Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
907150a4
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
907150a4
编写于
1月 19, 2020
作者:
Z
zhupengyang
提交者:
GitHub
1月 19, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] enhance elementwise uts (#2784)
* [NPU] reshape x,y,out node in elementwise ops
上级
a11eaf6a
变更
4
展开全部
显示空白变更内容
内联
并排
Showing
4 changed file
with
273 addition
and
822 deletion
+273
-822
lite/kernels/npu/bridges/elementwise_ops.cc
lite/kernels/npu/bridges/elementwise_ops.cc
+92
-25
lite/kernels/npu/bridges/elementwise_ops_test.cc
lite/kernels/npu/bridges/elementwise_ops_test.cc
+0
-193
lite/kernels/npu/bridges/paddle_use_bridges.h
lite/kernels/npu/bridges/paddle_use_bridges.h
+4
-1
lite/tests/kernels/elementwise_compute_test.cc
lite/tests/kernels/elementwise_compute_test.cc
+177
-603
未找到文件。
lite/kernels/npu/bridges/elementwise_ops.cc
浏览文件 @
907150a4
...
...
@@ -21,28 +21,42 @@ namespace lite {
namespace
subgraph
{
namespace
npu
{
std
::
vector
<
int64_t
>
CvtYShape
(
const
DDim
&
x_dims
,
const
DDim
&
y_dims
,
void
CvtYShape
(
std
::
vector
<
int64_t
>*
x_shape
,
std
::
vector
<
int64_t
>*
y_shape
,
int
axis
)
{
CHECK_EQ
(
x_dims
.
size
(),
4UL
)
<<
"[NPU] Only support 4-dimension x"
;
CHECK_GE
(
x_dims
.
size
(),
y_dims
.
size
());
CHECK_GE
(
x_shape
->
size
(),
y_shape
->
size
());
if
(
axis
<
0
)
{
axis
+=
x_dims
.
size
();
axis
=
x_shape
->
size
()
-
y_shape
->
size
();
}
std
::
vector
<
int64_t
>
y_new_shape
(
y_dims
.
Vectorize
());
if
(
y_new_shape
.
size
()
==
4UL
)
{
return
y_new_shape
;
// only support:
// (n,c,h,w) * (n,c,h,w)
// (n,c,h,w) * (1,c,1,1)
// (n,c,h,w) * (1,c,h,1)
// (n,c,h,w) * (1,c,h,w)
int
y_shape_size
=
y_shape
->
size
();
if
(
y_shape_size
==
1
)
{
y_shape
->
insert
(
y_shape
->
begin
(),
1
);
y_shape
->
insert
(
y_shape
->
end
(),
2
,
1
);
}
else
if
(
y_shape_size
==
2
)
{
y_shape
->
insert
(
y_shape
->
begin
(),
1
);
y_shape
->
insert
(
y_shape
->
end
(),
1
);
}
else
if
(
y_shape_size
==
3
)
{
y_shape
->
insert
(
y_shape
->
begin
(),
1
);
}
if
(
y_shape_size
<
4
)
{
int
n
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
i
++
)
{
y_new_shape
.
insert
(
y_new_shape
.
begin
(),
1
);
n
*=
x_shape
->
at
(
i
);
}
while
(
y_new_shape
.
size
()
<
4
)
{
y_new_shape
.
push_back
(
1
);
x_shape
->
erase
(
x_shape
->
begin
(),
x_shape
->
begin
()
+
axis
);
x_shape
->
insert
(
x_shape
->
begin
(),
n
);
x_shape
->
insert
(
x_shape
->
end
(),
4
-
x_shape
->
size
(),
1
);
}
CHECK_EQ
(
y_new_shape
.
size
(),
4UL
);
return
y_new_shape
;
CHECK_EQ
(
x_shape
->
size
(),
4UL
);
CHECK_EQ
(
y_shape
->
size
(),
4UL
);
}
int
ElementwiseConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
...
...
