提交 8c39086c 编写于 作者: qnqinan's avatar qnqinan 提交者: GitHub

Merge pull request #1447 from qnqinan/develop

add pad2d and deconv related op in FPGA track fixed#1446
......@@ -105,12 +105,14 @@ const char *G_OP_TYPE_FUSION_DECONV_ADD_RELU = "fusion_deconv_add_relu";
const char *G_OP_TYPE_SEQUENCE_EXPAND = "sequence_expand";
const char *G_OP_TYPE_SEQUENCE_POOL = "sequence_pool";
const char *G_OP_TYPE_SEQUENCE_SOFTMAX = "sequence_softmax";
const char *G_OP_TYPE_SLICE = "slice";
const char *G_OP_TYPE_ANCHOR_GENERATOR = "anchor_generator";
const char *G_OP_TYPE_GENERATE_PROPOSALS = "generate_proposals";
const char *G_OP_TYPE_PSROI_POOL = "psroi_pool";
const char *G_OP_TYPE_ROI_PERSPECTIVE = "roi_perspective_transform";
const char *G_OP_TYPE_PAD2D = "pad2d";
const char *G_OP_TYPE_FUSION_DECONV_ADD_BN_RELU = "fusion_deconv_add_bn_relu";
const char *G_OP_TYPE_FUSION_DECONV_ADD_BN = "fusion_deconv_add_bn";
std::unordered_map<
std::string, std::pair<std::vector<std::string>, std::vector<std::string>>>
......@@ -210,5 +212,8 @@ std::unordered_map<
{{"Scores", "BboxDeltas", "ImInfo", "Anchors", "Variances"},
{"RpnRois", "RpnRoiProbs"}}},
{G_OP_TYPE_PSROI_POOL, {{"X", "ROIs"}, {"Out"}}},
{G_OP_TYPE_ROI_PERSPECTIVE, {{"X", "ROIs"}, {"Out"}}}};
{G_OP_TYPE_ROI_PERSPECTIVE, {{"X", "ROIs"}, {"Out"}}},
{G_OP_TYPE_FUSION_DECONV_ADD_BN_RELU, {{"Input"}, {"Out"}}},
{G_OP_TYPE_FUSION_DECONV_ADD_BN, {{"Input"}, {"Out"}}},
{G_OP_TYPE_PAD2D, {{"X"}, {"Out"}}}};
} // namespace paddle_mobile
......@@ -199,6 +199,9 @@ extern const char *G_OP_TYPE_ANCHOR_GENERATOR;
extern const char *G_OP_TYPE_GENERATE_PROPOSALS;
extern const char *G_OP_TYPE_PSROI_POOL;
extern const char *G_OP_TYPE_ROI_PERSPECTIVE;
extern const char *G_OP_TYPE_PAD2D;
extern const char *G_OP_TYPE_FUSION_DECONV_ADD_BN_RELU;
extern const char *G_OP_TYPE_FUSION_DECONV_ADD_BN;
extern std::unordered_map<
std::string, std::pair<std::vector<std::string>, std::vector<std::string>>>
......
......@@ -30,9 +30,9 @@ void format_image(framework::Tensor *image_tensor) {
auto data_ptr = image_tensor->data<float>();
auto external_ptr = reinterpret_cast<float *>(image_tensor->external_data);
float *p_data = external_ptr == nullptr ? data_ptr : external_ptr;
float *old_p = p_data;
image::format_image(&p_data, channel, height, width);
if (p_data != data_ptr) {
if (old_p != p_data) {
image_tensor->reset_data_ptr(p_data);
}
}
......@@ -48,9 +48,9 @@ void format_fp16_ofm(framework::Tensor *ofm_tensor) {
auto dims = ofm_tensor->dims();
size_t memory_size = 0;
if (dims.size() == 4) {
auto channel = dims[1], height = dims[2], width = dims[3], num = dims[0];
memory_size = num * height * align_to_x(channel * width, IMAGE_ALIGNMENT) *
sizeof(half);
auto channel = dims[1], height = dims[2], width = dims[3];
memory_size =
height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
} else if (dims.size() == 2) {
memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
} else {
......@@ -162,7 +162,7 @@ void format_dwconv_filter(framework::Tensor *filter_tensor, float *scale_ptr) {
fpga_copy(new_data, data_ptr, memory_size);
filter::format_dwconv_filter(&new_data, num, height, width, scale_ptr);
filter_tensor->reset_data_ptr(new_data);
filter_tensor->set_type(typeid(int8_t));
filter_tensor->set_type(typeid(int16_t));
}
void format_DWDconv_filter(framework::Tensor *filter_tensor, float *scale_ptr,
......@@ -396,8 +396,8 @@ void expand_conv_arg(ConvArgs *arg) {
// auto cmd = 0UL | (args.relu_enabled ? USE_RELU : 0) | USE_BIAS;
auto cmd = 0UL | USE_BIAS;
auto deconv_param = ((args.deconv_tx_param.deconv_en) << 24) |
((args.deconv_tx_param.sub_conv_num) << 16) |
auto deconv_param = ((args.deconv_tx_param.deconv_en) << 16) |
((args.deconv_tx_param.sub_conv_num) << 8) |
((args.deconv_tx_param.omit_size) << 0);
(*arg).driver.image_address_phy = vaddr_to_paddr(args.image.address);
(*arg).driver.sb_address_phy = vaddr_to_paddr(args.sb_address);
......@@ -623,7 +623,7 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
fpga::format_fp16_ofm(out, dims_out_new);
auto out_ptr = out->data<half>();
arg->output.address =
out_ptr +
(half *)out_ptr + // NOLINT
