_end
=
output_w
-
valid_w_start
;
int
valid_w
=
valid_w_end
-
valid_w_start
;
#pragma omp parallel for
for
(
int
g
=
0
;
g
<
input_c
;
++
g
)
{
const
int8_t
*
input_ptr
=
input_data
+
g
*
image_size
;
const
int8_t
*
filter_ptr
=
filter_data
+
g
*
9
;
int32_t
*
output_ptr
=
out_data
+
g
*
out_image_size
;
int
loops
=
(
input_w
-
2
)
/
6
;
int
remain
=
input_w
-
2
-
loops
*
6
;
for
(
int
h
=
0
;
h
<
input_h
-
5
/*(input_h - 2) - 3*/
;
h
+=
4
)
{
const
int8_t
*
input_ptr0
=
input_ptr
+
h
*
input_w
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
const
int8_t
*
input_ptr3
=
input_ptr2
+
input_w
;
const
int8_t
*
input_ptr4
=
input_ptr3
+
input_w
;
const
int8_t
*
input_ptr5
=
input_ptr4
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
h
*
output_w
;
int32_t
*
output_ptr1
=
output_ptr0
+
output_w
;
int32_t
*
output_ptr2
=
output_ptr1
+
output_w
;
int32_t
*
output_ptr3
=
output_ptr2
+
output_w
;
int
loop
=
loops
;
for
(
int
g
=
0
;
g
<
input
.
dims
()[
1
];
++
g
)
{
const
int8_t
*
input_ptr
=
input_data
+
g
*
image_size
;
const
int8_t
*
filter_ptr
=
filter_data
+
g
*
9
;
int32_t
*
output_ptr
=
out_data
+
g
*
out_image_size
;
// top
for
(
int
h
=
0
;
h
<
valid_h_start
;
++
h
)
{
DepthwiseConv3x3NormalRow
<
1
,
1
>
(
input_ptr
,
filter_ptr
,
h
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
// left
for
(
int
w
=
0
;
w
<
valid_w_start
;
++
w
)
{
DepthwiseConv3x3ValidCol
<
1
,
1
>
(
input_ptr
,
filter_ptr
,
valid_h_start
,
valid_h_end
,
w
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
// right
for
(
int
w
=
valid_w_end
;
w
<
output_w
;
++
w
)
{
DepthwiseConv3x3ValidCol
<
1
,
1
>
(
input_ptr
,
filter_ptr
,
valid_h_start
,
valid_h_end
,
w
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
// bottom
for
(
int
h
=
valid_h_end
;
h
<
output_h
;
++
h
)
{
DepthwiseConv3x3NormalRow
<
1
,
1
>
(
input_ptr
,
filter_ptr
,
h
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
// valid
int
output_w_tiles
=
valid_w
/
6
;
int
output_w_remain
=
valid_w
-
output_w_tiles
*
6
;
for
(
int
h
=
valid_h_start
;
h
<
valid_h_end
-
3
;
h
+=
4
)
{
const
int8_t
*
input_ptr0
=
input_ptr
+
(
h
-
padding_h
)
*
input_w
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
const
int8_t
*
input_ptr3
=
input_ptr2
+
input_w
;
const
int8_t
*
input_ptr4
=
input_ptr3
+
input_w
;
const
int8_t
*
input_ptr5
=
input_ptr4
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
h
*
output_w
+
valid_w_start
;
int32_t
*
output_ptr1
=
output_ptr0
+
output_w
;
int32_t
*
output_ptr2
=
output_ptr1
+
output_w
;
int32_t
*
output_ptr3
=
output_ptr2
+
output_w
;
int
loop
=
output_w_tiles
;
asm
volatile
(
"vld1.32 {q0}, [%[filter_ptr]]
\n
"
"vmovl.s8 q14, d0
\n
"
...
...
