diff --git a/lite/api/model_test.cc b/lite/api/model_test.cc index 825d4f51ed8a6e2b4690657a766d9c9c5a1a2857..4db08f70047c76cd9cdda7fa278380ec679250af 100644 --- a/lite/api/model_test.cc +++ b/lite/api/model_test.cc @@ -37,6 +37,7 @@ void OutputOptModel(const std::string& load_model_dir, config.set_valid_places({ Place{TARGET(kX86), PRECISION(kFloat)}, Place{TARGET(kARM), PRECISION(kFloat)}, + Place{TARGET(kHost), PRECISION(kFloat)}, }); auto predictor = lite_api::CreatePaddlePredictor(config); diff --git a/lite/core/mir/fusion/conv_elementwise_fuser.cc b/lite/core/mir/fusion/conv_elementwise_fuser.cc index c3ab3e4c4ca9bd8d6a6eaaf82e40dcb06cf99ea9..abc78edda88e008945e9d184b02e5feef3e5a4b1 100644 --- a/lite/core/mir/fusion/conv_elementwise_fuser.cc +++ b/lite/core/mir/fusion/conv_elementwise_fuser.cc @@ -27,8 +27,10 @@ void ConvElementwiseFuser::BuildPattern() { VarNode("input")->assert_is_op_input(conv_type_, "Input")->AsInput(); auto* filter = VarNode("filter")->assert_is_op_input(conv_type_, "Filter")->AsInput(); - auto* bias = - VarNode("bias")->assert_is_op_input("elementwise_add", "Y")->AsInput(); + auto* bias = VarNode("bias") + ->assert_is_op_input("elementwise_add", "Y") + ->AsInput() + ->assert_is_persistable_var(); // create op nodes auto* conv2d =