omit_size * sizeof(half) *
(align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));
arg->output.scale_address = out->scale;
......@@ -713,6 +713,7 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
}
for (int j = 0; j < split_num; ++j) {
// arg->split_conv_args[i]->conv_arg[j].relu_enabled = relu_enabled;
arg->split_conv_args[i]->conv_arg[j].output.activation.activation_type =
activation_enable;
arg->split_conv_args[i]
......@@ -758,8 +759,8 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
align_to_x(arg->split_conv_args[i]->conv_arg[j].filter_num,
FILTER_NUM_ALIGNMENT) *
sizeof(int8_t);
auto filter_head =
&filter_ptr[j * element_num * filter_num_per_div + // NOLINT
auto filter_head = &((
int8_t *)filter_ptr)[j * element_num * filter_num_per_div + // NOLINT
i * filter_sub_conv_offset];
arg->split_conv_args[i]->conv_arg[j].filter_address =
fpga_malloc(filter_size);
......@@ -774,6 +775,19 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
fpga_flush(arg->split_conv_args[i]->conv_arg[j].filter_address,
filter_size);
/*{
static int cnt = 0;
std::string str = "deconv_filter";
if(cnt <= 1){
cnt++;
str += std::to_string(cnt);
int8_t result = 0;
fpga::savefile<int8_t>(str,
arg->split_conv_args[i]->conv_arg[j].filter_address, filter_size, result);
}
}*/
size_t bs_align_num = align_to_x(
arg->split_conv_args[i]->conv_arg[j].filter_num, BS_NUM_ALIGNMENT);
size_t bs_size = 2 * bs_align_num * sizeof(float);
......@@ -789,6 +803,20 @@ void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
memcpy(arg->split_conv_args[i]->conv_arg[j].sb_address, bs_head, bs_size);
fpga_flush(arg->split_conv_args[i]->conv_arg[j].sb_address, bs_size);
/* {
static int cnt = 0;
std::string str = "deconv_sb";
if(cnt <= 1){
cnt++;
str += std::to_string(cnt);
float result = 0;
fpga::savefile<float>(str,
arg->split_conv_args[i]->conv_arg[j].sb_address, 2 * bs_align_num,
result);
}
}*/
if (split_num == 1) {
arg->split_conv_args[i]->conv_arg[j].output.address =
arg->split_conv_args[i]->output.address;
......@@ -835,13 +863,10 @@ void fill_dwconv_arg(struct DWconvArgs *arg, framework::Tensor *input,
int16_t leaky_relu_negative_slope, int stride_h,
int stride_w, int padding_h, int padding_w,
float *bias_ptr) {
auto deleter = [](void *p) { fpga_free(p); };
arg->vector_dwconv_space.push_back(
std::shared_ptr<char>(reinterpret_cast<char *>(bias_ptr), deleter));
auto filter_ptr = filter->data<uint8_t>();
auto filter_ptr = filter->data<int16_t>();
auto input_ptr = input->data<half>();
auto output_ptr = out->mutable_data<half>();
auto output_ptr = out->data<half>();
arg->sub_conv_num = 1;
// arg->relu_enabled = relu_enabled;
arg->output.activation.activation_type = activation_enable;
......@@ -960,10 +985,10 @@ void fill_DWDeconv_arg(struct DWDeconvArgs *arg, framework::Tensor *input,
sizeof(int16_t));
arg->dw_conv_args[i]->output.scale_address =
static_cast<float *>(fpga_malloc(2 * sizeof(float)));
arg->vector_dw_conv_space.push_back(std::shared_ptr<char>( // NOLINT
arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
reinterpret_cast<char *>(arg->dw_conv_args[i]->output.address),
deleter));
arg->vector_dw_conv_space.push_back(std::shared_ptr<char>( // NOLINT
arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
reinterpret_cast<char *>(arg->dw_conv_args[i]->output.scale_address),
deleter));
}
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DECONVADDBN_OP
#include "operators/fusion_deconv_add_bn_op.h"
namespace paddle_mobile {
namespace operators {}
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
REGISTER_FUSION_MATCHER(fusion_deconv_add_bn, ops::FusionDeconvAddBNMatcher);
#ifdef PADDLE_MOBILE_CPU
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fusion_deconv_add_bn, ops::FusionDeconvAddBNOp);
#endif
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DECONVADDBN_OP
#pragma once
#include <string>
#include <vector>
#include "framework/operator.h"
#include "framework/program/program-optimize/fusion_op_register.h"
#include "operators/kernel/deconv_add_bn_kernel.h"
namespace paddle_mobile {
namespace operators {
using std::string;
using std::vector;