@@ -385,20 +701,20 @@ void DepthwiseConv3x3s1<int8_t, int32_t>(const framework::Tensor &input,
[
input_ptr2
]
"+r"
(
input_ptr2
),
[
input_ptr3
]
"+r"
(
input_ptr3
),
[
input_ptr4
]
"+r"
(
input_ptr4
),
[
input_ptr5
]
"+r"
(
input_ptr5
),
[
loop
]
"+r"
(
loop
)
:
[
remain
]
"r"
(
remain
)
:
[
remain
]
"r"
(
output_w_
remain
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
,
"q15"
,
"r0"
);
}
// remain height
int
start_h
=
(
input_h
-
2
)
&
0xFFFC
;
for
(
int
h
=
start_h
;
h
<
input_h
-
3
/*(input_h - 2) - 1*/
;
h
+=
2
)
{
const
int8_t
*
input_ptr0
=
input_ptr
+
h
*
input_w
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
const
int8_t
*
input_ptr3
=
input_ptr2
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
h
*
output_w
;
int32_t
*
output_ptr1
=
output_ptr0
+
output_w
;
int
loop
=
loop
s
;
int
start_h
=
valid_h_start
+
(
valid_h
&
0xFFFC
)
;
for
(
int
h
=
start_h
;
h
<
valid_h_end
-
1
;
h
+=
2
)
{
const
int8_t
*
input_ptr0
=
input_ptr
+
(
h
-
padding_h
)
*
input_w
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
const
int8_t
*
input_ptr3
=
input_ptr2
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
h
*
output_w
+
valid_w_start
;
int32_t
*
output_ptr1
=
output_ptr0
+
output_w
;
int
loop
=
output_w_tile
s
;
asm
volatile
(
"vld1.32 {q0}, [%[filter_ptr]]
\n
"
"vmovl.s8 q14, d0
\n
"
...
...
@@ -416,9 +732,9 @@ void DepthwiseConv3x3s1<int8_t, int32_t>(const framework::Tensor &input,
:
[
filter_ptr
]
"r"
(
filter_ptr
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q14"
,
"q15"
);
asm
volatile
(
"mov r0, #6
\n
"
"cmp %[loop], #0
\n
"
"ble start_remain_%=
\n
"
"mov r0, #6
\n
"
// loop 6 widths
"loop_2h6w_%=:
\n
"
"vld1.32 {d9}, [%[input_ptr0]], r0
\n
"
...
...
@@ -595,18 +911,18 @@ void DepthwiseConv3x3s1<int8_t, int32_t>(const framework::Tensor &input,
[
input_ptr0
]
"+r"
(
input_ptr0
),
[
input_ptr1
]
"+r"
(
input_ptr1
),
[
input_ptr2
]
"+r"
(
input_ptr2
),
[
input_ptr3
]
"+r"
(
input_ptr3
),
[
loop
]
"+r"
(
loop
)
:
[
remain
]
"r"
(
remain
)
:
[
remain
]
"r"
(
output_w_
remain
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"r0"
);
}
start_h
=
(
input_h
-
2
)
&
0xFFFE
;
if
(
start_h
<
input_h
-
2
)
{
const
int8_t
*
input_ptr0
=
input_ptr
+
start_h
*
input_w
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
start_h
*
output_w
;
int
loop
=
loop
s
;
start_h
=
valid_h_start
+
(
valid_h
&
0xFFFE
)
;
if
(
start_h
<
valid_h_end
)
{
const
int8_t
*
input_ptr0
=
input_ptr
+
(
start_h
-
padding_h
)
*
input_w
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
start_h
*
output_w
+
valid_w_start
;
int
loop
=
output_w_tile
s
;
asm
volatile
(
"vld1.32 {q0}, [%[filter_ptr]]
\n
"
"vmovl.s8 q14, d0
\n
"
...
...
@@ -624,9 +940,9 @@ void DepthwiseConv3x3s1<int8_t, int32_t>(const framework::Tensor &input,
:
[
filter_ptr
]
"r"
(
filter_ptr
)
:
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q14"
,
"q15"
);
asm
volatile
(
"mov r0, #6
\n
"
"cmp %[loop], #0
\n
"
"ble start_remain_%=
\n
"
"mov r0, #6
\n
"
// loop 6 widths
"loop_1h6w_%=:
\n
"
"vld1.32 {d9}, [%[input_ptr0]], r0
\n
"
...
...
@@ -741,53 +1057,87 @@ void DepthwiseConv3x3s1<int8_t, int32_t>(const framework::Tensor &input,
:
[
output_ptr0
]
"+r"
(
output_ptr0
),
[
input_ptr0
]
"+r"
(
input_ptr0
),
[
input_ptr1
]
"+r"
(
input_ptr1
),
[
input_ptr2
]
"+r"
(
input_ptr2
),
[
loop
]
"+r"
(
loop
)
:
[
remain
]
"r"
(
remain
)
:
[
remain
]
"r"
(
output_w_
remain
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"r0"
);
}
}
#endif // __aarch64__
}
template
<
>
void
DepthwiseConv3x3
s
2
<
int8_t
,
int32_t
>
(
const
framework
::
Tensor
&
input
,
void
DepthwiseConv3x3
S
2
<
int8_t
,
int32_t
>
(
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
filter
,
const
std
::
vector
<
int
>
&
paddings
,
framework
::
Tensor
*
output
)
{
const
int8_t
*
input_data
=
input
.