@@ -61,32 +75,58 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
CHECK
(
x_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
x
=
scope
->
FindMutableTensor
(
x_name
);
auto
x_dims
=
x
->
dims
();
auto
y_name
=
op_info
->
Input
(
"Y"
).
front
();
auto
y_type
=
kernel
->
GetInputDeclType
(
"Y"
);
CHECK
(
y_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
y_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
y
=
scope
->
FindMutableTensor
(
y_name
);
auto
y_dims
=
y
->
dims
();
auto
out_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
out_type
=
kernel
->
GetOutputDeclType
(
"Out"
);
CHECK
(
out_type
->
precision
()
==
PRECISION
(
kFloat
));
CHECK
(
out_type
->
layout
()
==
DATALAYOUT
(
kNCHW
));
auto
out
=
scope
->
FindMutableTensor
(
out_name
);
auto
out_dims
=
out
->
dims
();
auto
axis
=
op_info
->
GetAttr
<
int
>
(
"axis"
);
auto
x_new_shape
=
x_dims
.
Vectorize
();
auto
y_new_shape
=
y_dims
.
Vectorize
();
CvtYShape
(
&
x_new_shape
,
&
y_new_shape
,
axis
);
// X node
std
::
shared_ptr
<
Node
>
x_node
=
nullptr
;
if
(
graph
->
Has
(
x_name
))
{
x_node
=
graph
->
Get
(
x_name
);
if
(
x_dims
.
Vectorize
()
!=
x_new_shape
)
{
auto
reshaped_x_node
=
graph
->
Add
<
ge
::
op
::
Reshape
>
(
x_name
+
"/reshape"
);
auto
reshaped_x_op
=
reshaped_x_node
->
data
<
ge
::
op
::
Reshape
>
();
reshaped_x_op
->
set_input_tensor
(
*
x_node
->
data
());
reshaped_x_op
->
set_attr_shape
(
ge
::
AttrValue
::
LIST_INT
(
x_new_shape
.
begin
(),
x_new_shape
.
end
()));
reshaped_x_op
->
set_attr_axis
(
0
);
x_node
=
reshaped_x_node
;
}
}
else
{
x_node
=
graph
->
Add
(
x_name
,
*
x
);
x_node
=
graph
->
Add
(
x_name
,
*
x
,
x_new_shape
);
}
// Y node
std
::
shared_ptr
<
Node
>
y_node
=
nullptr
;
if
(
graph
->
Has
(
y_name
))
{
y_node
=
graph
->
Get
(
y_name
);
if
(
y_dims
.
Vectorize
()
!=
y_new_shape
)
{
auto
reshaped_y_node
=
graph
->
Add
<
ge
::
op
::
Reshape
>
(
y_name
+
"/reshape"
);
auto
reshaped_y_op
=
reshaped_y_node
->
data
<
ge
::
op
::
Reshape
>
();
reshaped_y_op
->
set_input_tensor
(
*
y_node
->
data
());
reshaped_y_op
->
set_attr_shape
(
ge
::
AttrValue
::
LIST_INT
(
y_new_shape
.
begin
(),
y_new_shape
.
end
()));
reshaped_y_op
->
set_attr_axis
(
0
);
y_node
=
reshaped_y_node
;
}
}
else
{
auto
y_new_shape
=
CvtYShape
(
x_dims
,
y_dims
,
axis
);
y_node
=
graph
->
Add
(
y_name
,
*
y
,
y_new_shape
);
}
...
...
@@ -98,17 +138,20 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
elt_op
=
elt_node
->
data
<
ge
::
op
::
Add
>
();
elt_op
->
set_input_x1
(
*
x_node
->
data
());
elt_op
->
set_input_x2
(
*
y_node
->
data
());
}
else
if
(
op_type
==
"elementwise_sub"
)
{
}
else
if
(
op_type
==
"elementwise_sub"
||
op_type
==
"fusion_elementwise_sub_activation"
)
{
elt_node
=
graph
->
Add
<
ge
::
op
::
Sub
>
(
out_name
);
auto
elt_op
=
elt_node
->
data
<
ge
::
op
::
Sub
>
();
elt_op
->
set_input_x1
(
*
x_node
->
data
());
elt_op
->
set_input_x2
(
*
y_node
->
data
());
}
else
if
(
op_type
==
"elementwise_mul"
)
{
}
else
if
(
op_type
==
"elementwise_mul"
||
op_type
==
"fusion_elementwise_mul_activation"
)
{
elt_node
=
graph
->
Add
<
ge
::
op
::
Mul
>
(
out_name
);
auto
elt_op
=
elt_node
->
data
<
ge
::
op
::
Mul
>
();
elt_op
->
set_input_x
(
*
x_node
->
data
());
elt_op
->
set_input_y
(
*
y_node
->
data
());
}
else
if
(
op_type
==
"elementwise_div"
)
{
}
else
if
(
op_type
==
"elementwise_div"
||
op_type
==
"fusion_elementwise_div_activation"
)
{
elt_node
=
graph
->
Add
<
ge
::
op
::
RealDiv
>
(
out_name
);
auto
elt_op
=
elt_node
->
data
<
ge
::
op
::
RealDiv
>
();
elt_op
->
set_input_x1
(
*
x_node
->
data
());
...