class FusionDeconvAddBNMatcher : public framework::FusionOpMatcher {
public:
FusionDeconvAddBNMatcher() {
node_ = framework::Node(G_OP_TYPE_CONV_TRANSPOSE);
node_ > std::make_shared<framework::Node>(G_OP_TYPE_ELEMENTWISE_ADD) >
std::make_shared<framework::Node>(G_OP_TYPE_BATCHNORM);
}
void FolderNodes(
framework::Node *node,
std::vector<std::shared_ptr<framework::Node>> *removed_nodes) {
node->Folder(node_.Depth(), Type(),
{{G_OP_TYPE_ELEMENTWISE_ADD, {{"Y", "Y"}, {"X", "X"}}},
{G_OP_TYPE_BATCHNORM,
{{"Scale", "Scale"},
{"Mean", "Mean"},
{"Bias", "Bias"},
{"Variance", "Variance"},
{"Y", "BNY"}}}},
removed_nodes);
}
std::string Type() { return G_OP_TYPE_FUSION_DECONV_ADD_BN; }
};
template <typename DeviceType, typename T>
class FusionDeconvAddBNOp : public framework::OperatorWithKernel<
DeviceType, FusionDeconvAddBNParam<DeviceType>,
operators::DeconvAddBNKernel<DeviceType, T>> {
public:
FusionDeconvAddBNOp(const string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<
DeviceType, FusionDeconvAddBNParam<DeviceType>,
operators::DeconvAddBNKernel<DeviceType, T>>(type, inputs, outputs,
attrs, scope) {}
void InferShape() const {
auto input = this->param_.Input();
auto in_dims = input->dims();
auto filter = this->param_.Filter();
auto filter_dims = filter->dims();
std::vector<int> strides = this->param_.Strides();
std::vector<int> paddings = this->param_.Paddings();
std::vector<int> dilations = this->param_.Dilations();
int groups = this->param_.Groups();
PADDLE_MOBILE_ENFORCE(
in_dims.size() == 4 || in_dims.size() == 5,
"ConvTransposeOp intput should be 4-D or 5-D tensor.");
PADDLE_MOBILE_ENFORCE(
in_dims.size() == filter_dims.size(),
"ConvTransposeOp input dimension and filter dimension "
"should be the same.");
PADDLE_MOBILE_ENFORCE(
in_dims.size() - strides.size() == 2U,
"ConvTransposeOp input dimension and strides dimension should "
"be consistent.");
PADDLE_MOBILE_ENFORCE(paddings.size() == strides.size(),
"ConvTransposeOp paddings dimension and strides "
"dimension should be the same.");
PADDLE_MOBILE_ENFORCE(paddings.size() == dilations.size(),
"ConvTransposeOp paddings dimension and dilations "
"dimension should be the same.");
PADDLE_MOBILE_ENFORCE(
in_dims[1] == filter_dims[0],
"In ConvTransposeOp, The number of input channels should "
"be equal to the number of filter's channels.");
std::vector<int64_t> output_shape({in_dims[0], filter_dims[1] * groups});
for (size_t i = 0; i < strides.size(); ++i) {
auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
output_shape.push_back((in_dims[i + 2] - 1) * strides[i] -
2 * paddings[i] + filter_extent);
}
this->param_.Output()->Resize(framework::make_ddim(output_shape));
}
protected:
};
} // namespace operators
} // namespace paddle_mobile
#endif // FUSION_DECONV_ADD_BN_OP
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DECONVADDBNRELU_OP
#include "operators/fusion_deconv_add_bn_relu_op.h"
namespace paddle_mobile {
namespace operators {}
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
REGISTER_FUSION_MATCHER(fusion_deconv_add_bn_relu,
ops::FusionDeconvAddBNReluMatcher);
#ifdef PADDLE_MOBILE_CPU
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(fusion_deconv_add_bn_relu, ops::FusionDeconvAddBNReluOp);
#endif
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DECONVADDBNRELU_OP
#pragma once
#include <string>
#include <vector>
#include "framework/operator.h"
#include "framework/program/program-optimize/fusion_op_register.h"
#include "operators/kernel/deconv_add_bn_relu_kernel.h"
namespace paddle_mobile {
namespace operators {
using std::string;
using std::vector;
class FusionDeconvAddBNReluMatcher : public framework::FusionOpMatcher {
public:
FusionDeconvAddBNReluMatcher() {
node_ = framework::Node(G_OP_TYPE_CONV_TRANSPOSE);
node_ > std::make_shared<framework::Node>(G_OP_TYPE_ELEMENTWISE_ADD) >
std::make_shared<framework::Node>(G_OP_TYPE_BATCHNORM) >
std::make_shared<framework::Node>(G_OP_TYPE_RELU);
}
void FolderNodes(
framework::Node *node,
std::vector<std::shared_ptr<framework::Node>> *removed_nodes) {
node->Folder(node_.Depth(), Type(),
{{G_OP_TYPE_ELEMENTWISE_ADD, {{"Y", "Y"}, {"X", "X"}}},