data
<
int8_t
>
();
const
int8_t
*
filter_data
=
filter
.
data
<
int8_t
>
();
int32_t
*
out_data
=
output
->
mutable_data
<
int32_t
>
();
// make sure that batch size is 1
int
input_c
=
input
.
dims
()[
1
];
int
input_h
=
input
.
dims
()[
2
];
int
input_w
=
input
.
dims
()[
3
];
int
output_c
=
output
->
dims
()[
1
];
int
output_h
=
output
->
dims
()[
2
];
int
output_w
=
output
->
dims
()[
3
];
int
padding_h
=
paddings
[
0
];
int
padding_w
=
paddings
[
1
];
int
image_size
=
input_h
*
input_w
;
int
out_image_size
=
output_h
*
output_w
;
#if __aarch64__
// TODO(hjchen2)
#else
int
valid_h_start
=
(
padding_h
+
1
)
/
2
;
int
valid_h_end
=
output_h
-
valid_h_start
;
int
valid_h
=
valid_h_end
-
valid_h_start
;
int
valid_w_start
=
(
padding_w
+
1
)
/
2
;
int
valid_w_end
=
output_w
-
valid_w_start
;
int
valid_w
=
valid_w_end
-
valid_w_start
;
// DLOG << "valid_h_start: " << valid_h_start;
// DLOG << "valid_h_end: " << valid_h_end;
// DLOG << "valid_w_start: " << valid_w_start;
// DLOG << "valid_w_end: " << valid_w_end;
#pragma omp parallel for
for
(
int
g
=
0
;
g
<
input_c
;
++
g
)
{
const
int8_t
*
input_ptr
=
input_data
+
g
*
image_size
;
const
int8_t
*
filter_ptr
=
filter_data
+
g
*
9
;
int32_t
*
output_ptr
=
out_data
+
g
*
out_image_size
;
int
loops
=
output_w
/
6
;
int
remain
=
output_w
-
loops
*
6
;
for
(
int
h
=
0
;
h
<
input_h
-
6
/*(input_h - 1) - 5*/
;
h
+=
6
)
{
const
int8_t
*
input_ptr0
=
input_ptr
+
h
*
input_w
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
const
int8_t
*
input_ptr3
=
input_ptr2
+
input_w
;
const
int8_t
*
input_ptr4
=
input_ptr3
+
input_w
;
const
int8_t
*
input_ptr5
=
input_ptr4
+
input_w
;
const
int8_t
*
input_ptr6
=
input_ptr5
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
(
h
>>
1
)
*
output_w
;
int32_t
*
output_ptr1
=
output_ptr0
+
output_w
;
int32_t
*
output_ptr2
=
output_ptr1
+
output_w
;
int
loop
=
loops
;
for
(
int
g
=
0
;
g
<
input
.
dims
()[
1
];
++
g
)
{
const
int8_t
*
input_ptr
=
input_data
+
g
*
image_size
;
const
int8_t
*
filter_ptr
=
filter_data
+
g
*
9
;
int32_t
*
output_ptr
=
out_data
+
g
*
out_image_size
;
// top
for
(
int
h
=
0
;
h
<
valid_h_start
;
++
h
)
{
DepthwiseConv3x3NormalRow
<
2
,
2
>
(
input_ptr
,
filter_ptr
,
h
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
// left
for
(
int
w
=
0
;
w
<
valid_w_start
;
++
w
)
{
DepthwiseConv3x3ValidCol
<
2
,
2
>
(
input_ptr
,
filter_ptr
,
valid_h_start
,
valid_h_end
,
w
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
// right
for
(
int
w
=
valid_w_end
;
w
<
output_w
;
++
w
)
{
DepthwiseConv3x3ValidCol
<
2
,
2
>
(
input_ptr
,
filter_ptr
,
valid_h_start
,
valid_h_end
,
w
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
// bottom
for
(
int
h
=
valid_h_end
;
h
<
output_h
;
++
h
)
{
DepthwiseConv3x3NormalRow
<
2
,
2
>
(
input_ptr
,
filter_ptr
,
h
,
input_h
,
input_w
,
padding_h
,
padding_w
,
output_w
,
output_ptr
);
}
// valid
int
input_w_start
=
2
*
valid_w_start
-
padding_w
;
int
output_w_tiles
=
valid_w
/
6
;
int
output_w_remain
=
valid_w
-
output_w_tiles
*
6
;
for
(
int
h
=
valid_h_start
;
h
<
valid_h_end
-
2
;
h
+=
3
)
{
size_t
offset
=
(
2
*
h
-
padding_h
)
*
input_w
+
input_w_start
;
const
int8_t
*
input_ptr0
=
input_ptr
+
offset
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
const
int8_t
*
input_ptr3
=
input_ptr2
+
input_w
;
const
int8_t
*
input_ptr4
=
input_ptr3
+
input_w
;
const
int8_t
*
input_ptr5
=
input_ptr4
+
input_w
;
const
int8_t
*
input_ptr6
=
input_ptr5
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
h
*
output_w
+
valid_w_start
;
int32_t
*
output_ptr1
=
output_ptr0
+
output_w
;
int32_t
*
output_ptr2
=
output_ptr1
+
output_w
;
int
loop
=
output_w_tiles
;
asm
volatile
(
"vld1.32 {q0}, [%[filter_ptr]]
\n
"
"vmovl.s8 q14, d0
\n
"
...