...
@@ -118,8 +161,22 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
return
FAILED
;
}
if
(
out_dims
.
Vectorize
()
!=
x_new_shape
)
{
auto
reshaped_elt_node
=
graph
->
Add
<
ge
::
op
::
Reshape
>
(
out_name
);
auto
reshaped_elt_op
=
reshaped_elt_node
->
data
<
ge
::
op
::
Reshape
>
();
reshaped_elt_op
->
set_input_tensor
(
*
elt_node
->
data
());
auto
out_shape
=
out_dims
.
Vectorize
();
reshaped_elt_op
->
set_attr_shape
(
ge
::
AttrValue
::
LIST_INT
(
out_shape
.
begin
(),
out_shape
.
end
()));
reshaped_elt_op
->
set_attr_axis
(
0
);
elt_node
=
reshaped_elt_node
;
}
// Act node
if
(
op_type
==
"fusion_elementwise_add_activation"
)
{
if
(
op_type
==
"fusion_elementwise_add_activation"
||
op_type
==
"fusion_elementwise_sub_activation"
||
op_type
==
"fusion_elementwise_mul_activation"
||
op_type
==
"fusion_elementwise_div_activation"
)
{
auto
act_type
=
op_info
->
GetAttr
<
std
::
string
>
(
"act_type"
);
auto
act_node
=
graph
->
Add
<
ge
::
op
::
Activation
>
(
out_name
);
auto
act_op
=
act_node
->
data
<
ge
::
op
::
Activation
>
();
...
...
@@ -128,6 +185,7 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
// clipped_relu etc.
act_op
->
set_attr_mode
(
CvtActMode
(
act_type
));
}
return
REBUILD_WHEN_SHAPE_CHANGED
;
}
...
...
@@ -139,9 +197,6 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
REGISTER_SUBGRAPH_BRIDGE
(
elementwise_add
,
kNPU
,
paddle
::
lite
::
subgraph
::
npu
::
ElementwiseConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
fusion_elementwise_add_activation
,
kNPU
,
paddle
::
lite
::
subgraph
::
npu
::
ElementwiseConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
elementwise_sub
,
kNPU
,
paddle
::
lite
::
subgraph
::
npu
::
ElementwiseConverter
);
...
...
@@ -151,3 +206,15 @@ REGISTER_SUBGRAPH_BRIDGE(elementwise_mul,
REGISTER_SUBGRAPH_BRIDGE
(
elementwise_div
,
kNPU
,
paddle
::
lite
::
subgraph
::
npu
::
ElementwiseConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
fusion_elementwise_add_activation
,
kNPU
,
paddle
::
lite
::
subgraph
::
npu
::
ElementwiseConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
fusion_elementwise_sub_activation
,
kNPU
,
paddle
::
lite
::
subgraph
::
npu
::
ElementwiseConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
fusion_elementwise_mul_activation
,
kNPU
,
paddle
::
lite
::
subgraph
::
npu
::
ElementwiseConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
fusion_elementwise_div_activation
,
kNPU
,
paddle
::
lite
::
subgraph
::
npu
::
ElementwiseConverter
);
lite/kernels/npu/bridges/elementwise_ops_test.cc
已删除
100644 → 0
浏览文件 @
a11eaf6a
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/elementwise_ops.h"
#include <gtest/gtest.h>
#include <random>
#include "lite/core/op_registry.h"
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/npu/bridges/test_helper.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
npu
{
namespace
bridges
{
template
<
typename
dtype
>
void
elementwise_add_ref
(
const
std
::
shared_ptr
<
operators
::
ElementwiseOp
>
op
)
{
Scope
*
scope
=
op
->
scope
();
const
OpInfo
*
op_info
=
op
->
op_info
();
auto
x
=
scope
->
FindTensor
(
"x"
);
auto
y
=
scope
->
FindTensor
(
"y"
);
auto
out
=
scope
->
FindMutableTensor
(
"out_ref"
);
out
->
Resize
(
x
->
dims
());
auto
x_data
=
x
->
data
<
dtype
>
();
auto
y_data
=
y
->
data
<
dtype
>
();
auto
out_data
=
out
->
mutable_data
<
dtype
>
();
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
int
axis
=
op_info
->
GetAttr
<
int
>
(
"axis"
);
if
(
axis
<
0
)
{
axis
+=
x_dims
.