{G_OP_TYPE_BATCHNORM,
{{"Scale", "Scale"},
{"Mean", "Mean"},
{"Bias", "Bias"},
{"Variance", "Variance"},
{"Y", "BNY"}}}},
removed_nodes);
}
std::string Type() { return G_OP_TYPE_FUSION_DECONV_ADD_BN_RELU; }
};
template <typename DeviceType, typename T>
class FusionDeconvAddBNReluOp
: public framework::OperatorWithKernel<
DeviceType, FusionDeconvAddBNReluParam<DeviceType>,
operators::DeconvAddBNReluKernel<DeviceType, T>> {
public:
FusionDeconvAddBNReluOp(const string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<
DeviceType, FusionDeconvAddBNReluParam<DeviceType>,
operators::DeconvAddBNReluKernel<DeviceType, T>>(
type, inputs, outputs, attrs, scope) {}
void InferShape() const {
auto input = this->param_.Input();
auto in_dims = input->dims();
auto filter = this->param_.Filter();
auto filter_dims = filter->dims();
std::vector<int> strides = this->param_.Strides();
std::vector<int> paddings = this->param_.Paddings();
std::vector<int> dilations = this->param_.Dilations();
int groups = this->param_.Groups();
PADDLE_MOBILE_ENFORCE(
in_dims.size() == 4 || in_dims.size() == 5,
"ConvTransposeOp intput should be 4-D or 5-D tensor.");
PADDLE_MOBILE_ENFORCE(
in_dims.size() == filter_dims.size(),
"ConvTransposeOp input dimension and filter dimension "
"should be the same.");
PADDLE_MOBILE_ENFORCE(
in_dims.size() - strides.size() == 2U,
"ConvTransposeOp input dimension and strides dimension should "
"be consistent.");
PADDLE_MOBILE_ENFORCE(paddings.size() == strides.size(),
"ConvTransposeOp paddings dimension and strides "
"dimension should be the same.");
PADDLE_MOBILE_ENFORCE(paddings.size() == dilations.size(),
"ConvTransposeOp paddings dimension and dilations "
"dimension should be the same.");
PADDLE_MOBILE_ENFORCE(
in_dims[1] == filter_dims[0],
"In ConvTransposeOp, The number of input channels should "
"be equal to the number of filter's channels.");
std::vector<int64_t> output_shape({in_dims[0], filter_dims[1] * groups});
for (size_t i = 0; i < strides.size(); ++i) {
auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
output_shape.push_back((in_dims[i + 2] - 1) * strides[i] -
2 * paddings[i] + filter_extent);
}
this->param_.Output()->Resize(framework::make_ddim(output_shape));
}
protected:
};
} // namespace operators
} // namespace paddle_mobile
#endif // FUSION_DECONV_ADD_BN_RELU_OP
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DECONVADDBN_OP
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
using framework::OpKernelBase;
template <typename DeviceType, typename T>
class DeconvAddBNKernel
: public OpKernelBase<DeviceType, FusionDeconvAddBNParam<DeviceType>> {
public:
void Compute(const FusionDeconvAddBNParam<DeviceType> &param);
bool Init(FusionDeconvAddBNParam<DeviceType> *param);
};
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DECONVADDBNRELU_OP
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
using framework::OpKernelBase;
template <typename DeviceType, typename T>
class DeconvAddBNReluKernel
: public OpKernelBase<DeviceType, FusionDeconvAddBNReluParam<DeviceType>> {
public:
void Compute(const FusionDeconvAddBNReluParam<DeviceType> &param);
bool Init(FusionDeconvAddBNReluParam<DeviceType> *param);
};
} // namespace operators
} // namespace paddle_mobile
#endif
文件模式从 100644 更改为 100755
......@@ -16,13 +16,10 @@ limitations under the License. */
#include "operators/kernel/conv_bn_relu_kernel.h"
#include <cmath>
namespace paddle_mobile {
namespace operators {
template <>
bool ConvBNReluKernel<FPGA, float>::Init(FusionConvBNReluParam<FPGA> *param) {
// bool relu_enabled = true;
paddle_mobile::fpga::ActivationType activation_enable =
paddle_mobile::fpga::LEAKYRELU;
int16_t leaky_relu_negative_slope = 0;
......@@ -43,7 +40,6 @@ bool ConvBNReluKernel<FPGA, float>::Init(FusionConvBNReluParam<FPGA> *param) {
auto new_bias = new Tensor();
auto new_scale_ptr = new_scale->mutable_data<float>({channel});
auto new_bias_ptr = new_bias->mutable_data<float>({channel});
for (int i = 0; i < channel; i++) {
new_scale_ptr[i] = bn_scale_ptr[i] /
static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