...
@@ -805,9 +1155,9 @@ void DepthwiseConv3x3s2<int8_t, int32_t>(const framework::Tensor &input,
:
[
filter_ptr
]
"r"
(
filter_ptr
)
:
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q14"
,
"q15"
);
asm
volatile
(
"mov r0, #12
\n
"
"cmp %[loop], #0
\n
"
"ble start_remain_%=
\n
"
"mov r0, #12
\n
"
// loop 6 widths
"loop_3h6w_%=:
\n
"
"vld2.8 {d10, d11}, [%[input_ptr0]], r0
\n
"
...
...
@@ -1057,18 +1407,19 @@ void DepthwiseConv3x3s2<int8_t, int32_t>(const framework::Tensor &input,
[
input_ptr2
]
"+r"
(
input_ptr2
),
[
input_ptr3
]
"+r"
(
input_ptr3
),
[
input_ptr4
]
"+r"
(
input_ptr4
),
[
input_ptr5
]
"+r"
(
input_ptr5
),
[
loop
]
"+r"
(
loop
)
:
[
remain
]
"r"
(
remain
)
:
[
remain
]
"r"
(
output_w_
remain
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"q13"
,
"q14"
,
"q15"
,
"r0"
);
}
int
start_h
=
(
output_h
/
3
)
*
6
;
for
(
int
h
=
start_h
;
h
<
input_h
-
2
/*(input_h - 1) - 1*/
;
h
+=
2
)
{
const
int8_t
*
input_ptr0
=
input_ptr
+
h
*
input_w
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
(
h
>>
1
)
*
output_w
;
int
loop
=
loops
;
int
start_h
=
valid_h_start
+
valid_h
/
3
*
3
;
for
(
int
h
=
start_h
;
h
<
valid_h_end
;
++
h
)
{
size_t
offset
=
(
2
*
h
-
padding_h
)
*
input_w
+
input_w_start
;
const
int8_t
*
input_ptr0
=
input_ptr
+
offset
;
const
int8_t
*
input_ptr1
=
input_ptr0
+
input_w
;
const
int8_t
*
input_ptr2
=
input_ptr1
+
input_w
;
int32_t
*
output_ptr0
=
output_ptr
+
h
*
output_w
+
valid_w_start
;
int
loop
=
output_w_tiles
;
asm
volatile
(
"vld1.32 {q0}, [%[filter_ptr]]
\n
"
"vmovl.s8 q14, d0
\n
"
...
...
@@ -1086,9 +1437,9 @@ void DepthwiseConv3x3s2<int8_t, int32_t>(const framework::Tensor &input,
:
[
filter_ptr
]
"r"
(
filter_ptr
)
:
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q14"
,
"q15"
);
asm
volatile
(
"mov r0, #12
\n
"
"cmp %[loop], #0
\n
"
"ble start_remain_%=
\n
"
"mov r0, #12
\n
"
// loop 6 widths
"loop_1h6w_%=:
\n
"
"vld2.8 {d10, d11}, [%[input_ptr0]], r0
\n
"
...
...
@@ -1196,14 +1547,15 @@ void DepthwiseConv3x3s2<int8_t, int32_t>(const framework::Tensor &input,
:
[
output_ptr0
]
"+r"
(
output_ptr0
),
[
input_ptr0
]
"+r"
(
input_ptr0
),
[
input_ptr1
]
"+r"
(
input_ptr1
),
[
input_ptr2
]
"+r"
(
input_ptr2
),
[
loop
]
"+r"
(
loop
)
:
[
remain
]
"r"
(
remain
)
:
[
remain
]
"r"
(
output_w_
remain
)
:
"cc"
,
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
,
"q12"
,
"r0"
);
}
}
#endif // __aarch64__
}
}
// namespace math
}
// namespace operators
}
// namespace paddle_mobile
#endif
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录