size
();
}
int
batch
=
1
;
int
channels
=
y
->
numel
();
int
num
=
x
->
numel
()
/
channels
/
batch
;
// do elementwise add/sub/max...
std
::
string
op_type
=
op_info
->
Type
();
if
(
op_type
==
"elementwise_add"
)
{
for
(
int
i
=
0
;
i
<
batch
;
++
i
)
{
for
(
int
j
=
0
;
j
<
channels
;
++
j
)
{
int
offset
=
(
i
*
channels
+
j
)
*
num
;
const
dtype
*
din_ptr
=
x_data
+
offset
;
const
dtype
diny_data
=
y_data
[
j
];
dtype
*
dout_ptr
=
out_data
+
offset
;
for
(
int
k
=
0
;
k
<
num
;
++
k
)
{
*
dout_ptr
=
*
din_ptr
+
diny_data
;
dout_ptr
++
;
din_ptr
++
;
}
}
}
}
else
if
(
op_type
==
"elementwise_sub"
)
{
for
(
int
i
=
0
;
i
<
batch
;
++
i
)
{
for
(
int
j
=
0
;
j
<
channels
;
++
j
)
{
int
offset
=
(
i
*
channels
+
j
)
*
num
;
const
dtype
*
din_ptr
=
x_data
+
offset
;
const
dtype
diny_data
=
y_data
[
j
];
dtype
*
dout_ptr
=
out_data
+
offset
;
for
(
int
k
=
0
;
k
<
num
;
++
k
)
{
*
dout_ptr
=
*
din_ptr
-
diny_data
;
dout_ptr
++
;
din_ptr
++
;
}
}
}
}
else
if
(
op_type
==
"elementwise_mul"
)
{
for
(
int
i
=
0
;
i
<
batch
;
++
i
)
{
for
(
int
j
=
0
;
j
<
channels
;
++
j
)
{
int
offset
=
(
i
*
channels
+
j
)
*
num
;
const
dtype
*
din_ptr
=
x_data
+
offset
;
const
dtype
diny_data
=
y_data
[
j
];
dtype
*
dout_ptr
=
out_data
+
offset
;
for
(
int
k
=
0
;
k
<
num
;
++
k
)
{
*
dout_ptr
=
*
din_ptr
*
diny_data
;
dout_ptr
++
;
din_ptr
++
;
}
}
}
}
else
if
(
op_type
==
"elementwise_div"
)
{
for
(
int
i
=
0
;
i
<
batch
;
++
i
)
{
for
(
int
j
=
0
;
j
<
channels
;
++
j
)
{
int
offset
=
(
i
*
channels
+
j
)
*
num
;
const
dtype
*
din_ptr
=
x_data
+
offset
;
const
dtype
diny_data
=
y_data
[
j
];
dtype
*
dout_ptr
=
out_data
+
offset
;
for
(
int
k
=
0
;
k
<
num
;
++
k
)
{
*
dout_ptr
=
*
din_ptr
/
diny_data
;
dout_ptr
++
;
din_ptr
++
;
}
}
}
}
else
if
(
op_type
==
"elementwise_max"
)
{
for
(
int
i
=
0
;
i
<
batch
;
++
i
)
{
for
(
int
j
=
0
;
j
<
channels
;
++
j
)
{
int
offset
=
(
i
*
channels
+
j
)
*
num
;
const
dtype
*
din_ptr
=
x_data
+
offset
;
const
dtype
diny_data
=
y_data
[
j
];
dtype
*
dout_ptr
=
out_data
+
offset
;
for
(
int
k
=
0
;
k
<
num
;
++
k
)
{
*
dout_ptr
=
std
::
max
(
*
din_ptr
,
diny_data
);
dout_ptr
++
;
din_ptr
++
;
}
}
}
}
else
{
LOG
(
FATAL
)
<<
"unsupported Elementwise type: "
<<
op_type
;
}
}
void
test_elementwise_add
(
const
std
::
vector
<
int64_t
>&
x_shape
,
const
std
::
vector
<
int64_t
>&
y_shape
,
int
axis
,
std
::
string
elt_type
)
{
// prepare input&output variables
Scope
scope
;
std
::
string
x_var_name
=
"x"
;
std
::
string
y_var_name
=
"y"
;
std
::
string
out_var_name
=
"out"
;
std
::
string
out_ref_var_name
=
"out_ref"
;
auto
*
x
=
scope
.