......@@ -51,7 +47,16 @@ bool ConvBNReluKernel<FPGA, float>::Init(FusionConvBNReluParam<FPGA> *param) {
bs_ptr[i + channel] = new_scale_ptr[i];
bs_ptr[i] = new_bias_ptr[i];
}
const int groups = param->Groups();
if (groups == channel) {
fpga::format_dwconv_data(filter, out, new_scale_ptr, &new_bias_ptr);
fpga::DWconvArgs dwconv_arg = {0};
fpga::fill_dwconv_arg(&dwconv_arg, input, out, filter, activation_enable,
leaky_relu_negative_slope, param->Strides()[0],
param->Strides()[1], param->Paddings()[0],
param->Paddings()[1], new_bias_ptr);
param->SetFpgaArgs(dwconv_arg);
} else {
fpga::format_conv_data(filter, out, &bs_ptr, param->Groups());
fpga::SplitConvArgs conv_arg = {0};
fpga::fill_split_arg(&conv_arg, input, out, filter, activation_enable,
......@@ -59,16 +64,19 @@ bool ConvBNReluKernel<FPGA, float>::Init(FusionConvBNReluParam<FPGA> *param) {
param->Strides()[0], param->Strides()[1],
param->Paddings()[0], param->Paddings()[1], bs_ptr);
param->SetFpgaArgs(conv_arg);
}
delete new_scale;
delete new_bias;
return true;
}
template <>
void ConvBNReluKernel<FPGA, float>::Compute(
const FusionConvBNReluParam<FPGA> &param) {
if (param.Groups() == param.Output()->dims()[1]) {
fpga::ComputeDWConv(param.FpgaDwconvArgs());
} else {
fpga::ComputeFpgaConv(param.FpgaArgs());
}
}
} // namespace operators
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_TRANSPOSE_OP
#include "operators/kernel/conv_transpose_kernel.h"
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
template <>
bool ConvTransposeKernel<FPGA, float>::Init(ConvTransposeParam<FPGA> *param) {
// bool relu_enabled = false;
paddle_mobile::fpga::ActivationType activation_enable =
paddle_mobile::fpga::NONE;
int16_t leaky_relu_negative_slope = 0;
auto input = const_cast<Tensor *>(param->Input());
// const Tensor *bias = param->Bias();
// auto bias_ptr = bias->data<float>();
auto filter = const_cast<Tensor *>(param->Filter());
auto out = param->Output();
// PADDLE_MOBILE_ENFORCE(out->dims()[1] == bias->dims()[0],
// "Output channel should be equal to bias number");
int channel = out->dims()[1];
int sub_conv_n = param->Strides()[0];
auto bs_ptr = (float *)fpga::fpga_malloc(2 * channel * sub_conv_n * // NOLINT
sizeof(float)); // NOLINT
for (int i = 0; i < channel * sub_conv_n; i++) {
bs_ptr[i + sub_conv_n * channel] = 1;
bs_ptr[i] = 0; // bias_ptr[i % (channel)];
}
PADDLE_MOBILE_ENFORCE(param->Strides()[1] == param->Strides()[0],
"stride_width should be equal to stride_height ");
PADDLE_MOBILE_ENFORCE(filter->dims()[2] == filter->dims()[3],
"filter width should be equal to filter height ");
PADDLE_MOBILE_ENFORCE(((filter->dims()[2] % param->Strides()[0]) == 0),
"filter axis should be the multiple of stride axis ");
if (param->Groups() == channel) {
fpga::format_DWDeconv_data(filter, out, &bs_ptr, param->Groups(),
sub_conv_n);
fpga::DWDeconvArgs DWDeconv_arg = {0};
fpga::fill_DWDeconv_arg(&DWDeconv_arg, input, out, filter,
activation_enable, leaky_relu_negative_slope,
param->Strides()[0], param->Strides()[1],
param->Paddings()[0], param->Paddings()[1], bs_ptr);
param->SetFpgaArgs(DWDeconv_arg);
} else {
fpga::format_deconv_data(filter, out, &bs_ptr, param->Groups(), sub_conv_n);
fpga::DeconvArgs deconv_arg = {0};
fpga::fill_deconv_arg(&deconv_arg, input, out, filter, activation_enable,
leaky_relu_negative_slope, param->Groups(),
param->Strides()[0], param->Strides()[1],
param->Paddings()[0], param->Paddings()[1], bs_ptr);
param->SetFpgaArgs(deconv_arg);
}
return true;
}
template <>
void ConvTransposeKernel<FPGA, float>::Compute(
const ConvTransposeParam<FPGA> &param) {
if (param.Groups() == param.Output()->dims()[1]) {
fpga::ComputeDWDeconv(param.FpgaDWDconvArgs());
} else {
fpga::ComputeFpgaDeconv(param.FpgaArgs());
}
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DECONVADDBN_OP
#include "operators/kernel/deconv_add_bn_kernel.h"
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
template <>
bool DeconvAddBNKernel<FPGA, float>::Init(FusionDeconvAddBNParam<FPGA> *param) {
// bool relu_enabled = true;
paddle_mobile::fpga::ActivationType activation_enable =
paddle_mobile::fpga::NONE;
int16_t leaky_relu_negative_slope = 0;
auto input = const_cast<Tensor *>(param->Input());
const Tensor *bias = param->InputBias();
auto bias_ptr = bias->data<float>();
auto filter = const_cast<Tensor *>(param->Filter());
auto out = param->Output();
PADDLE_MOBILE_ENFORCE(out->dims()[1] == bias->dims()[0],
"Output channel should be equal to bias number");
int channel = out->dims()[1];
int sub_conv_n = param->Strides()[0];
auto bs_ptr = (float *)fpga::fpga_malloc(2 * channel * sub_conv_n * // NOLINT
sizeof(float)); // NOLINT
for (int i = 0; i < channel * sub_conv_n; i++) {
bs_ptr[i + sub_conv_n * channel] = 1;
bs_ptr[i] = bias_ptr[i % (channel)];
}
PADDLE_MOBILE_ENFORCE(param->Strides()[1] == param->Strides()[0],
"stride_width should be equal to stride_height ");
PADDLE_MOBILE_ENFORCE(filter->dims()[2] == filter->dims()[3],
"filter width should be equal to filter height ");
PADDLE_MOBILE_ENFORCE(((filter->dims()[2] % param->Strides()[0]) == 0),
"filter axis should be the multiple of stride axis ");
if (param->Groups() == channel) {
fpga::format_DWDeconv_data(filter, out, &bs_ptr, param->Groups(),
sub_conv_n);
fpga::DWDeconvArgs DWDeconv_arg = {0};
fpga::fill_DWDeconv_arg(&DWDeconv_arg, input, out, filter,
activation_enable, leaky_relu_negative_slope,
param->Strides()[0], param->Strides()[1],
param->Paddings()[0], param->Paddings()[1], bs_ptr);
param->SetFpgaArgs(DWDeconv_arg);
} else {
fpga::format_deconv_data(filter, out, &bs_ptr, param->Groups(), sub_conv_n);
fpga::DeconvArgs deconv_arg = {0};
fpga::fill_deconv_arg(&deconv_arg, input, out, filter, activation_enable,
leaky_relu_negative_slope, param->Groups(),
param->Strides()[0], param->Strides()[1],
param->Paddings()[0], param->Paddings()[1], bs_ptr);
param->SetFpgaArgs(deconv_arg);
}
return true;
}
template <>
void DeconvAddBNKernel<FPGA, float>::Compute(
const FusionDeconvAddBNParam<FPGA> &param) {
// fpga::ComputeFpgaDeconv(param.FpgaArgs());
if (param.Groups() == param.Output()->dims()[1]) {
fpga::ComputeDWDeconv(param.FpgaDWDconvArgs());
} else {
fpga::ComputeFpgaDeconv(param.FpgaArgs());
}
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DECONVADDBNRELU_OP
#include "operators/kernel/deconv_add_bn_relu_kernel.h"
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
template <>
bool DeconvAddBNReluKernel<FPGA, float>::Init(
FusionDeconvAddBNReluParam<FPGA> *param) {
// bool relu_enabled = true;
paddle_mobile::fpga::ActivationType activation_enable =
paddle_mobile::fpga::LEAKYRELU;
int16_t leaky_relu_negative_slope = 0;
auto input = const_cast<Tensor *>(param->Input());
const Tensor *bias = param->InputBias();
auto bias_ptr = bias->data<float>();
auto filter = const_cast<Tensor *>(param->Filter());
auto out = param->Output();
PADDLE_MOBILE_ENFORCE(out->dims()[1] == bias->dims()[0],
"Output channel should be equal to bias number");
int channel = out->dims()[1];
int sub_conv_n = param->Strides()[0];
auto bs_ptr = (float *)fpga::fpga_malloc(2 * channel * sub_conv_n * // NOLINT
sizeof(float)); // NOLINT
for (int i = 0; i < channel * sub_conv_n; i++) {
bs_ptr[i + sub_conv_n * channel] = 1;
bs_ptr[i] = bias_ptr[i % (channel)];
}
PADDLE_MOBILE_ENFORCE(param->Strides()[1] == param->Strides()[0],
"stride_width should be equal to stride_height ");
PADDLE_MOBILE_ENFORCE(filter->dims()[2] == filter->dims()[3],
"filter width should be equal to filter height ");
PADDLE_MOBILE_ENFORCE(((filter->dims()[2] % param->Strides()[0]) == 0),
"filter axis should be the multiple of stride axis ");
if (param->Groups() == channel) {
fpga::format_DWDeconv_data(filter, out, &bs_ptr, param->Groups(),
sub_conv_n);
fpga::DWDeconvArgs DWDeconv_arg = {0};
fpga::fill_DWDeconv_arg(&DWDeconv_arg, input, out, filter,
activation_enable, leaky_relu_negative_slope,
param->Strides()[0], param->Strides()[1],
param->Paddings()[0], param->Paddings()[1], bs_ptr);
param->SetFpgaArgs(DWDeconv_arg);
} else {
fpga::format_deconv_data(filter, out, &bs_ptr, param->Groups(), sub_conv_n);
fpga::DeconvArgs deconv_arg = {0};
fpga::fill_deconv_arg(&deconv_arg, input, out, filter, activation_enable,
leaky_relu_negative_slope, param->Groups(),
param->Strides()[0], param->Strides()[1],