Var
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
y
=
scope
.
Var
(
y_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out
=
scope
.
Var
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
*
out_ref
=
scope
.
Var
(
out_ref_var_name
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
(
x_shape
);
y
->
Resize
(
y_shape
);
// initialize input&output data
FillTensor
<
float
>
(
x
,
1
,
3
);
FillTensor
<
float
>
(
y
,
1
,
3
);
// initialize op desc
cpp
::
OpDesc
opdesc
;
opdesc
.
SetType
(
"elementwise_"
+
elt_type
);
opdesc
.
SetInput
(
"X"
,
{
x_var_name
});
opdesc
.
SetInput
(
"Y"
,
{
y_var_name
});
opdesc
.
SetOutput
(
"Out"
,
{
out_var_name
});
opdesc
.
SetAttr
(
"axis"
,
axis
);
// create and convert op to NPU model, then run it on NPU
auto
op
=
CreateOp
<
operators
::
ElementwiseOp
>
(
opdesc
,
&
scope
);
LauchOp
(
op
,
{
x_var_name
},
{
out_var_name
});
// execute reference implementation and save to output tensor
elementwise_add_ref
<
float
>
(
op
);
// compare results
auto
*
out_data
=
out
->
mutable_data
<
float
>
();
auto
*
out_ref_data
=
out_ref
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
out
->
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
out_data
[
i
],
out_ref_data
[
i
],
1e-2
);
}
}
TEST
(
NPUBridges
,
elementwise_add
)
{
for
(
auto
elt_type
:
{
"add"
,
"sub"
,
"mul"
,
"div"
})
{
test_elementwise_add
({
1
,
2
,
3
,
4
},
{
2
},
1
,
elt_type
);
test_elementwise_add
({
1
,
2
,
3
,
4
},
{
1
,
2
,
1
,
1
},
1
,
elt_type
);
test_elementwise_add
({
1
,
2
,
3
,
4
},
{
1
,
2
,
3
,
4
},
3
,
elt_type
);
}
}
}
// namespace bridges
}
// namespace npu
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_OP
(
elementwise_add
);
USE_NPU_BRIDGE
(
elementwise_add
);
USE_LITE_OP
(
elementwise_sub
);
USE_NPU_BRIDGE
(
elementwise_sub
);
USE_LITE_OP
(
elementwise_mul
);
USE_NPU_BRIDGE
(
elementwise_mul
);
USE_LITE_OP
(
elementwise_div
);
USE_NPU_BRIDGE
(
elementwise_div
);
lite/kernels/npu/bridges/paddle_use_bridges.h
浏览文件 @
907150a4
...
...
@@ -30,10 +30,13 @@ USE_SUBGRAPH_BRIDGE(conv2d_transpose, kNPU);
USE_SUBGRAPH_BRIDGE
(
dropout
,
kNPU
);
USE_SUBGRAPH_BRIDGE
(
elementwise_add
,
kNPU
);
USE_SUBGRAPH_BRIDGE
(
fusion_elementwise_add_activation
,
kNPU
);
USE_SUBGRAPH_BRIDGE
(
elementwise_sub
,
kNPU
);
USE_SUBGRAPH_BRIDGE
(
elementwise_mul
,
kNPU
);
USE_SUBGRAPH_BRIDGE
(
elementwise_div
,
kNPU
);
USE_SUBGRAPH_BRIDGE
(
fusion_elementwise_add_activation
,
kNPU
);
USE_SUBGRAPH_BRIDGE
(
fusion_elementwise_sub_activation
,
kNPU
);
USE_SUBGRAPH_BRIDGE
(
fusion_elementwise_mul_activation
,
kNPU
);
USE_SUBGRAPH_BRIDGE
(
fusion_elementwise_div_activation
,
kNPU
);
USE_SUBGRAPH_BRIDGE
(
fc
,
kNPU
);
USE_SUBGRAPH_BRIDGE
(
bilinear_interp
,
kNPU
);
...
...
lite/tests/kernels/elementwise_compute_test.cc
浏览文件 @
907150a4
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录