param->Paddings()[0], param->Paddings()[1], bs_ptr);
param->SetFpgaArgs(deconv_arg);
}
return true;
}
template <>
void DeconvAddBNReluKernel<FPGA, float>::Compute(
const FusionDeconvAddBNReluParam<FPGA> &param) {
// fpga::ComputeFpgaDeconv(param.FpgaArgs());
if (param.Groups() == param.Output()->dims()[1]) {
fpga::ComputeDWDeconv(param.FpgaDWDconvArgs());
} else {
fpga::ComputeFpgaDeconv(param.FpgaArgs());
}
}
} // namespace operators
} // namespace paddle_mobile
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/kernel/pad2d_kernel.h"
namespace paddle_mobile {
namespace operators {
template <>
bool Pad2dKernel<FPGA, float>::Init(Pad2dParam<FPGA> *param) {
Tensor *output = param->Out();
fpga::format_fp16_ofm(output);
return true;
}
void pad2dFunc(const framework::Tensor *input, framework::Tensor *output) {
auto input_data = (input->data<half>());
auto output_data = (output->data<half>());
auto input_c = input->dims()[1];
auto input_h = input->dims()[2];
auto input_w = input->dims()[3];
auto output_c = output->dims()[1];
auto output_w = output->dims()[3];
auto copysize = input_c * input_w;
for (int h = 0; h < input_h; ++h) {
auto input_offset = h * input_c * input_w;
auto output_offset = h * paddle_mobile::fpga::align_to_x(
output_c * output_w, IMAGE_ALIGNMENT);
memcpy((output_data + output_offset), (input_data + input_offset),
copysize * sizeof(half));
}
}
template <>
void Pad2dKernel<FPGA, float>::Compute(const Pad2dParam<FPGA> &param) {
auto in_x = param.InputX();
auto out = param.Out();
fpga::fpga_invalidate((void *)in_x->data<half>(), // NOLINT
in_x->numel() * sizeof(half));
pad2dFunc(in_x, out);
(out->scale)[0] = (in_x->scale)[0];
(out->scale)[1] = (in_x->scale)[1];
DLOG << (out->scale)[0];
DLOG << (out->scale)[1];
size_t outputSize =
out->dims()[2] *
paddle_mobile::fpga::align_to_x((out->dims()[1]) * (out->dims()[3]),
IMAGE_ALIGNMENT) *
sizeof(half);
fpga::fpga_flush(out->data<half>(), outputSize);
}
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "framework/operator.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
template <typename DeviceType, typename T>
class Pad2dKernel
: public framework::OpKernelBase<DeviceType, Pad2dParam<DeviceType>> {
public:
void Compute(const Pad2dParam<DeviceType> &param);
bool Init(Pad2dParam<DeviceType> *param);
};
} // namespace operators
} // namespace paddle_mobile
......@@ -1221,6 +1221,7 @@ class FetchParam : public OpParam {
RType *input_x_;
Tensor *out_;
#ifdef PADDLE_MOBILE_FPGA
public:
fpga::BypassArgs fpga_bypass_args;
......@@ -2415,6 +2416,120 @@ class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
typedef typename DtypeTensorTrait<Dtype>::gtype GType;
typedef typename DtypeTensorTrait<Dtype>::rtype RType;
public:
FusionDeconvAddBNParam(const VariableNameMap &inputs,
const VariableNameMap &outputs,
const AttributeMap &attrs, const Scope &scope)
: ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
output_ = OpParam::OutFrom<GType>(outputs, scope);
input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
momentum_ = OpParam::GetAttr<float>("momentum", attrs);
// is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
}
RType *Output() const { return output_; }
const RType *InputBias() const { return input_bias_; }
const RType *InputMean() const { return input_mean_; }
const RType *InputScale() const { return input_scale_; }
const RType *InputVariance() const { return input_variance_; }
const float &Epsilon() const { return epsilon_; }
const float &Momentum() const { return momentum_; }
const bool &IsTest() const { return is_test_; }
void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
const RType *NewScale() const { return new_scale_; }
const RType *NewBias() const { return new_bias_; }
protected:
RType *output_;
RType *input_bias_;
RType *input_mean_;
RType *input_scale_;
RType *input_variance_;
float epsilon_;
float momentum_;
bool is_test_;
RType *new_bias_;
RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
typedef typename DtypeTensorTrait<Dtype>::gtype GType;
typedef typename DtypeTensorTrait<Dtype>::rtype RType;
public:
FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
const VariableNameMap &outputs,
const AttributeMap &attrs, const Scope &scope)
: ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
output_ = OpParam::OutFrom<GType>(outputs, scope);
input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
momentum_ = OpParam::GetAttr<float>("momentum", attrs);
// is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
}
RType *Output() const { return output_; }
const RType *InputBias() const { return input_bias_; }
const RType *InputMean() const { return input_mean_; }
const RType *InputScale() const { return input_scale_; }
const RType *InputVariance() const { return input_variance_; }
const float &Epsilon() const { return epsilon_; }
const float &Momentum() const { return momentum_; }
const bool &IsTest() const { return is_test_; }
void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
const RType *NewScale() const { return new_scale_; }
const RType *NewBias() const { return new_bias_; }
protected:
RType *output_;
RType *input_bias_;
RType *input_mean_;
RType *input_scale_;
RType *input_variance_;
float epsilon_;
float momentum_;
bool is_test_;
RType *new_bias_;
RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
......@@ -3114,6 +3229,26 @@ class IncrementParam : public OpParam {
int step_;
};
#endif // INCREMENT_OP
#ifdef PAD2D_OP
template <typename Dtype>
class Pad2dParam : public OpParam {
typedef typename DtypeTensorTrait<Dtype>::gtype GType;
typedef typename DtypeTensorTrait<Dtype>::rtype RType;
public:
Pad2dParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
const AttributeMap &attrs, const Scope &scope) {
input_x_ = InputXFrom<GType>(inputs, scope);
out_ = OutFrom<GType>(outputs, scope);
}
const RType *InputX() const { return input_x_; }
RType *Out() const { return out_; }
private:
RType *input_x_;
RType *out_;
};
#endif
} // namespace operators
} // namespace paddle_mobile
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PAD2D_OP
#include "operators/pad2d_op.h"
namespace paddle_mobile {
namespace operators {
template <typename Dtype, typename T>
void Pad2dOp<Dtype, T>::InferShape() const {
auto input_dims = this->param_.InputX()->dims();
auto input_n = input_dims[0];
auto input_c = input_dims[1];
auto input_h = input_dims[2];
auto input_w = input_dims[3];
this->param_.Out()->Resize({input_n, input_c, input_h + 1, input_w + 1});
}
} // namespace operators
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU(pad2d, ops::Pad2dOp);
#endif
#ifdef PADDLE_MOBILE_FPGA
REGISTER_OPERATOR_FPGA(pad2d, ops::Pad2dOp);
#endif
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PAD2D_OP
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/pad2d_kernel.h"
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
using framework::AttributeMap;
using framework::OperatorWithKernel;
using framework::Scope;
using std::string;
template <typename DeviceType, typename T>
class Pad2dOp
: public OperatorWithKernel<DeviceType, Pad2dParam<DeviceType>,
operators::Pad2dKernel<DeviceType, T>> {
public:
Pad2dOp(const string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs,
std::shared_ptr<Scope> scope)
: OperatorWithKernel<DeviceType, Pad2dParam<DeviceType>,
operators::Pad2dKernel<DeviceType, T>>(
type, inputs, outputs, attrs, scope) {}
void InferShape() const override;
private:
};
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -131,7 +131,12 @@ if (CON GREATER -1)
set(PROPOSAL_OP ON)
set(ANCHOR_GENERATOR_OP ON)
set(SLICE_OP ON)
set(SIGMOID_OP ON)
set(CONCAT_OP ON)
set(PAD2D_OP ON)
set(CONV_TRANSPOSE_OP ON)
set(FUSION_DECONVADDBNRELU_OP ON)
set(FUSION_DECONVADDBN_OP ON)
set(FOUND_MATCH ON)
endif()
......@@ -573,7 +578,6 @@ endif()
if (FUSION_DECONVADDRELU_OP)
add_definitions(-DFUSION_DECONVADDRELU_OP)
endif()
if (WHILE_OP)
add_definitions(-DWHILE_OP)
endif()
......@@ -602,3 +606,12 @@ endif()
if (ROI_PERSPECTIVE_OP)
add_definitions(-DROI_PERSPECTIVE_OP)
endif()
if (FUSION_DECONVADDBNRELU_OP)
add_definitions(-DFUSION_DECONVADDBNRELU_OP)
endif()
if (FUSION_DECONVADDBN_OP)
add_definitions(-DFUSION_DECONVADDBN_OP)
endif()
if (PAD2D_OP)
add_definitions(-DPAD2D_OP)
endif()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册